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Abstract. We present a comprehensive review of keV-scale sterile neutrino Dark Matter, col-
lecting views and insights from all disciplines involved — cosmology, astrophysics, nuclear, and
particle physics — in each case viewed from both theoretical and experimental /observational
perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics,
and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here,
we first review the physics motivation for sterile neutrino Dark Matter, based on challenges
and tensions in purely cold Dark Matter scenarios. We then round out the discussion by
critically summarizing all known constraints on sterile neutrino Dark Matter arising from
astrophysical observations, laboratory experiments, and theoretical considerations. In this
context, we provide a balanced discourse on the possibly positive signal from X-ray observa-
tions. Another focus of the paper concerns the construction of particle physics models, aiming
to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond
the Standard Model of elementary particle physics. The paper ends with an extensive review
of current and future astrophysical and laboratory searches, highlighting new ideas and their
experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
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Executive Summary

Despite decades of searching, the nature and origin of Dark Matter (DM) remains one of
the biggest mysteries in modern physics. Astrophysical observations over a vast range of
physical scales and epochs clearly show that the movement of celestial bodies, the gravitational
distortion of light and the formation of structures in the Universe cannot be explained by the
known laws of gravity and observed matter distribution [1-7]. They can, however, be brought
into very good agreement if one postulates the presence of large amounts of non-luminous DM
in and between the galaxies, a substance which is much more abundant in the Universe than
ordinary matter [1]. Generic ideas for what could be behind DM, such as Massive Compact
Halo Objects (MACHOs) [8-11] are largely ruled out [12, 13| or at least disfavored [14, 15].
Alternative explanations based on a modification of the law of gravity [16] have not been able
to match the observations on various different scales. Thus, the existence of one or several
new elementary particles appears to be the most attractive explanation.

As a first step, the suitability of known particles within the well-tested Standard Model
(SM) has been examined. Indeed, the neutral, weakly interacting, massive neutrino could in
principle be a DM candidate. However, neutrinos are so light that even with the upper limit
for their mass [17, 18] they could not make up all of the DM energy density [19]. Moreover,
neutrinos are produced with such large (relativistic) velocities that they would act as hot DM
(HDM), preventing the formation of structures such as galaxies or galaxy clusters [20].

Consequently, explaining DM in terms of a new elementary particle clearly requires
physics beyond the SM. There are multiple suggested extensions to the SM, providing a vari-
ety of suitable DM candidates, but to date there is no clear evidence telling us which of these
is correct. Typically, extensions of the SM are sought at high energies, resulting in DM candi-
dates with masses above the electroweak scale. In fact, there is a class of good DM candidates
available at those scales, which are called Weakly Interacting Massive Particles (WIMPs). If
these particles couple with a strength comparable to the SM weak interaction, they would
have been produced in the early Universe via thermal freeze-out in suitable amounts [21] !
WIMPs generically avoid the structure formation problem associated with SM neutrinos, as
they are much more massive and therefore non-relativistic at the time of galaxy formation,
because their velocities have been considerably redishifted.? That is, WIMPs act as cold DM
(CDM). Typical examples for WIMPs are neutralinos as predicted by supersymmetry [22-25]
or Kaluza-Klein bosons as predicted by models based on extra spatial dimensions [26-29].
More minimal extensions of the SM also predict WIMPs, e.g. an inert scalar doublet [30, 31].

One of the advantages of WIMPs is that there is a variety of ways to test their existence.
WIMPs could annihilate in regions of sufficiently high density, such as the center of a galaxy,
thereby producing detectable (indirect) signals [32] in e.g. photons, antimatter, or neutrinos.
The same interactions that are responsible for the annihilation of two WIMPs in outer space
can also be responsible for their production at colliders [33] or their scattering with ordinary
matter in direct search experiments [34].> While a lot of experiments are currently taking
data, no conclusive evidence for WIMPs has yet been found. Direct searches keep on pushing
the limit on DM-matter cross sections towards smaller and smaller values [35-37], indirect

!Note that this is true independently of the WIMP mass — up to logarithmic corrections — as long as they
freeze out cold, since the main dependence on the mass drops out in the formula for the DM abundance [22].

2NOte that, of course, also othe reasons can be responsible for DM having non-relativistic speed such as,
e.g., strong interactions of condensation.

