
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 188.184.3.52

This content was downloaded on 06/01/2016 at 16:05

Please note that terms and conditions apply.

Lightweight scheduling of elastic analysis containers in a competitive cloud environment: a

Docked Analysis Facility for ALICE

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 022005

(http://iopscience.iop.org/1742-6596/664/2/022005)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/2
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Lightweight scheduling of elastic analysis containers in a
competitive cloud environment: a Docked Analysis Facility for
ALICE

D Berzano¹, J Blomer, P Buncic¹, I Charalampidis, G Ganis and R Meusel
European Organization for Nuclear Research (CERN), Genève, Switzerland

¹ For the ALICE Collaboration

E-mail: dario.berzano@cern.ch

Abstract. During the last years, several Grid computing centres chose virtualization as a better way to
manage diverse use cases with self-consistent environments on the same bare infrastructure. The
maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily
change the amount of resources assigned to each use case by simply turning on and off virtual
machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a
fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking
automatically upon need: however, resources starvation occurs frequently as expansion has to compete
with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their
resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and
making one-job virtual machines introduces a non-negligible virtualization overhead. By improving
several components of the Virtual Analysis Facility we have realized an experimental “Docked”
Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing
performance and security isolation. We will present the techniques we have used to address practical
problems, such as software provisioning through CVMFS, as well as our considerations on the
maturity of containers for High Performance Computing. As the abstraction layer is thinner, our
Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node
containers: we will show how this approach will positively impact automatic cluster resizing by
deploying lightweight pilot containers instead of replacing central queue polls.

1 Background
Cloud and virtualization technologies have always generated a relevant interest in High Energy
Physics computing, largely dominated by the Grid. Local Grid deployments running virtualized on top
of private clouds such as OpenNebula [1] and OpenStack [2] are nowadays mature, as they allow more
degrees of freedom on the physical infrastructure configuration while ensuring a consistent
environment for Grid jobs. Among the advantages, we mention the ability to choose any operating
system for the underlying hypervisors, and the flexibility to expand and compress Grid resources to
make room for spot use cases without requiring a separate dedicated infrastructure. Virtualization has
also a positive impact on high availability: important services can be proactively moved from faulty to
healthy servers without interruption (live migration), and outdated worker nodes can be gradually and
dynamically replaced with freshly updated ones as soon as they phase out (rolling updates).

Even if cloud computing has also opened the way for direct virtual machines submission in place of

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

Grid jobs, the success of virtualization in HEP is due to its transparency: users continue to submit
ordinary Grid jobs using standard interfaces and they are unaware of the nature of the exploited
resources. Small to large sites have adopted this approach: for instance, the ALICE Tier-2 in Torino,
based on OpenNebula [3], and the CERN site, where worker nodes are virtual machines managed by a
single OpenStack deployment [4] that transparently aggregates the CERN computing center located in
Switzerland and the Wigner Data Center in Hungary.

1.1 The Virtual Analysis Facility and its ALICE applications
The Virtual Analysis Facility [3][5], also known as CernVM Elastic Clusters, is an implementation of
a portable preconfigured batch cluster that addresses the problems of usability, scalability and fair
resources exploitation.

An Elastic Cluster is constituted by a head node and a variable number of workers. The head node
is used to submit and control batch jobs, and the number of worker nodes varies dynamically based on
the effective usage. The batch system in use is HTCondor [6], as it supports dynamic reconfiguration
of workers; elastiq [7] is used to monitor the status of HTCondor to start new virtual machines when
too many jobs are waiting, and turn them off when they turn idle.

Every tool, including elastiq, is embedded in the virtual cluster: the end user simply deploys a
single virtual machine (the head node), and worker nodes will be launched transparently only when
needed, without further direct user intervention.
Cloud interaction occurs using the standard EC2 API [8], supported by all major cloud orchestrators:
the Elastic Cluster is a “batch system in a box” that can be deployed and scaled without any deep
knowledge of either batch systems or cloud computing.

The ALICE experiment is currently using different instances of the Virtual Analysis Facility in a
number of critical use cases.

