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1 Introduction

Fourscore and three years after Fermi computed how a nonzero neutrino mass would affect

the endpoint of the electron spectrum in a β-decay process [1–3], the laboratory quest for

a non-zero result in this kind of measurement is very much alive [4].

Weak electron capture (EC) has a sensitivity to the neutrino mass entirely analogous to

the one of β-decay. EC is the e p→ν n weak-interaction process whereby an atomic electron

interacts with a nucleus of charge Z to produce a neutrino, leaving behind a nucleus of

charge Z − 1 and a hole in the orbital of the daughter atom from which the electron

was captured. The optimal nuclide in this respect is 163Ho. The favoured experimental

technique is “calorimetric” [5–7]. Various experiments — ECHo [8, 9], HOLMES [10] and

NuMECS [11] — are currently making progress in this direction.

Once upon a time it was argued that the calorimetric energy spectrum of 163Ho decay

ought to be very well approximated by a simple theoretical expression: the sum over the

Breit-Wigner-shaped contributions of the single holes left by electrons weakly captured

by the nucleus [6]. In the extremely good approximation in which nuclear-size effects are

neglected, the corresponding orbitals are the ones whose wave function at the origin is non-

vanishing. In 163Ho EC decay to 163Dy the reaction’s Q-value is smaller than the L (n=2)

binding energies so that the potentially capturing orbitals (or resulting holes) are H = M1,

M2, N1, N2, O1, O2 and P1, after which the 67th element (Ho) runs out of electrons.

Robertson has pointed out that two-hole contributions should not be negligible [12, 13].

In an EC event, the wave functions of the spectator electrons in the mother and daughter

atoms are not identical, the small mismatch leading to an “instantaneous” creation of

secondary holes, H’. An electron having been expelled from the H’ orbital may be “shaken

up” to an unoccupied atomic level or “shaken off” into the continuum. The ensuing

contribution to the energy distribution would result in a peak for shake-up and a broad

feature for shake-off.

The probabilities P (H,H′) for the production of two holes are much smaller than single-

hole ones, P (H). Yet, when the energy deficit of the two-hole state E(H,H′) ∼ E(H)+E(H′)

is not very close to that of a prominent — but narrow — single-hole peak, there is an

observable feature in the spectrum, even if P (H,H′)� P (H).

Robertson argues that “If the presence of the curvature in the spectrum [due to two-

hole processes] near the endpoint were not known to an analyst, fitting to the standard

spectral shape would produce erroneous results for Q and mν”. The two-hole processes,

if significant, will be observed much before the analyst attempts to measure the cited

parameters. Moreover, given the recently measured Q-value, Q ≡M(163Ho)−M(163Dy) =

2833 (30stat) (15sys) eV [14], the dangerous possibility that E(H,H′) ∼ Q for any given pair

of holes is excluded.

The bad news is that the cited value of Q is larger than the previously “recommended”

figure, Q = 2.555± 0.016 keV [15], which goes in the direction of making a potential mea-

surement of mν more difficult. The good news, as we shall argue, is that the contribution

of two-hole states close to the spectral endpoint may compensate for the bad news, possibly

in an overwhelming way.
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Figure 1. Blue: calorimetric spectrum measured by ECHo [16]. Magenta: prediction of Faessler

et al. [19]. Red, dotted: added effect of the contributions N1O1{c,u} (arbitrarily multiplied by

2.5) and N1O1{c,o} [21]. The notation {c,u(o)} indicates that one electron is captured, one shaken

up (off).

We shall be specifically interested in calorimetric energies, Ec, in a domain hardly

explored so far, extending from the M1 peak at Ec ∼ 2050 eV to the endpoint at Ec = Q−
mν . Though QED and the weak-interaction theory are well established to impressive levels

of precision, dealing with atoms containing up to 67 electrons is not entirely straightforward.

Thus, we shall need observational input to guide our course.

2 Previous results

2.1 Data vs. theory

Some of the preliminary data of ECHo [16] (we thank L. Gastaldo for providing the figure

to us) and NuMECS (we thank M. W. Rabin for providing the figure to us) are shown

in figures 1, 2. There, they are compared with an elaborate theory of the calorimetric

spectrum [17–19], smeared with the experimental resolution and with the inclusion of one,

two and three-hole contributions. The agreement of theory and data is fairly good for the

prominent M1, M2, N1 and N2 contributions.

There is in the ECHo data a significant peak at an energy close to the expected position

of a contribution from N1 capture accompanied by O1 shakeup (N1O1), much larger than

the theoretical expectation of [17–19]. There is no evidence, at the predicted level, for the

contribution from N1 capture accompanied by N4/5 shakeup (N1N4/5) in either experi-

ment. An expected, sizeable M1N4/5 peak is also apparently absent in the NuMECS data

(it is tacitly assumed in these theoretical predictions [17–19] that the computed probability

for the production of a second hole corresponds entirely to electron shakeup). Finally, in

both data sets, there is evidence for a “shoulder” above the theoretical expectations in the

480 eV < Ec < 550 eV domain of calorimetric energy.

In [21] we have interpreted the situation just described in terms of a simple theory

of the production of “second” holes, described in the following section. The predictions,
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Figure 2. Black: calorimetric spectrum measured by NuMECS. Red: theoretical prediction of

Faessler et al. [19].
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Figure 3. The N-region. Slightly doctored predictions from [21], compared with early ECHo data,

as reported in [12]. The excess below 300 eV is due to a 144Pm contamination. The resolution’s

width (FWHM) is taken to be ∆Eexp = 8.4 eV.

for the region close to the N1, N2 single-hole peaks, are shown in figure 3. In this and

subsequent figures, the symbols {c,u} and {c,o} refer to one electron being captured (c), the

other one being shaken up (u) or off (o). The curly brackets remind us that the electrons

are indistinguishable and their wave functions anti-symmetrized.

