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1 Introduction

With LHCb and BESIII generating data, and Belle-II soon to start production, increasingly

accurate Standard Model (SM) predictions for heavy flavour physics are dearly needed to

constrain or hopefully identify new physics. These predictions typically involve matrix

elements of the operators of the Weak Effective Hamiltonian among hadronic states. As a

result they require a non-perturbative approach, making lattice QCD simulations crucial.

This is why in the last few years several approaches to implement heavy quarks in

simulations of lattice QCD have been proposed. Some of these are based on an effective

description of the heavy degrees of freedom, such as the Non Relativistic treatment of the

heavy quark (NRQCD) [1, 2] or Heavy Quark Effective Theory (HQET) [3, 4], or on a non

relativistic re-interpretation of relativistic discretisation [5–8]. More recently collaborations

have started treating the charm and bottom quarks in the same relativistic framework used

to discretise the light quarks, e.g. [9, 10].
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However, simulations of full lattice QCD where both the physical light quarks (u, d

and s) and the charm or heavier quarks are represented by the same discretisation are still

rather scarce. The main reason is certainly that the relevant energy scales, associated with

the pion and the heavy quark masses respectively, are computationally costly to reconcile.

This is particularly true in a fully relativistic and dynamical setup with controlled finite

volume and discretisation errors. Simulations in which all quarks are discretised in the same

way have a number of advantages, though. For instance, continuum flavour symmetries

at finite lattice spacing simplify many calculations. Moreover, only such a setup seems

suitable for the study of GIM-cancellation, which is an important ingredient in a number

of phenomenological applications [11].

This paper is the second [12] in a series towards a lattice phenomenology program with

domain wall fermions (DWF) [13, 14], in particular Möbius DWF (MDWF) [15–17], as the

discretisation for light as well as heavy quarks. Compared to Twisted Mass [18], DWF offer

the attractive properties of conserving both chiral and parity symmetries at finite lattice

spacing. Compared to HISQ fermions [9], a single quark can be simulated without the

need of taking the root of the determinant to eliminate the different tastes, thus providing

a theoretically clean regularisation.

Since we enter mostly uncharted territory with simulations of heavy DWF (see also [12,

19, 20]), we dedicate this paper to the investigation of its basic properties. We are particu-

larly interested in studying the approach of heavy-light meson observables to the continuum

limit. Our simulations have been carried out within quenched QCD. This is computation-

ally much cheaper than dynamical QCD and therefore allows us to access a much wider

range of lattice spacings (a−1 ≈ 2.0 − 5.7 GeV). While the quenched approximation is

certainly not suited for making phenomenologically relevant predictions, we expect it to

share a number of properties with the unquenched case. Most importantly, we expect that

the continuum limit scaling observed in the quenched theory over a large range of lattice

spacings will be qualitatively the same as in the dynamical theory. Such information is par-

ticularly valuable given that for phenomenologically relevant simulations only dynamical

ensembles at coarser lattice spacings are currently available.

The rest of the paper is organised as follows: in section 2 we outline the overall

computational strategy followed in this paper, report on the properties of the generated

quenched gauge field ensembles, define the quantities that we compute and discuss several

more technical aspects of our computation. In section 3 we describe the tuning of the

MDWF parameters. This is followed in section 4 by a study of the continuum limit scaling

of the dispersion relation and decay constants. In section 5 we draw our conclusions. In

the appendix we provide supplementary material, in particular the numerical values for all

data underlying the analysis.

2 Computational strategy and setup

2.1 Strategy

The main purpose of this work is to gain a qualitative understanding of discretisation

effects of heavy MDWF. To this end, we study the MDWF parameter space and the heavy
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quark mass dependence of basic heavy-heavy and heavy-strange meson matrix elements and

the energy as the cutoff is varied. Simulations of the quenched theory allow us to adopt

algorithms (over-relaxed [21, 22] heat-bath [23]) that are, compared to the algorithms used

with dynamical quarks (Hybrid Monte Carlo [24]), computationally much cheaper. To

some extent the problem of critical slowing down [25–27] can therefore be circumvented

by brute force. This enables us to probe finer lattice spacings than those affordable in

dynamical simulations and check the scaling of the theory towards the continuum limit in

more detail. In order to reduce simulation costs further, a relatively small physical lattice

volume of L ≈ 1.6 fm was considered. The volume was kept approximately constant while

decreasing the lattice spacing. Since the finite size effects in physical quantities are then

constant across all simulated lattice spacings, cut-off effects can be studied in detail.

An important point addressed in this study concerns the residual chiral symmetry

breaking of MDWF. The restoration of chiral symmetry in the massless limit is crucial to the

simulation of QCD on the lattice, and is also responsible for automatic O(a)-improvement,

which is especially important when studying heavy quark physics. In our notation, the five

dimensional MDWF action is S5 = ψ̄D5
MDWFψ, where

D5
MDWF =



D̃ −P− 0 . . . 0 amP+

−P+
. . .

. . . 0 . . . 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . .

. . . 0

0 . . . 0
. . .