1.1.1 Opportunistic cloud on the High Level Trigger. This cluster [10] counts the equivalent of 7000
Grid job slots (with hyperthreading enabled), and more than 3 GB of RAM per slot. The High Level
Trigger is a mission critical computing facility used during data taking: for this reason it is isolated
from the external network. Outside data taking we exploit unused resources by running an OpenStack
cloud on top of it, where an Elastic Cluster is automatically deployed by means of elastiq.

Virtual machines provide us with a thick layer of isolation with the High Level Trigger’s specific
configuration, and its administrators can select which nodes are part of the cloud: when a new
hypervisor is activated, elastiq reacts by filling it with virtual machines without manual interventions.
This deployment has been tested successfully and has been commissioned in May 2015.

1.1.2 Disposable Release Validation Cluster. This is an Elastic Cluster running long batch validation
tests on ALICE software release candidates [11]. The Release Validation Cluster is fully disposable:
validation results are saved on a web-browsable shared storage, and the cluster itself can be
completely destroyed after use. The cluster can be run anywhere, but for centrally managed operations
the CERN Agile Infrastructure [4] is used.

1.1.3 PROOF-based Virtual Analysis Facility. This is the first Elastic Cluster application ever used by
ALICE [5]: HTCondor batch resources are used interactively by means of PROOF on Demand [12].
The first of this kind has been in production in Torino since early 2012 [13], and has been
subsequently evolved in the generic CernVM Elastic Clusters implementation.

1.2 Issues of cloud deployments
The reasons why we use virtual machines can be summarized in the ability of running on the same
hardware several non-interfering use cases (isolation) exposing a known runtime environment to their
applications (consistency) by adapting the amount of dedicated resources at runtime (elasticity).

The Grid is the major stakeholder in High Energy Physics: by construction, it tends to saturate all

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

2

the available resources on a private cloud, meaning that all smaller elastic appliances might not find
enough resources to scale up: an example is shown in Figure 1.

It is still possible to use the available resources at their maximum by making the largest use cases
periodically relinquish their quotas in order to allow smaller applications to fill in. This sort of
preemption encounters however the same problems we would face when performing rolling updates:
existing virtual machines must be set to drain mode, meaning that they do not accept new jobs but
they let only the existing ones to finish before terminating the VM.

ALICE jobs however have a running time up to 48 hours, meaning that, in the worst case, we will
have a single job slot running and all the other idle for two days before we can effectively use them.
Backfilling techniques are of course possible: free slots can be filled with a series of shorter jobs,
however we might simply not have enough short jobs to insert. Via backfilling, for what concerns
ALICE and in general all HEP experiments, the problem can be mitigated but not completely solved.

Ideally, scheduling issues can be partially solved by making virtual machines as small as possible,
down to one-job nodes: a virtual machine would live for the time of its only job, and no draining (and
no job slots wasted) would occur. There is, however, a tradeoff between reducing the overhead
introduced by a VM (a virtual operating system, virtual hardware allocated, etc.) and a more efficient
scheduling: smaller VMs have a larger relative overhead per job slot, which inevitably leads to
reduced performances.

In the next paragraphs we will show how adopting solutions based on technologies other than
virtualization might lead to a more efficient scheduling and the same level of consistency and isolation
provided by virtual machines.

2 Containers
In recent times, containers have become an interesting alternative to virtual machines for what
concerns our intended use cases: recent Linux kernels have introduced a series of features that provide
the desired level of isolation without introducing the overhead required to run a whole virtualized
environment.

From a user application perspective, a container has essentially two levels of isolation combined:
cgroups [14] is a Linux kernel facility that allows to account and cap the amount of resources (most
notably resident memory, swap and CPU time) used by a container; kernel namespaces [15] limit the
visibility scope of network interfaces, processes, users and more. Limiting the visibility of mount
points and filesystem hierarchy is also done through namespaces, representing an evolution of the
legacy Unix chroot facility.