3At the level of amplitudes, this relation between “break it”, “make it” and “shake it” can be visualized by
rotating the Feynman diagram in steps of 90 degrees.



searches yield some interesting but still inconclusive hints [38—40], and as of today the LHC
has not discovered a hint of a DM-like particle [41-44|. WIMPs are certainly not yet excluded,
nevertheless the current experimental results suggest the thorough exploration of alternative
DM candidates.

A seemingly unrelated issue arose recently in N-body simulations of cosmological struc-
ture formation. Advanced simulations [45] revealed some discrepancies between purely CDM
scenarios and observations at small scales (a few 10 kpc or smaller). For example, there seem
to be too few dwarf satellite galaxies observed compared to simulations (the missing satellite
problem) [46, 47|; the density profile of galaxies is observed to be cored, whereas simulations
predict a cusp profile (the cusp-core problem) [48, 49| and, finally, the observed dwarf satel-
lite galaxies seem to be less dense than expected. This could possibly be explained if larger
and very dense galaxies exist but are invisible due to a suppression of star formation [50-52].
However, no mechanism is known to suppress star formation in these types of galaxies: they
are too big to fail producing enough stars (too-big-to-fail problem) [53, 54].

While the discrepancy between simulation and observation is apparent, its origin is not
so clear. A natural possibility would be that earlier simulations did not include baryons,
although we clearly know they exist. The full inclusion of baryons and their interactions
is highly non-trivial and only recently has it been attempted [55, 56]. Another source for
the discrepancy could arise from astrophysical feedback effects [50, 51|. These include, for
example, relatively large supernova rates in dwarf galaxies which could wipe out all the visible
material so that many dwarfs are simply invisible [52]. Finally, it could also be that the DM
velocity spectrum is not as cold as assumed [57]. It has been shown that a warm DM (WDM)
spectrum can significantly affect structure formation and strongly reduce the build-up of small
objects [58]. Even more generally, the DM spectrum need not be thermal at all. It could have
various shapes depending on the production mechanism (see Sec. 5) and thereby influence
structure formation in non-trivial ways. Thus, DM may be not simply cold, warm, or hot, but
the spectra could be more complicated resembling, e.g., mixed scenarios [59]. In any case,
resolving the small-scale structure problem by modifying the DM spectrum would require a
new DM candidate.

The candidate particle discussed in this White Paper is a sterile neutrino with a keV-
scale mass. A sterile neutrino is a hypothetical particle which, however, is connected to and
can mix with the known active neutrinos. In SM language, sterile neutrinos are right-handed
fermions with zero hypercharge and no color, i.e., they are total singlets under the SM gauge
group and thus perfectly neutral. These properties allow sterile neutrinos to have a mass
that does not depend on the Higgs mechanism. This so-called Majorana mass [60] can exist
independently of electroweak symmetry breaking, unlike the fermion masses in the SM. In
particular, the Majorana mass can have an arbitrary scale that is very different from all other
fermion masses. Typically, it is assumed to be very large, but in fact it is just unrelated to the
electroweak scale and could also be comparatively small. Observationally and experimentally
the magnitude of the Majorana mass is almost unconstrained [61-74].

Depending on the choice of the Majorana mass, the implications for particle physics and
cosmology are very different, , see e.g. [67]. Two reasons motivate a keV mass scale for a
sterile neutrino DM candidate. First, fermionic DM can not have an arbitrarily small mass,
since in dense regions (e.g. in galaxy cores) it cannot be packed within an infinitely small
volume, due to the Pauli principle. This results in a lower bound on the mass, the so-called
Tremaine-Gunn bound [75]. Second, sterile neutrinos typically have a small mixing with the
active neutrinos, which would enable a DM particle to decay into an active neutrino and a



mono-energetic photon. Since the decay rate scales with the fifth power of the initial state
mass, a non-observation of the corresponding X-ray peak leads to an upper bound of a few
tens of keV.? It is these two constraints, the phase space and X-ray bounds, which enforce
keV-scale masses for sterile neutrinos acting as DM.

This White Paper attempts to shed light on sterile neutrino DM from all perspectives:
astrophysics, cosmology, nuclear, and particle physics, as well as experiments, observations,
and theory. Progress in the question of sterile neutrino DM requires expertise from all these
different areas. The goal of this document is thus to advance the field by stimulating fruitful
discussions between these communities. Furthermore, it should provide a comprehensive
compendium of the current knowledge of the topic, and serve as a future reference.® The list
of authors indicates that there is great interest in the subject among scientists from many
areas of physics.