. . . −P−
amP− 0 . . . 0 −P+ D̃


, (2.1)

and we define

D+ = (bDW + 1) , D− = (1− cDW ) and D̃ = (D−)−1D+ , (2.2)

with the usual chiral projectors P± = 1
2(1 ± γ5) and the Wilson matrix DW (M) = M +

4− 1
2Dhop, where Dhop = (1− γµ)Uµ(x)δx+µ,y + (1 + γµ)U †µ(y)δx−µ,y acting in 4d. Besides

the bare quark mass am, MDWF have two further input parameters that need to be

specified in each simulation: the extent of the fifth dimension Ls and the domain wall height

parameter M = −M5, respectively. More specifically, M5 is the negative mass parameter

in the 4-dimensional Wilson Dirac operator that resides in the 5-dimensional MDWF Dirac

operator. Since both Ls and M5 are parameters of the discretisation rather than of QCD we

have some freedom in varying them. In the limit Ls →∞ and with the Wilson kernel this

formalism coincides with the overlap formulation [28, 29] and allows for the simulation of a

four-dimensional chirally symmetric theory (in the limit of massless quarks) that is free of

doublers. When Ls is finite however, chiral symmetry remains broken by a small amount.1

This can be quantified by measuring the amount of additive quark mass renormalisation,

also known as residual mass mres (defined later in 2.3). For a given extent of the fifth

1In fact, one expects residual chiral symmetry breaking to decrease ∝ e−αs with some real and positive

α when the Wilson kernel has no zero modes (cf. [30]).

– 3 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
7

β L/a Nsweeps

4.41 16 10 k

4.66 24 20 k

4.89 32 600 k

5.20 48 1.4 M

Table 1. Coupling constant β, volume in lattice units (Nx = Ny = Nz = L/a, Nt = 2L/a),

and number of update sweeps (Nsweeps) after thermalisation. Each sweep consists of 1 heat-bath

combined with 8 over-relaxation steps.

dimension, the parameter M5 sets the scale for the exponential localisation of the chiral

modes of the fermionic fields at the boundaries of the 5th dimension. The decay rate of

the physical mode away from the boundary is however also modified by the presence of an

explicit quark mass term, and care must be taken in order to maintain the localisation of the

physical modes on the boundary [13, 20, 31–34]. As we will see, this becomes particularly

crucial for heavy input quark masses. We will study how the choice of a heavy quark mass

am = amh and M5 changes the ultra-violet properties of the discretisation. In the following

we chose an extent Ls = 12 of the fifth dimension, which guarantees a small value of mres

for light quarks [35]. The particular choice of MDWF is the same implementation as the

one used in [35] with a Möbius scale of α = b+ c = 2.

2.2 Ensemble generation

We generated ensembles based on the tree-level Symanzik improved [36, 37] gauge action

with lattice spacings in the range of 0.034–0.1 fm. The gauge configurations have been pro-

duced with the heat-bath algorithm [21–23]. The coarser three ensembles were generated

using CHROMA [38],2 whereas for the finest lattice spacing (which involved the highest

computational cost) we recurred to a faster implementation, especially optimised for IBM

BG/Q [39]. In tables 1, 2 and 3 we summarise the simulation parameters used and basic

ensemble properties.

Lattice spacings have been determined at each simulated β by enforcing the Wilson-

flow scale w0 [40, 41] to take its “physical” value, which we assumed to be wphys
0 =

0.17245(99) fm as recently determined in [35].3 We kept the physical volume fixed such

that the spatial extent remained at about 1.6 fm (cf. table 2).

The evolution of the topological charge Q (measured with the GLU package [42]) is

illustrated in figure 8 in appendix A. These quantities are expected to couple strongly

to the slowest evolving mode in the evolution of the algorithm [26]. We obtain sets of

decorrelated measurements by choosing only configurations for further processing that are

separated by Nsep intermittent update steps with Nsep larger than twice its autocorrelation

time τint
(
Q2
)

[43], as detailed in table 3.

2We added heathbath routines for the tree level Symanzik action to CHROMA.
3Note that this value differs from the one used in [12], w0 = 0.176(2) fm [41].
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β Plaquette w0/a a−1[GeV] L[fm]

4.41 0.62637(3) 1.767(3) 2.037(08) 1.550(6)

4.66 0.651421(12) 2.499(8) 2.861(09) 1.655(5)

4.89 0.671257(5) 3.374(11) 3.864(12) 1.634(5)

5.20 0.694149(4) 5.007(28) 5.740(22) 1.650(6)

Table 2. Plaquette value, lattice spacing (a−1) and spatial extent (L) resulting from the comparison

of w0/a with the physical value quoted in the text. Errors on dimensional quantities include the

systematic uncertainties arising from the physical value of w0.

β τint (Qtop) τint
(
Q2

top

)
Nsep Ncnfg

4.41 15(3) 10.5(1.6) 100 100

4.66 160(60) 74(22) 200 100

4.89 200(100) 170 (80) 500 111

5.20 28000 (13000) 12000 (4000) 40000 36

Table 3. Autocorrelation time of topological charge (τint (Qtop)) and of charge squared (τint

(
Q2

top

)
)

in units of sweep steps; number of sweeps separating each configuration included in the measured

ensemble (Nsep), and total number of gauge configurations considered.

2.3 Observables

The pseudoscalar decay constant fX is defined as the matrix element of the conserved

MDWF axial vector current [44] between a pseudoscalar meson state X and the vacuum,

〈0| A0 |X (p)〉 = EX(p)fX . (2.3)

We determine the decay constant fX and the energy EX(p) of the pseudoscalar state

X from fits to the time dependence of Euclidean QCD two-point correlation functions

projected onto momentum p,

Cs1,s2MN (t) ≡
∑
x,y

eip(x−y)〈Os1M (t,y)
(
Os1N (0,x)

)† 〉
large t

=
Zs2M (p)

(
Zs1N (p)

)∗
2E(p)

(
e−E(p)t ± e−E(p)(T−t)

)
. (2.4)

The operator OsiM is an interpolating operator with the quantum numbers of the meson,

i.e. OsM = q̄2 ωs ΓMq1 , where we consider the pseudoscalar case ΓP = γ5 and the axial

vector case ΓA = γ0γ5, respectively. The superscript s indicates the smearing type induced

via the spacial smearing kernel ω, which in the simulations presented here is either local

(s = L, ω(x,y) = δx,y) or Gaussian via Jacobi iteration [45–47] (see table 4 for our choice

of smearing radii). The constants ZsiM are defined by ZsiM = 〈X(p) |
(
OsiM

)† | 0 〉 where X

is the corresponding meson state.