Even if containers are often referred to as “lightweight virtual machines”, they cannot be fully
compared to them. Virtual machines are like ordinary computers that interact with virtual hardware
exposed by their hosting hypervisor: a virtual machine has a virtual BIOS and a virtual RAM memory,
and it is likely to have a virtual network interface and a virtual block device—all of them treated as if

Figure 1. Observation of potential
inelasticity on CERN OpenStack: out of
50 VMs requested only 10 VMs were
up after 24 hours.

Figure 2. Containers and VMs compared: applications run
on the bare metal in containers but the guest kernel cannot
be changed.

#"VMs Hours
Thu$2014)07)31$16:36:44 1 0,00 50
Thu$2014)07)31$16:55:34 2 0,31 50
Thu$2014)07)31$17:59:48 3 1,38 50
Fri$2014)08)01$01:23:58 4 8,79 50
Fri$2014)08)01$13:53:28 5 21,28 50
Fri$2014)08)01$14:05:52 6 21,49 50
Fri$2014)08)01$14:08:27 7 21,53 50
Fri$2014)08)01$17:29:15 8 24,88 50
Fri$2014)08)01$17:29:16 9 24,88 50
Fri$2014)08)01$18:56:34 10 26,33 50
Fri$2014)08)01$18:56:38 11 26,33 50
Fri$2014)08)01$19:00:28 12 26,40 50
Fri$2014)08)01$19:00:30 13 26,40 50
Fri$2014)08)01$19:21:10 14 26,74 50
Fri$2014)08)01$19:21:12 15 26,74 50
Fri$2014)08)01$20:17:02 16 27,67 50
Fri$2014)08)01$20:17:03 17 27,67 50
Fri$2014)08)01$20:28:25 18 27,86 50
Fri$2014)08)01$20:28:27 19 27,86 50
Fri$2014)08)01$20:31:32 20 27,91 50
Fri$2014)08)01$20:31:34 21 27,91 50
Fri$2014)08)01$20:34:24 22 27,96 50
Fri$2014)08)01$20:50:49 23 28,23 50
Fri$2014)08)01$20:53:28 24 28,28 50
Fri$2014)08)01$20:53:29 25 28,28 50
Fri$2014)08)01$21:21:05 26 28,74 50
Fri$2014)08)01$21:21:06 27 28,74 50
Fri$2014)08)01$21:37:32 28 29,01 50
Fri$2014)08)01$21:37:35 29 29,01 50
Fri$2014)08)01$21:55:31 30 29,31 50
Fri$2014)08)01$21:55:33 31 29,31 50
Fri$2014)08)01$22:02:02 32 29,42 50
Fri$2014)08)01$22:15:27 33 29,65 50
Fri$2014)08)01$22:24:40 34 29,80 50
Fri$2014)08)01$22:24:46 35 29,80 50
Fri$2014)08)01$22:38:11 36 30,02 50
Fri$2014)08)01$23:05:14 37 30,47 50
Fri$2014)08)01$23:05:17 38 30,48 50
Fri$2014)08)01$23:18:32 39 30,70 50
Fri$2014)08)01$23:32:15 40 30,93 50
Fri$2014)08)01$23:48:39 41 31,20 50
Fri$2014)08)01$23:53:05 42 31,27 50
Fri$2014)08)01$23:53:18 43 31,28 50

34,00 50

0

10

20

30

40

50

0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32

R
un

ni
ng

 V
M

s

Hours

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

3

they were real ones by the virtual machine’s operating system (note that this simplification does not
take into account paravirtualized hardware drivers).

Applications running inside a virtual machine also benefit from a fully emulated operating system:
this includes a different kernel from the running hypervisor, in addition to a different runtime
environment. Virtual hardware and the guest kernel are additional layers that separate the application
from the bare metal.

Container applications, on the other hand, run directly on the kernel of the hosting machine: the
aforementioned isolation features allow exposing a chrooted guest runtime environment different from
the host’s, but the operating system’s kernel cannot be changed. A schematic comparison between
virtual machines and containers is presented in Error! Reference source not found..