This White Paper is laid out as follows. First, sterile neutrinos are introduced from the
particle physics (Sec. 1) and cosmology /astrophysics (Sec. 2) perspectives. Sec. 3 reviews the
current tensions of CDM simulations with small-scale structure observations, and discusses
attempts to tackle them. Sec. 4 gives a comprehensive summary of current constraints on keV
sterile neutrino DM, arising from all accessible observables. The different sterile neutrino DM
production mechanisms in the early Universe, and how they are constrained by astrophysical
observations, are treated in Sec. 5. Sec. 6 turns to particle physics by reviewing attempts
to explain or motivate the keV mass scale in various scenarios of physics beyond the SM.
Current and future astrophysical and laboratory searches are discussed in Secs. 7 and 8§,
respectively, highlighting new ideas, their experimental challenges, and future perspectives
for the discovery or exclusion of sterile neutrino DM. We end by giving an overall conclusion,
involving all the viewpoints discussed in this paper.

Let us now start our journey into the fascinating world of keV sterile neutrino DM and
address one of the biggest questions in modern science:

What is Dark Matter and where did it come from?

Note added Several sections in the White Paper make reference to Japan’s spaceborne
Astro-H/Hitomi X-ray observatory. The Japanese Space Agency (JAXA) successfully launched
the Astro-H satellite from Tanegashima Space Center in Japan on the 16th of February 2016,
but after an apparant break off of bigger parts of the satellite occuring on March 26th, it was
finally decided on April 28th to give up on the spacecraft. We give a short wrap-up of the
events in the paragraph right before Sec. 7.3. More detailed information can be found on the
JAXA webpage, http://global. jaxa.jp/projects/sat/astro_h/.

4This only holds if active-sterile mixing is not switched off or forbidden, which may be the case in certain
scenarios, see Sec. 6.

5The reader should be warned that the texts contributed to this work by the different authors cannot treat
the various topics in full detail. They should, however, serve as possible overview and we made a great effort
to ensure that they do contain all the relevant references, so that the present White Paper can guide the
inclined reader to more specific information.
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1 Neutrinos in the Standard Model of Particle Physics and Beyond

Section Editors:
Carlo Giunti, André de Gouvea

The existence of sterile neutrinos is an exciting possible manifestation of new physics
beyond the standard scenario of three-neutrino mixing, which has been established by the
observation of neutrino flavor oscillations in many solar, reactor, and accelerator experiments
(see the recent reviews in Refs. [76, 77]). Sterile neutrinos 78] are observable through their
mixing with the active neutrinos. In this Section we present a brief introduction to the
standard theory of three-neutrino mixing in Subsection 1.1 and a summary of its current phe-
nomenological status in Subsection 1.2. In Subsection 1.3 we summarize the open questions in
neutrino physics and in Subsection 1.4 we present a general introduction to sterile neutrinos.

1.1 Introduction: Massive Neutrinos and Lepton Mixing (Author: S. Parke)

In the Standard Model (SM), as constructed around 1970, the neutrinos, (ve, v, vr), are
massless and interact diagonally in flavor, as follows

Wt et +u,, W= = e + 1, Z — Ve + Ue,
wt —>;ﬁ+yu, W= = pu™ + 1, Z = vy + vy, (1.1)
Wt =1+, W= =17+ 0y, /A VH 7

Since they travel at the speed of light, their character cannot change from production to
detection. Therefore, in flavor terms, massless neutrinos are relatively uninteresting compared
to quarks.

Since then many experiments have seen neutrino flavor transitions, therefore neutrinos
must have a mass and, like the quarks, there is a mixing matrix relating the neutrino flavor
states, ve, v, V7, with the mass eigenstates, vy, v9, v3:

3
Va) =D Uajlvy) (@ =e,p,7), (1.2)
j=1

where the mixing matrix U is unitary and referred to as the PMNS® matrix. By convention,
the mass eigenstates are labeled such that |Ue|? > |Ue2|? > |Ues|?, which implies that

1 component of v, > 19 component of v, > 3 component of v,.

With this choice of labeling of the neutrino mass eigenstates, the solar neutrino oscilla-
tions/transformations are governed by Am3; = m3 — m2, as these two are electron neutrino
rich, and the atmospheric neutrino oscillations by Am32; and Am3,. The SNO experiment [83]
determined the mass ordering of the solar pair, v; and v, such that m3 > m?, i.e. Am3, > 0.