The fits leading to the extraction of masses and decay constants are multi-channel fits

to combinations of the two-point correlation functions CAA, CAP , CPA and CPP . We note
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β L/a rPsm rZ2
sm amphys

s amh

start step stop

4.41 16 2.8 4.5 0.03455(63) 0.1 0.05 0.4

4.66 24 4.0 6.0 0.02416(36) 0.066 0.033 0.396

4.89 32 8.8 7.5 0.01805(33) 0.07 0.04 0.39

5.20 48 11.7 11.7 0.01141(27) 0.04 0.04 0.28

Table 4. Simulated strange and heavy input quark masses amh and the choices of smearing radii

for heavy quark masses. The simulated bare quark masses are quoted in lattice units for the MDWF

action. The heavy quark masses starting from “start” with a step of “step” and ending at “end” are

simulated. rP
sm and rZ2

sm refer to the choice of the smearing parameter for the Gaussian smearing of

the source/sink of the propagators for the point and Z2 noise sources, respectively. For the Gaussian

smearing we employed 400 Jacobi iterations. All measurements are carried out with MDWF with

parameters Ls = 12.

the relation between the conserved MDWF axial current [35, 44] and the renormalised local

axial current A0 = ZAA0, where ZA is the axial vector current renormalisation constant.

A further quantity that we wish to monitor during our simulations is the residual quark

mass amres [44], which provides an estimate of residual chiral symmetry breaking in the

MDWF formalism. It is defined in terms of the axial Ward identity (AWI)

a∆−µ 〈(ψ̄γ5ψ)(x)|Aµ(y)〉 = 〈(ψ̄γ5ψ)(x)|2amP (y) + 2J5q(y)〉 , (2.5)

where ∆−µ is the lattice backward derivative and am is the bare quark mass in lattice units

in the Lagrangian. It motivates the definition

amres =

∑
x
〈J5q(x)P (0)〉∑

x
〈P (x)P (0)〉

. (2.6)

Here, J5q is the pseudoscalar density in the centre of the 5th dimension. We compute the

correlation functions in eq. (2.4) with two types of quark sources. The analysis of the decay

constant and the residual mass is based on Z2 noise sources and the one-end-trick [48–50]

(in this case we only consider p = 0) while the analysis of the dispersion relation is based

on point source data. The computation of heavy quark propagators by means of conjugate

gradient type algorithms can be affected by round-off errors [51]. We monitor proper

convergence during the computation of the quark propagators by checking that the desired

solver residual is fulfilled on all time slices using the time slice residual [51] defined as

rt = Maxt
|Dψ − η|t
|ψ|t

, (2.7)

where |x|t is the norm of the vector x restricted to time slice t.

We determined statistical errors using the bootstrap method with 500 samples.
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β=4.66, M5 =1.8

Figure 1. Left : decay constant fhh for heavy-heavy pseudoscalar mesons as a function of the

inverse pseudoscalar mass mhh, for different values of M5 on the coarsest ensemble. The data is

normalised at mnorm
hh = 1.5 GeV to remove the multiplicative renormalisation constant. The vertical

lines correspond to mηc and to mnorm
hh . Right : overlay of the results obtained at two different lattice

spacings for three values of M5.

3 Tuning MDWF for charm

In this section we present results for the amh and M5 dependence of the heavy-heavy meson

decay constant fhh and the residual mass amres.

3.1 M5 dependence

The left hand panel of figure 1 shows the dependence of the heavy-heavy decay constant

on the heavy-heavy inverse pseudoscalar mass mhh observed on the coarsest (β = 4.41)

ensemble. We normalise the results for a given M5 by the value of the decay constant

at mhh = 1.5 GeV as obtained from a polynomial interpolation. For small values of mhh

the decay constant shows little dependence on the value of M5, but as mhh is increased a

strong dependence is observed.

The right hand panel of figure 1 shows the same data for M5 = 1.4, 1.6 and 1.8 together

with the corresponding results on the finer β = 4.66 ensemble. For M5 = 1.6 the results

from the β = 4.41 and β = 4.66 align almost perfectly. This provides a first indication

that for this choice of M5 cutoff effects are small. Other choices of M5 would offer viable

alternatives but with more pronounced cutoff effects.

3.2 Residual mass

Next we quantify how the residual chiral symmetry breaking is affected by M5 by observing

the response of the size of the residual mass to variations in amh and M5. In the left panel

of figure 2 we show the ratio of correlation functions eq. (2.6) from which we determine

amres as a function of time for several values of the quark mass at M5 = 1.6. Note that for

large t the time dependence in ratio eq. (2.6) is expected to cancel between the numerator

and denominator. While the expected (constant) behaviour in time is observed for small

quark masses, this is strikingly not the case for values of ambare
h & 0.4.
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M5 =1.8
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Figure 2. Left : behaviour of the effective residual mass ameff
res as a function of time on our coarsest

ensemble, for M5 = 1.6. Right : residual mass determined at t = T/2 as a function of the bare

quark mass for several values of M5.