2.1 Linux Containers and Docker
In the last years several low level technologies have been developed to implement isolation at kernel
level: other technologies have been built on top in order to make them effectively usable for creating
and containers and easily deploying applications with them.

Linux Containers (LXC) [16] combine cgroups and kernel namespaces to provide a sandboxed
environment for applications. Docker [17], which primarily uses LXC as virtualization engine,
provides support for storing, versioning and deploying base containers.

In Docker, every base image is a read-only root filesystem hierarchy. A running container can be
created out of it: in this case, the read-only part is overlaid with a read-write filesystem where only the
modifications will be saved. AUFS [18] or OverlayFS [19] are used for that purpose. Docker also
supports block device overlays using device-mapper’s thin provisioning (dm-thinp) [20].

Every writable layer contains only the modifications to the base layer, and can be saved in turn to
become a new base image: each new container is therefore the result of overlaying a number of read-
only filesystems, plus a single read-write filesystem on top.

The idea of versioning is heavily inspired by Git. Docker also easily allows to download (“pull”)
official base images and user contributions from a central repository [22] or custom ones, as well as
uploading (“push”) your own. Each layer is identified by a unique hash. Similarly to Git, small
modifications or branching with respect to a larger base image are very lightweight to upload and
deploy, as only the difference and a pointer to the previous layer are saved.

2.2 From virtual clusters to container-based clusters
Containers have some limitations compared to virtual machines: for instance, the kernel cannot be
customized and containers cannot be currently migrated. However, our current Virtual Analysis
Facility applications require a level of isolation that make Docker containers a suitable alternative to
virtual machines for their deployment.

Since ALICE software is distributed with CernVM-FS, we need containers to support it; moreover,
we would like to use the CernVM environment as a Docker container instead of as a virtual machine.
The most relevant feature of CernVM is that its filesystem comes from CernVM-FS and it is
downloaded on demand: we would like CernVM-based Docker containers to retain this feature. In
section 3 we illustrate how we have managed to use the CernVM environment and CernVM-FS
repositories with Docker.

Containers bring little overhead to our applications, compared to virtual machines, making it
possible to encapsulate single job inside a container. Instead of mimicking virtual machine deployment
models, we have addressed scheduling and scalability issues by considering that we need to deploy
more containers than virtual machines, and more frequently. A pilot container and factory model and
possible implementations are discussed in section 4.

3 CernVM and CVMFS in a Docker container
CernVM-FS is a mounted filesystem needing the FUSE kernel module in order to work. By default,
Linux Containers run in unprivileged mode, where kernel cannot be tampered with, and root user

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

4

privileges are limited to the scope of the container: in order to mount a CernVM-FS repository, we
would need to run containers in privileged mode, losing all the isolation and security layers.

Both for the case of running CernVM and accessing CernVM-FS repositories we have used
solutions that expose a CernVM-FS filesystem mounted on the host to the containers

3.1 Native CernVM image as a Docker container
We have seen how Docker overlays read-only and read-write filesystems to create the container
filesystem. Incidentally, this is the same technique used by CernVM: starting from CernVM 3 [23], the
root filesystem comes from CernVM-FS (which is read-only), and it appears writable thanks to an
overlay with AUFS [18].

We have realized a demonstrator called docker-cernvm [24] that leverages such analogy to register
the CernVM read-only filesystem as a Docker container: as a result, the same unmodified CernVM
environment used for the virtual machine image can be run as a normal container by means of docker
run. A writable layer is created by Docker on top of it, as it normally does for any base container.

The docker-cernvm script automatizes two processes: registering a dummy image to the Docker
repository and mounting the actual CernVM filesystem on top of it.

To register a dummy image, the following command is executed:

docker-cernvm --tag alice/cernvm register

A Docker image called alice/cernvm will be created: the image contains a single placeholder file

used by the mount operation to identify the mountpoint. Registration is done once without root
privileges. The next operation mounts CernVM in place of the dummy image:

docker-cernvm --tag alice/cernvm mount

Mounting requires root privileges. Once completed, the container can be run as any other container.
The demonstrator shows that it is natural to run CernVM as a Docker container: as a further

example, the pilot container prototype presented in section 4.1 is based on CernVM.
It is interesting that, thanks to CernVM-FS, the CernVM base image does not have to make

compromises with respect to other “minimalistic” or “core” operating systems in order to be
lightweight to deploy: CernVM is fully fledged, and only the needed parts are fetched on demand.