The atmospheric neutrino mass ordering,

mi >m3 or mi<m?, (1.3)

is still to be determined, see Fig. 1. If m3 > m32, the ordering is known as the normal ordering
(NO), whereas if m3 < m? the ordering is known as the inverted ordering (10).

Pontecorvo-Maki-Nakagawa-Sakata [79-82].
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Figure 1. What is known about the square of the neutrino masses for the two atmospheric mass
orderings.

The mass splittings of the neutrinos are approximately [84]:
Am3y ~ 425 x 107%eV?  and  Amd ~ +7.5 x 107%eV?, (1.4)

and the sum of the masses of the neutrinos satisfies

3
dm? ~ 0.05 eV < m; < 0.5 eV. 1.5
A
i=1

So the sum of neutrino masses ranges from 1077 to 107% times m., however the mass of
the lightest neutrino, m, could be very small. If m < ,/5m2® ~ 0.01 eV?, then this is an

additional scale to be explained by a theory of neutrino masses and mixings.
The standard representation [85] of the PMNS mixing matrix is given as follows:

Uei Ueo Ues 1 0 0 ci3 0 813€_i6 c1a2 S12 0 e 0 0
U= U,ul UMQ ng = 0 23 S923 0 1 0 —S812 C12 0 0 6m2 0
Url U7—2 UT3 0 —893 €23 —81361'(s 0 C13 0 01 0 0 1
€12€13 $12€13 size” % et 0 0
= | —s12c03 — c12513523€™ 12023 — S12813523€% 13523 0 e20], (1.6)
812823 — C12513C23€™ —C12823 — S12513C23€% 13023 0 01

where s;; = sinf);; and ¢;; = cosf);;. The Dirac phase, d, allows for the possibility of CP
violation in the neutrino oscillation appearance channels. The Majorana phases a; and as
are unobservable in oscillations since oscillations depend on U};Ug; but they have observable,
CP conserving effects, in neutrinoless double beta decay. If the neutrinos are Dirac, then
neutrinoless double beta decay will be absent and the Majorana phases in the PMNS matrix
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Figure 2. The flavor content of the neutrino mass eigenstates (figure similar to Fig. 1 in Ref. [87]).
The width of the lines is used to show how these fractions change as cosd varies from —1 to +1. Of
course, this figure must be the same for neutrinos and anti-neutrinos, if CPT is conserved.

are non-physical and can be set to zero. Note that there is some arbitrariness involved in
which parameter combinations are called the physical phases, which is the reason why the
“distribution” of the phases in eq. (1.6) looks a little asymmetric. This can be avoided when
using the symmetric parametrization instead [86].

The approximate values of the mixing parameters are as follows:

sin? 013 = |Ues|? ~ 0.02,

sin? 015 = |Ue)?/(1 — |Ues|?) = 1/3,

sin? o3 = |Uus)?/(1 — |Ues|?) =~ 1/2,
0< 6§ <2m. (1.

—_ o —
— = =
© o0

== L =

More precise values will be given in the next section. These mixing angles and mass splittings
are summarized in Fig. 2, which also shows the dependence of the flavor fractions on the CP
violating Dirac phase 9.

1.2 Current status of Three-Neutrino Masses and Mixings (Authors: M.C. Gonzalez-
Garcia, M. Maltoni, T. Schwetz, R. Shrock)

1.2.1 Neutrino oscillations

Thanks to remarkable discoveries by a number of neutrino oscillation experiments it is now
an established fact that neutrinos have mass and that leptonic flavors are not symmetries of
Nature |78, 88]. Historically neutrino oscillations were first observed in the disappearance of
solar v,’s and atmospheric v,,’s which could be interpreted as flavor oscillations with two very
different wavelengths. Over the last 15 years, these effects were confirmed also by terrestrial



experiments using man-made beams from accelerators and nuclear reactors (see ref. [89] for
an overview). In brief, at present we have observed neutrino oscillation effects in:

e atmospheric neutrinos, in particular in the high-statistics results of Super-Kamiokande [90];

e event rates of solar neutrino radiochemical experiments Chlorine [91], GALLEX/GNO [92],
and SAGE [93], as well as time- and energy-dependent rates from the four phases in
Super-Kamiokande [94-97], the three phases of SNO [98], and Borexino [99, 100];

e disappearance results from accelerator long-baseline (LBL) experiments in th