In these cases it is difficult to interpret the operator J5q’s matrix element as a constant,

residual additive mass correction in the chiral Ward identity. The effect is of course rather

small compared to the explicit chiral symmetry breaking, but there is a risk that the

physical modes no longer remain bound to the walls of the fifth dimension in this large

mass limit. To be more quantitative, we define amres(t = T/2) as the value of this correlator

ratio in the (temporal) middle of the lattice. Note, however, that above amh ≈ 0.4 the

meaning of amres as a unique measure of residual chiral symmetry breaking is no longer

clear, only indicative. The right hand panel in figure 2 shows amres(t = T/2) as a function

of the quark mass. We observe the same qualitative behaviour for all values of M5: as

the input quark mass is increased beyond amh ≈ 0.4 the residual mass amres(t = T/2)

starts to increase drastically. Although this quantity is Ls dependent, it is likely unsafe to

use domain wall fermions at masses where the physical modes become unbound from the

walls and the matrix elements of J5q have such non-trivial behaviour. The impact on 4d

observables will be studied later in this paper.

3.3 Locality of the effective 4d Dirac operator

Given the above observation indicating the reduced binding of surface states of MDWF

above amh ≈ 0.4, a further concern one might have is that we should check the locality

property of the corresponding effective 4d MDWF Dirac operator. The connection of the

5d MDWF operator D5
MDWF defined in eq. (2.1) to a four dimensional effective theory is

well established in the literature, [15–17, 35, 52–54]. We identify Dov as an approximation

to the overlap operator with approximate sign function

ε(HM ) =
(1 +HM )Ls − (1−HM )Ls

(1 +HM )Ls + (1−HM )Ls
, (3.1)

where the Möbius kernel is

HM = γ5
(b+ c)DW

2 + (b− c)DW
. (3.2)
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The transfer matrix in the fifth dimension can be identified as

T−1 = −[HM − 1]−1[HM + 1]. (3.3)

The effective overlap operator may be simply found as

Dov =
[
P−1D5

MDWF(am = 1)−1D5
MDWF(am)P

]
11

(3.4)

=

[
1 + am

2
+

1− am
2

γ5
T−Ls − 1

T−Ls + 1

]
, (3.5)

where this is known to reduce to the standard overlap formalism in the limit Ls →∞ and

when b = c, and the projection matrix P is

P =



P− P+ 0 . . . 0

0
. . .

. . . 0
...

... 0
. . .

. . . 0

0 . . . 0
. . . P+

P+ 0 . . . 0 P−


. (3.6)

Following eq. (3.5), we may place the mass dependence of Dov(am) at non zero mass in

the following form:

Dov(am) =

[
1 + am

2
+

1− am
2

γ5
T−Ls − 1

T−Ls + 1

]
(3.7)

= am+ (1− am)Dov(0) (3.8)

= (1− am)

[
am

1− am
+Dov(0)

]
. (3.9)

We see that the kinetic term in the four dimensional effective action should remain unaltered

as the mass is changed up to a trivial rescaling factor (1 − am) affecting the surface field

renormalisation. The induced overlap bare mass is therefore better interpreted as the

combination am
1−am , which of course varies non-linearly and diverges as we take the domain

wall mass towards the Pauli-Villars mass of unity. The exponential locality [55] is fully

encoded in the massless operator, and is independent of the quark mass. So, from this

perspective there should be no locality issues as we take the mass large, since the kinetic

term is trivially rescaled compared to the light mass case.

We demonstrate this with a second use of eq. (3.5). The effective operator may be

constructed by the simple application of the inverse of the Pauli Villars operator. Following

the methodology of ref. [55] we now study the locality properties of this operator.

We start by defining a point source ξ,

ξα,a (x) =

{
1 x = y, α = a = 0 (spin, colour)

0 otherwise,
(3.10)

where y is the source location, and ψ is the result of the multiplication of the effective 4d

Dirac operator with ξ,

ψ = Dovξ . (3.11)
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We say Dov is strictly local (or “ultralocal”) if the only non-zero contributions to (Dovξ) (x)

come from a finite set of terms Dov (x, y) ξ (y) with y in the vicinity of x [55].

We collect all lattice points {x}r separated by r hoppings from the origin, such that

x ∈ {x}r if |x|1 = r. Here |x|1 is the “taxi driver” (or “Manhattan”) norm of x, defined by

|x|1 =
∑
µ

min {|xµ| , |Nµ − xµ|} , (3.12)

where Nµ is the number of lattice sites along the µ axis. This definition accounts for the

periodicity of the lattice. Finally, for each value of r we define the maximum of the norm

of ψ at the set of points {x}r:

f (r) = max {|ψ (x)| ∀x ∈ {x}r} . (3.13)

In the following we will study f (r) for values of the bare heavy quark mass in lattice units

of amh = 0.1 and amh = 0.5 with M5 = 1.6 on our β = 4.41, β = 4.66 and β = 4.89

ensembles.

In figure 3 we show the function f (r) for two bare quark masses on all three ensembles.

As expected, we observe that the slope of f (r) is independent of the bare quark mass as

well as of the lattice spacing, indicating that locality is recovered in the continuum limit.

We can make a more quantitative statement for the mass independence of the locality

of Dov(am): motivated by eq. (3.8) we define the function f̃ :

f̃m (r) = max {|ψ (x)− amξ(x)| ∀x ∈ {x}r} , (3.14)

where we have introduced a term to subtract the additive mass term in eq. (3.8). We can

then define the ratio

R(r) =
f̃m1(r)(1− am2)

f̃m2(r)(1− am1)
, (3.15)

where the subscripts indicate the bare quark masses at which the function f̃ was evaluated

(am1 = 0.1 and am2 = 0.5). According to eq. (3.8), we expect R(r) = 1, which is confirmed

by our data to the level of arithmetic precision used in the computation. This provides a

strong consistency check of our setup and our understanding of the locality of the MDWF

operator.