3.2 CernVM-FS access from a container
The easiest and most efficient way to use CernVM-FS repositories inside a Docker container is by
using the Docker “volumes” feature, accessible with the -v switch of the docker run commands:
CernVM-FS repositories are mounted on the host machine, and exposed to containers via bind mounts
in their filesystem hierarchy to the expected location.

The approach is has the clear advantage of preserving and sharing the CernVM-FS cache on the
host machine, instead of losing it with each container. This means that every new container will
benefit from content cached by previous container runs, and using disposable one job containers
becomes sustainable.

Exposing CernVM-FS mount points to containers is straightforward, but the procedure has some
caveats. On standard setups, CernVM-FS is configured with autofs to mount repositories the first time
they are accessed: this does not play well with Docker volumes, and requires either that the repository
is accessed right before starting the container (for instance through a dummy stat or ls operation), or
that autofs is turned off completely and selected repositories are mounted explicitly. The latter is
preferred for security reasons, and it can be automatized by adding CernVM-FS entries in /etc/fstab.

In cases where the host cannot be configured for using CernVM-FS or it is not accessible, Parrot
provides a viable solution to access CernVM-FS repositories. Even in such a case, CernVM-FS can be
configured to use an external (“alien”) cache shared between containers.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

5

4 Pilot containers: a “docked” analysis facility
As we have seen so far, containers are a radically different tool compared to virtual machines, making
new solutions possible for deploying them on the large scale.

A possible container-based “docked” analysis facility should be capable of running the same jobs
supported by the Virtual Analysis Facility. Since the VAF is, quite simply, a virtual HTCondor elastic
cluster, a “Docked” Analysis Facility should just be capable of running HTCondor jobs as well.

The HTCondor community is currently working on a “Docker universe”: it is still under
development and it should make HTCondor directly capable of wrapping jobs within Docker
containers [25].

We have preferred a different approach, where HTCondor runs inside specially configured
containers called pilot containers (section 4.1) deployed by several container factories (section 4.2)
not necessarily deploying HTCondor pilots: this extends the scope of the current Virtual Analysis
Facility beyond batch jobs.

The most common problem of overlaying two schedulers (the one deploying virtual machines and
the one dispatching jobs) is the lack of synchronization between them, often enforced by the
separation of administrative domains. In a competitive cloud environment exploited by several
“elastic” tenants this has a consequence: no tenant is willing to relinquish its resources, as nobody
guarantees that they will be given back promptly, as clearly represented in Error! Reference source
not found.. External solutions must be put in place, such as defining a maximum lifetime for VMs, in
order to work around it.

The pilot approach proposed here works by eliminating scheduling of containers completely: they
are constantly executed and exit immediately if there is nothing to do. The only scheduling performed
occurs for the applications running inside containers.

In the next paragraphs we will see how we tackle this approach, possibly by integrating it with
some existing solutions that currently target virtual machines, most notably Vac [26][27].

4.1 Anatomy of a HTCondor pilot container
A HTCondor pilot container is a Docker container behaving as a specially configured HTCondor
execute node: it only runs the “master” and the “startd” daemons.

The container has a single startup script that starts the HTCondor daemons. HTCondor then
connects back to a central “collector”: this is done by means of the Condor Connection Broker
(CCB) [28], requiring no open ports on the container side, that works even behind a firewall.

After an initial waiting time, the startup script on the container issues the condor_off -peaceful
command: if the container is running a job, it will terminate as soon as the job is done. If the container
has not received any job, it exits immediately. This configuration is very similar to glideinWMS [29]
that creates a HTCondor cluster on top of any batch system. It has been shown that a pilot-based
approach to HTCondor can scale up to O(100 000) concurrent jobs [30].