4 Continuum limit of the decay constant and the dispersion relation

The results in the previous section provide the first evidence for a region in parameter

space where MDWF can be used as a suitable discretisation for heavy quarks. To fur-

ther substantiate this picture we now fix M5 = 1.6 and study the continuum scaling of

a basic heavy-strange pseudoscalar meson matrix element, the decay constant, and the

corresponding dispersion relation, as a function of the mass of the heavy quark.
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Figure 3. Localisation function (with logarithmic y-scale) for the effective MDWF operator at two

bare quark masses on the three coarser quenched ensembles.

4.1 Choice of strange and heavy quark masses

We study the continuum limit along lines of constant strange and heavy quark mass. We

fix the s-quark by considering a fictitious meson ηs composed of two different quarks, s

and s′, of degenerate mass ms. This meson differs from the physical η − η′ mesons by

quark-disconnected Wick contractions. We tuned the strange quark mass to its “physical

value”, by imposing at each lattice spacing the mass of the simulated ηs meson to reproduce

mηs = 0.6858(40) GeV [56]. This sets a common renormalised strange quark mass on all

the ensembles. In table 4 we report on the values of the corresponding bare strange quark

mass and on our choices for the simulated heavy quark masses. The results of all correlation

function fits are provided in the appendix in tables 6–13.

4.2 Decay constants for heavy-strange mesons

We consider the renormalised ratio

Rsh =
fsh
√
msh

fnormsh

√
mnorm
sh

, (4.1)

where we introduce fnormsh

√
mnorm
sh , interpolated to msh = 1 GeV, to cancel the axial current

renormalisation constant. We also include in both the numerator and denominator a factor

of
√
msh to make both of these quantities individually finite in the limit amh →∞.

We interpolate Rsh to the reference pseudoscalar masses 1.3, 1.6, mDs = 1.9685 [57]

and 2.4 GeV on all ensembles. To fulfil the constraint amh ≤ 0.4 we are forced to drop

the coarsest lattice spacing for the heaviest mass considered. A first visual inspection (see

figure 4) suggests the absence of cutoff effects beyond O(a2). Moreover, cutoff effects are

observed to be very mild for the choice M5 = 1.6, in agreement with the observation made

in section 3.
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m ref
sh =1.3GeV
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sh =1.6GeV
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Figure 4. Continuum limit of the ratio of heavy-strange decay constants at different reference

pseudoscalar masses with linear (dashed shaded error band, square-symbols) and quadratic (dotted

lines, diamond symbols) polynomials in a2.

mref
sh [GeV] Ra=0 D2[GeV2] χ2/dof p Ra=0 E2[GeV2] E4[GeV4] χ2/dof p

1.3 1.223(05) 0.08(05) 0.15 0.86 1.219(09) 0.17(16) −0.37(64) 0.02 0.89

1.6 1.418(09) 0.01(08) 0.07 0.93 1.417(16) −0.04(28) 0.1(1.0) 0.12 0.73

mDs 1.616(14) −0.23(11) 0.43 0.65 1.631(25) −0.53(43) 1.1(1.5) 0.43 0.51

2.4 1.819(27) −1.16(32) 1.71 0.19 1.902(71) −3.9(2.1) 17(14) – –

Table 5. Results of the continuum limit extrapolation for the heavy-strange decay constants. The

first block summarises the results for the linear extrapolation in a2, the second block the quadratic

extrapolation in a2. We also show corresponding results for the χ2/dof and p-values.

To obtain a more quantitative understanding we perform continuum limit extrapola-

tions by considering two different fit ansätze, namely

R1 (a) ≡ Ra=0 +D2a
2 ,

R2 (a) ≡ Ra=0 + E2a
2 + E4a

4 . (4.2)

The results are illustrated in figure 4 as solid and dashed lines with error bands, respectively,

and the resulting fit coefficients are listed in table 5.

For the two lightest reference masses, 1.3 and 1.6 GeV, the slope of the continuum

limit is compatible with zero. For higher masses the continuum limit starts exhibiting

a significant slope. In fact, the dimensionless term D2a
2/R (a = 0), which indicates the

fractional amount of discretisation errors, is around 3% for the physical Ds meson on the

coarsest ensemble (a−1 ≈ 2 GeV), and of O (2%) on the next finest one (a−1 ≈ 2.9 GeV). At

the level of statistical precision achieved here the fits reveal only a very mild sensitivity to

higher order (O(a4)) coefficients: E4 is compatible with zero within one standard deviation.

4.3 Dispersion relation

On the lattice, the continuum dispersion relation for pseudoscalar mesons

E (m,p) =
√
m2 + p2 , (4.3)
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a=0

β=4.41

Figure 5. Interpolation to reference momenta (marked by vertical dotted lines) for the coarsest

ensemble at the physical Ds mass. The black dash-dotted line depicts the continuum dispersion

relation, displayed only for reference. The closed circles show the simulated data on the coarsest

ensemble (β = 4.41) whilst the closed squares which lie on the vertical lines correspond to the values

after the correction of eq. (4.5) was applied.

is modified: all even powers of the lattice spacing with p-dependent coefficients, invariant

under hypercubic group transformations (e.g. p2,
∑

µ p
2n
µ . . . ), are allowed. Here we investi-

gate whether the continuum expression is correctly reproduced after taking the continuum

limit of the lattice data for the heavy-strange meson energy at various momenta p = 2π
L n.

In particular, we consider the cases n ∈ {(0, 0, 0) , (1, 0, 0) , (1, 1, 0) , (1, 1, 1)}.
The measured meson energies are sufficiently precise to be sensitive to the slight mis-

tunings in the physical volume of our ensembles (cf. table 2). In particular, for any given

n the simulated lattice momenta psim in physical units only agree approximately amongst

the different ensembles.

We correct for this by defining a reference volume with spatial extent Lref = 1.648 fm

and therefore reference momenta pref = 2π
Lref n. The meson energies Esim are interpolated

to this by taking advantage of the lattice dispersion relation

sinh2

(
aE

2

)
= sinh2

(am
2

)
+

3∑
i=1

sin2
(api

2

)
. (4.4)

Considering eq. (4.4) for a meson of momentum pref on two different volumes we obtain

the interpolated energy:

Eref = 2a−1 sinh−1

√√√√sinh2

(
aEsim

2

)
−

3∑
i=1

sin2

(
apsimi

2

)
+

3∑
i=1

sin2

(
aprefi

2

)
. (4.5)

In figure 5 we show an example of the interpolation to the chosen reference momenta for

the ensemble requiring the largest corrections (cf. table 2) for the case of the physical-mass

Ds meson.
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Figure 6. Continuum limit for momenta (1, 1, 0) (left panel) and (1, 1, 1) (right panel) for the

physical-mass Ds meson. Black circles correspond to finite lattice spacings, red diamonds to the

continuum limit extrapolation; the band shows the fit ansatz, whereas the star is the energy of the

meson computed using eq. (4.3) and the meson rest mass.

We now proceed to perform the continuum limit extrapolation of the meson energy. In

figure 6 we illustrate the extrapolation of the physical Ds meson energies for two different

momenta. In both cases the extrapolated result is compatible with the energy predicted

by the continuum dispersion relation (4.3).

This procedure was repeated for all momenta and reference masses. In figure 7 we

show the results for the energies after the continuum limit extrapolation for the different

momenta and choices of reference rest masses. The expected continuum dispersion relation

eq. (4.3) is recovered, indicating a good control over the continuum limit.

5 Conclusion

This study is motivated by the need to explore new and alternative ways for discretis-

ing heavy flavours in simulations of lattice QCD: more independent predictions for heavy

flavour hadronic quantities with a solid control of systematic uncertainties are urgently

needed [58] to make reliable predictions for SM phenomenology.

To this end we explored the feasibility of Möbius domain wall fermions (MDWF)

as a lattice regularisation for heavy quarks. DWF have so far been widely used as a

discretisation for the light u, d and s quarks. Its desirable features are chiral symmetry to

a good approximation and automatic O(a)-improvement.

From our simulations within quenched QCD with the tree-level improved Symanzik

gauge action we have identified a point in MDWF parameter space, the domain wall height

M5 = 1.6, for which discretisation effects turn out to be particularly small. We demon-

strated that the salient features of MDWF persist for heavy quarks as long as the bare

input quark mass obeys the bound amh . 0.4. Based on these findings we carried out a de-

tailed scaling study of the heavy-strange dispersion relation and decay constant. Over the

range of lattice cutoffs 2.0–5.7 GeV the observables were compatible with a linear scaling
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Figure 7. Continuum extrapolated results for the meson energy as a function of the momentum for

the different reference masses. Each dotted line depicts the continuum dispersion relation eq. (4.3)

for the associated reference mass. For the heaviest reference mass (msh = 2.4 GeV), only the three

finer ensembles enter the continuum limit since the heavy mass reach of the coarsest ensemble is

not sufficient. This results in the larger errorbars.

in a2. At the level of precision achieved in this work, coefficients of a4 terms were found to

be almost always compatible with zero, remaining remarkably small even for the heaviest

quark mass (heavier than charm) simulated.

The results accumulated in this paper constitute a proof of concept for MDWF as

a powerful discretisation to study charm and heavier quarks on current dynamical gauge

field ensembles. This work constitutes a solid basis for RBC/UKQCD’s heavy MDWF

phenomenology program [59]. Nevertheless, we are considering ideas for how to improve

the current setup, for example by link-smearing the MDWF kernel [12, 59].
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A Topological charge evolution

In figure 8 we show the Monte Carlo histories and histograms of the topological charge

restricted to the configurations on which we also determined the decay constant and the

meson energies.
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Figure 8. Topological charge evolution (left) and histograms (right) for the ensembles listed in

table 1, 2 and 3. This plot only includes configurations that are decorrelated. The lattice spacing

decreases from top to bottom.
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B Correlator fit results

B.1 Decay constant data

tag am af χ2/d.o.f. am af χ2/d.o.f.

ams = 0.036 ams = 0.037

ss 0.3433(16) 0.11309(57) 0.6033 0.3479(16) 0.11360(57) 0.5384

sh0 0.4738(15) 0.12710(81) 0.3443 0.4764(12) 0.12775(73) 0.4052

sh1 0.5628(14) 0.13452(83) 0.3609 0.5654(12) 0.13519(80) 0.4885

sh2 0.6448(14) 0.13960(85) 0.3471 0.6463(13) 0.13991(85) 0.3455

sh3 0.7215(13) 0.14292(88) 0.3456 0.7227(14) 0.14314(90) 0.3522

sh4 0.7938(14) 0.14480(92) 0.3825 0.7953(13) 0.14501(91) 0.2996

sh5 0.8614(15) 0.1447(10) 0.2965 0.8628(15) 0.1451(10) 0.2925

sh6 0.9254(16) 0.1439(11) 0.3610 0.9266(15) 0.1443(10) 0.3577

Table 6. Fit results for strange-strange and strange-heavy pseudoscalar masses and decay constants

in lattice units for the ensembles β = 4.41.