This configuration does not require anything but Docker installed on the host system, as HTCondor
and its configuration are embedded in the pilot container. Being self-contained, a single pilot container
setup is suitable to run both on dedicated and opportunistic facilities, and can be easily used for
volunteer computing as well.

The startup time of pilot containers has been compared with the startup time of an analog pilot
virtual machine, both based on the same CernVM version: by taking into account deployment, boot
and registration to the HTCondor collector, a set of 48 distinct one-core pilot containers are ready to
execute jobs in approximately 15 seconds, whereas 12 virtual machines with 4 cores each take almost
6 minutes on the CERN Agile Infrastructure. The huge difference is due to a number of factors:
containers do not need to be “deployed” (Docker just creates an overlay), whereas virtual machines
do; moreover, a pilot container only runs HTCondor, whereas a virtual machine has a complex boot
process starting potentially unneeded services.

From the numbers it is clear that containers are more suitable than virtual machines for
implementing a pilot model.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

6

Figure 3. Average startup time of 48 HTCondor job slots
(12 virtual machines with 4 cores each vs. 48 single-core
containers). Both setups use the same CernVM image.
Containers join the cluster within 15 seconds on average,
where virtual machines have an overhead that pushes this
time to almost 6 minutes on the CERN Agile
Infrastructure.

In addition, it is worth noting how a pilot container can cleanly exit by itself: virtual machines, in

some of the most common cloud deployments (including OpenNebula and OpenStack), cannot cleanly
shutdown themselves, but they need to make an API call to request their clean termination.

An implementation of the pilot startup script working with the CernVM Docker container
(section 3.1) is available for download [24].

4.2 The container factory
Following the concept of scheduling jobs, not containers, the best way of deploying pilot containers is
to use a distributed set of pilot factories, without a single central control point. This approach tackles
both scalability (even, possibly, on the geographical scale or opportunistic resources) and ease of
configuration, as new or custom container factories can be dynamically added and removed.

Distributed pilot factories can run on each host: they can be configured to produce containers of
different types (for instance, an Ubuntu or a CernVM container). Containers are expected to exit
autonomously either when they have nothing to do or right after finishing their only job (section 4.1),
however a container factory should kill containers running for too long.

Whenever a container of a certain type exits, the container factory immediately creates a new
container. Container types can be selected in a round-robin fashion or randomly: in the latter case,
relative probabilities can be configured to make some container types more likely to be produced than
others. Probabilities can also be adjusted dynamically by lowering chances of producing containers
that are more likely to terminate without doing anything.

Vac [26][27] implements an analog approach using distributed factories of pilot virtual machines: a
collaboration with the Vac development team is envisioned in order to extend its scope to Docker
containers.

5 Conclusions and future plans
Using the docker-cernvm demonstrator [24] we have shown that it is natural to run an unmodified
CernVM as a Docker container by naturally exploiting overlay concepts shared by both systems.

CernVM-FS has versioning features as well, which the CernVM filesystem leverages to
transitionally snapshot its upgrades. It is currently in the plans to support mounting multiple snapshots
of the same repository: this feature is required to make them directly accessible from the Docker
images repository. This feature will allow creating CernVM-based appliances where only a thin
differences layer is distributed and overlaid on top of a specific CernVM snapshot, unleashing the full
potential of Docker and CernVM combined.

A simple yet fully functional pilot container appliance based on HTCondor has been developed,
showing that the time necessary to launch and boot it is much less compared to an analog virtual
machine: containers are clearly more appropriate than VMs for a pilot-based pull scheduling model.

A comprehensible set of requirements for distributed container factories has been defined: most of
them appear to be satisfied by Vac, a tool originally developed for running pilot virtual machines. We
are exploring the possibility to collaborate with the Vac team to extend its scope to Docker containers.