tag am af χ2/d.o.f. am af χ2/d.o.f.

ams = 0.024 ams = 0.026

ss 0.23894(93) 0.07812(48) 0.7714 0.24883(90) 0.07926(47) 0.8466

sh0 0.3294(11) 0.08816(86) 0.8914 0.3333(11) 0.08871(85) 0.9314

sh1 0.3919(11) 0.09311(83) 0.9179 0.3955(11) 0.09381(84) 0.9530

sh2 0.4494(10) 0.09678(84) 0.9083 0.4528(11) 0.09766(90) 0.9559

sh3 0.5033(10) 0.09930(84) 0.9123 0.5063(11) 0.09997(86) 0.9319

sh4 0.5545(10) 0.10099(84) 0.8906 0.5573(10) 0.10167(82) 0.8719

sh5 0.6033(10) 0.10200(84) 0.8382 0.6059(10) 0.10269(82) 0.8245

sh6 0.6491(13) 0.1019(10) 0.8190 0.6518(12) 0.10272(97) 0.8216

sh7 0.6931(13) 0.10114(92) 0.8668 0.6962(13) 0.10248(98) 0.7454

sh8 0.7357(13) 0.10037(93) 0.7866 0.7387(13) 0.1016(10) 0.6989

sh9 0.7768(15) 0.0996(11) 0.6151 0.7793(14) 0.1004(10) 0.6358

sh10 0.8151(15) 0.0973(10) 0.6496 0.8181(15) 0.0984(11) 0.5990

Table 7. Fit results for strange-strange and strange-heavy pseudoscalar masses and decay constants

in lattice units for the ensembles β = 4.66.
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tag am af χ2/d.o.f. am af χ2/d.o.f.

ams = 0.018 ams = 0.020

ss 0.1773(10) 0.05630(37) 0.9652 0.1872(10) 0.05739(36) 0.8819

sh0 0.28568(95) 0.06578(66) 0.7877 0.28925(85) 0.06647(60) 0.6169

sh1 0.35566(88) 0.06991(68) 0.5133 0.35889(79) 0.07058(60) 0.4933

sh2 0.41960(90) 0.07189(70) 0.4931 0.42283(84) 0.07277(66) 0.4966

sh3 0.47922(98) 0.07256(76) 0.4981 0.48239(90) 0.07352(70) 0.5273

sh4 0.53492(93) 0.07213(78) 0.7555 0.53775(89) 0.07311(74) 0.7476

sh5 0.58831(97) 0.07138(80) 0.7290 0.59103(92) 0.07241(76) 0.7275

sh6 0.6391(10) 0.07023(81) 0.7054 0.6419(10) 0.07130(80) 0.7394

sh7 0.6872(10) 0.06876(83) 0.6944 0.6899(10) 0.06962(82) 0.7975

sh8 0.73280(96) 0.06700(65) 0.7404 0.7352(10) 0.06809(85) 0.6866

Table 8. Fit results for strange-strange and strange-heavy pseudoscalar masses and decay constants

in lattice units for the ensembles β = 4.89.

tag am af χ2/d.o.f. am af χ2/d.o.f.

ams = 0.0118 ams = 0.0133

ss 0.1214(10) 0.03785(60) 0.0600 0.12879(99) 0.03869(60) 0.0562

sh0 0.18333(99) 0.04361(82) 0.0018 0.18474(97) 0.04382(81) 0.0016

sh1 0.2549(10) 0.04765(80) 0.0039 0.2562(10) 0.04790(79) 0.0046

sh2 0.3190(10) 0.04947(75) 0.0049 0.3201(10) 0.04974(75) 0.0056

sh3 0.3782(11) 0.04994(82) 0.0027 0.3792(11) 0.05020(82) 0.0032

sh4 0.4340(12) 0.04985(82) 0.0036 0.4351(12) 0.05011(82) 0.0045

sh5 0.4869(13) 0.04930(84) 0.0052 0.4879(13) 0.04956(83) 0.0067

sh6 0.5371(14) 0.04845(86) 0.0079 0.5381(14) 0.04871(86) 0.0101

Table 9. Fit results for strange-strange and strange-heavy pseudoscalar masses and decay constants

in lattice units for the ensembles β = 5.20.
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B.2 Dispersion relation data

n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

ams = 0.034 ams = 0.036

ss 0.3321(19) – – – 0.3415(18) – – –

sh0 0.4699(15) 0.619(12) 0.755(16) 0.725(68) 0.4735(14) 0.621(12) 0.757(15) 0.729(65)

sh1 0.5591(14) 0.686(10) 0.800(14) 0.793(39) 0.5624(14) 0.689(10) 0.801(13) 0.796(38)

sh2 0.6410(14) 0.750(10) 0.852(12) 0.853(32) 0.6440(14) 0.7528(98) 0.854(11) 0.856(31)

sh3 0.7174(14) 0.8143(89) 0.904(10) 0.917(25) 0.7203(14) 0.8166(87) 0.906(10) 0.920(24)

sh4 0.7894(14) 0.8763(82) 0.9566(94) 0.977(21) 0.7922(13) 0.8787(80) 0.9588(92) 0.980(20)

sh5 0.8572(14) 0.9367(78) 1.0049(90) 1.033(18) 0.8599(14) 0.9389(77) 1.0072(87) 1.035(18)

sh6 0.9209(14) 0.9935(76) 1.0561(84) 1.086(17) 0.9235(14) 0.9957(75) 1.0584(81) 1.088(16)

Table 10. Fit results for the energy of strange-strange and strange-heavy pseudoscalar mesons in

lattice units as a function of the momentum for the ensemble β = 4.41.

n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

ams = 0.024 ams = 0.026

ss 0.23749(89) – – – 0.24723(86) – – –

sh0 0.32942(73) 0.419(16) 0.477(19) 0.583(26) 0.33328(71) 0.422(15) 0.480(19) 0.585(25)

sh1 0.39143(72) 0.473(12) 0.529(14) 0.615(32) 0.39492(71) 0.476(12) 0.532(13) 0.617(31)

sh2 0.44837(73) 0.524(11) 0.577(13) 0.650(42) 0.45163(72) 0.527(10) 0.579(12) 0.652(40)

sh3 0.50185(74) 0.572(10) 0.620(10) 0.668(48) 0.50496(72) 0.5744(98) 0.621(10) 0.672(46)

sh4 0.55252(76) 0.6178(96) 0.6603(94) 0.699(40) 0.55552(74) 0.6206(93) 0.6629(89) 0.702(38)

sh5 0.60091(78) 0.6623(91) 0.7010(85) 0.724(39) 0.60382(76) 0.6651(88) 0.7036(81) 0.727(37)

sh6 0.64723(81) 0.7054(87) 0.7407(78) 0.757(33) 0.65007(78) 0.7081(84) 0.7433(74) 0.761(32)

sh7 0.69161(83) 0.7468(84) 0.7792(73) 0.790(29) 0.69440(80) 0.7495(82) 0.7819(69) 0.794(28)

sh8 0.73410(87) 0.7868(82) 0.8166(69) 0.823(26) 0.73685(84) 0.7895(80) 0.8192(65) 0.827(25)

sh9 0.77473(90) 0.8264(84) 0.8526(66) 0.856(24) 0.77744(86) 0.8291(81) 0.8553(62) 0.859(23)

sh10 0.81346(93) 0.8632(83) 0.8873(63) 0.881(24) 0.81614(89) 0.8659(80) 0.8899(60) 0.885(23)

Table 11. Fit results for the energy of strange-strange and strange-heavy pseudoscalar mesons in

lattice units as a function of the momentum for the ensemble β = 4.66.
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n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

ams = 0.018 ams = 0.020

ss 0.17758(75) – – – 0.18735(73) – – –

sh0 0.28700(56) 0.350(10) 0.4032(50) 0.430(23) 0.29061(54) 0.3529(97) 0.4058(48) 0.432(22)

sh1 0.35690(58) 0.4085(78) 0.4562(36) 0.480(16) 0.36016(56) 0.4110(74) 0.4588(34) 0.483(15)

sh2 0.42074(60) 0.4653(66) 0.5063(35) 0.530(13) 0.42380(58) 0.4678(63) 0.5089(33) 0.533(12)

sh3 0.48047(61) 0.5186(63) 0.5542(36) 0.579(11) 0.48339(58) 0.5211(60) 0.5567(34) 0.582(11)

sh4 0.53680(65) 0.5717(59) 0.6029(32) 0.6257(90) 0.53964(62) 0.5742(56) 0.6054(31) 0.6285(87)

sh5 0.59020(67) 0.6222(57) 0.6502(30) 0.6727(84) 0.59298(64) 0.6247(54) 0.6527(28) 0.6755(81)

sh6 0.64086(69) 0.6697(58) 0.6958(28) 0.7180(80) 0.64359(66) 0.6722(55) 0.6983(26) 0.7208(77)

sh7 0.68882(72) 0.7161(55) 0.7398(26) 0.7620(84) 0.69150(68) 0.7186(53) 0.7423(24) 0.7648(80)

sh8 0.73401(74) 0.7598(56) 0.7814(25) 0.8031(83) 0.73667(70) 0.7623(53) 0.7840(23) 0.8059(79)

Table 12. Fit results for the energy of strange-strange and strange-heavy pseudoscalar mesons in

lattice units as a function of the momentum for the ensemble β = 4.89.

n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

ams = 0.011 ams = 0.013

ss 0.1143(13) – – – 0.1246(11) – – –

sh0 0.17940(63) 0.246(13) 0.2454(78) 0.269(16) 0.18322(60) 0.248(12) 0.2495(74) 0.272(15)

sh1 0.25110(52) 0.302(12) 0.3035(51) 0.327(14) 0.25441(49) 0.304(11) 0.3074(47) 0.330(13)

sh2 0.31470(52) 0.358(11) 0.3590(43) 0.374(13) 0.31778(49) 0.360(10) 0.3625(40) 0.377(12)

sh3 0.37356(56) 0.412(11) 0.4116(38) 0.430(13) 0.37651(52) 0.414(10) 0.4148(34) 0.433(12)

sh4 0.42894(61) 0.465(11) 0.4625(36) 0.477(11) 0.43180(58) 0.466(10) 0.4656(32) 0.481(11)

sh5 0.48138(67) 0.516(10) 0.5114(35) 0.524(10) 0.48419(62) 0.517(10) 0.5143(31) 0.527(10)

sh6 0.53114(72) 0.564(11) 0.5582(34) 0.5689(99) 0.53390(67) 0.566(10) 0.5611(30) 0.5723(95)

Table 13. Fit results for the energy of strange-strange and strange-heavy pseudoscalar mesons in

lattice units as a function of the momentum for the ensemble β = 5.20.
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