!!! CERN!OpenStack Docker
Deployment 230 0
Boot!and!contextualization 110 5
HTCondor!registration 10 10
Total![s] 350 15

!!! CERN!OpenStack Docker
Deployment 0,002662037 0
Boot!and!contextualization 0,001273148 5,78704E,05
HTCondor!registration 0,000115741 0,000115741
Total![s] 0,004050926 0,000173611

Values3in3seconds

Values3/386400

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

CERN OpenStack
 Docker

Ti
m

e
[m

in
:s

s]

Deployment Boot and contextualization HTCondor registration

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

7

Finally, it is worth mentioning Apache Mesos [31] as another popular containers deployment tool.
Mesos covers a broader use case and it is commonly not used to run batch jobs: it is in the plans to
verify how Apache Mesos behaves when running run HTCondor-based pilot containers, which would
provide a compatibility layer needed to run our Virtual Analysis Facility applications.

References
[1] http://opennebula.org/
[2] https://www.openstack.org/
[3] D Berzano 2014 A ground-up approach to High-Throughput Cloud Computing in High-Energy

Physics Ph.D. Thesis Università degli Studi di Torino, Italy
[4] RM Llamas et al. 2014 Commissioning the CERN IT Agile Infrastructure with experiment

workloads J. Phys.: Conf. Ser. 513 032066 doi:10.1088/1742-6596/513/3/032066
[5] D Berzano et al. 2014 PROOF as a Service on the Cloud: a Virtual Analysis Facility based on the

CernVM ecosystem J. Phys.: Conf. Ser. 513 032007 doi:10.1088/1742-6596/513/3/032007
[6] http://research.cs.wisc.edu/htcondor/
[7] https://github.com/dberzano/elastiq
[8] http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
[9] The ALICE Collaboration 2008 The ALICE experiment at the CERN LHC Journal of

Instrumentation 3 S08002 doi:10.1088/1748-0221/3/08/S08002
[10] M Krzewicki, D Berzano et al. 2015 The ALICE High Level Trigger, status and plans

(submitted) https://indico.cern.ch/event/304944/session/1/contribution/502
[11] D Berzano and M Krzewicki 2015 The ALICE Software Release Validation cluster (submitted)

http://indico.cern.ch/event/304944/session/10/contribution/460
[12] P Malzacher and A Manafov 2010 PROOF on Demand J. Phys.: Conf. Ser. 219 072009

doi:10.1088/1742-6596/219/7/072009
[13] D Berzano et al. 2012 PROOF on the Cloud for ALICE using PoD and OpenNebula J. Phys.:

Conf. Ser. 368 012019 doi:10.1088/1742-6596/368/1/012019
[14] https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
[15] https://lwn.net/Articles/531114/
[16] https://linuxcontainers.org/
[17] https://www.docker.com/
[18] http://aufs.sourceforge.net/
[19] http://www.phoronix.com/scan.php?page=news_item&px=MTc5OTc
[20] https://www.kernel.org/doc/Documentation/device-mapper/thin-provisioning.txt
[21] http://ccl.cse.nd.edu/software/manuals/parrot.html
[22] https://hub.docker.com/
[23] J Blomer et al. 2014 Micro-CernVM: slashing the cost of building and deploying virtual

machines J. Phys.: Conf. Ser. 513 032009 doi:10.1088/1742-6596/513/3/032009
[24] https://github.com/dberzano/cernvm-alice-docker
[25] http://research.cs.wisc.edu/htcondor/manual/latest/2_12Docker_Universe.html
[26] A McNab et al. 2014 Running jobs in the vacuum J. Phys.: Conf. Ser. 513 032065

doi:10.1088/1742-6596/513/3/032065
[27] http://www.gridpp.ac.uk/vac/
[28] http://www.slideserve.com/rene/ccb-the-condor-connection-broker
[29] I Sfiligoi 2008 glideinWMS—a generic pilot-based workload management system J. Phys.:

Conf. Ser. 119 062044 doi:10.1088/1742-6596/119/6/062044
[30] D Bradley et al. 2011 An update on the scalability limits of the Condor batch system

J. Phys.: Conf. Ser. 331 062002 doi:10.1088/1742-6596/331/6/062002
[31] http://mesos.apache.org/

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 022005 doi:10.1088/1742-6596/664/2/022005

8