Once again, theory [21] and data disagree. Our estimate of the height of the N1O1{c,u}
shakeup peak is a factor ∼ 2.5 too low. It is possible to correct in similarly moderate

ways the other contributions such as to agree with the data. One possibility, illustrated in

figure 3, is to correct the N1O1{c,u} peak by the cited factor and to leave N1O1{c,o} shake-

off shoulder — which snugly describes the observed one — as predicted, while reducing the

N1N4/5 features by a factor ∼ 3.

2.2 Lessons

We conclude from the comparison of theory and preliminary data that the predictions for

the subdominant spectral features due to the production of more than one hole are to be

taken cum amplo grano salis.
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As we wall discuss in more detail in sections 6 and 9, it is not a surprise that the

precise positions, heights and widths of the single- and multiple-hole contributions ought

to be fit to the observations. Only the Breit-Wigner shape of a single peak (or shakeup

multiple peak) is theoretically hale and hearty. Much less so is the shape of a shakeoff

feature which, computed in the customary sudden approximation, depends on an overlap

of bound and unbound wave functions.

Finally, the predictions for the normalization of the various contributions, particularly

the more elaborate ones [17–19], seem to be very untrustworthy. On the way to an analysis

of the endpoint, the size of the various spectral features will need to be adjusted to fit

the data. Currently, there are no theoretical results for the shake-off contributions, akin

to those of [17–19] for the shake-up probabilities. It would be useful to know whether the

shapes of these shake-off contributions agree with those of our more naive approach which,

as we have seen, agree with the preliminary data.

3 A rough theoretical guidance

In this section we clone the simple theory of the production of one [6] or more holes [21] in

electron capture, adapting it to the region of calorimetric energies extending from the M1

and M2 holes to the spectral endpoint.

3.1 The spectrum of single holes

In its simplest approximation [6] the spectrum of calorimetric energies, Ec, is a sum of

Breit-Wigner (BW) peaks at the Ec = EH positions,1 with their natural hole widths,

ΓH. The peak intensities are proportional to φ2
H(0), the values in Ho of the squared wave

functions at the origin of the electrons to be captured. The contribution of a single hole to

the EC decay rate, R, as a function of Ec is:

dR[H]

dEc
= κ Eν pν nH φ

2
H(0)BW [Ec, EH,ΓH], (3.1)

BW [Ec, EH,ΓH] ≡ ΓH

2π

1

(Ec − EH)2 + Γ2
H/4

, (3.2)

Eν = (Q− Ec), pν =
√

(Q− Ec)2 −m2
ν , (3.3)

The factor Eν in eq. (3.1) originates from the (squared) weak-interaction matrix element

and the factor pν in the decay’s phase space. Having made explicit the Eν factor, κ — in

the excellent approximation in which nuclear recoil is neglected — is a constant:

κ Eν ≡
G2
F

4π2
cos2 θC BH |M|2, (3.4)

withM the nuclear matrix element, BH−1 [20] an O(10%) correction for atomic exchange

and overlap and nH the electron occupancy in the H shell of Ho (the actual fraction of the

maximum number of electrons with the quantum numbers of H).

1The daughter Dy* atom has a hole and an extra electron in the N7 (4f7/2) level, of binding energy

∼ 4.2 eV, so that, more precisely, Ec = EH − EN7. We do not in the text make this small correction. In

comparisons with data the predictions for the peak positions will anyway be slightly adjusted to fit.
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We know from the observations of neutrino oscillations that the electron neutrino is,

to a good approximation, a superposition of three mass eigenstates, νi: νe =
∑

i Ueiνi,

with
∑

i |Uei|2 = 1. Thus, we ought to have written dR[H]/dEc in eqs. (3.1)–(3.4) as an

incoherent superposition of spectra with weights |Uei|2 and masses m(νi). But the measured

differences m2(νi) −m2(νj) are so small that the sensitivity of current direct attempts to

measure mν may result in a positive result only if neutrinos are nearly degenerate in mass,

in which case mν in eqs. (3.1)–(3.4) stands for their nearly common mass.2

We have, in eq. (3.1), made the “classical” approximation of neglecting interferences

between different vacated orbitals. For two different intermediate states H and H’ to

interfere, it is necessary that they decay into the same subsequent state. The probability

for this to happen, in the case we are discussing, is small. An estimate of a generous

upper limit to the effect of interferences is discussed in appendix A, demonstrating that

interferences may be neglected.

3.2 Shake-up

As Robertson pointed out [12, 13], in an EC event leading to a primary hole H there is a

small probability for a second hole H’ to be made in a shake-up process. When the second

electron is shaken-up to any unoccupied daughter-atom bound-state level — of binding

energy negligible relative to ETot ∼ E(H) + E(H′) — the calorimetric energy has a peak

at Ec ∼ ETot.

To the extent that the presence of one hole does not significantly affect the filling —

i.e. decay — of the other, the natural width of a two-hole state is the sum of the partial

widths: ΓTot ' Γ(H) + Γ(H′). In analogy to the one-hole result of eqs. (3.1)–(3.4), the

contribution of a particular two-hole state to the calorimetric spectrum is:

dR[H,H′]

dEc
= κ Eν pν nH nH′ BW [Ec, ETot,ΓTot]

∞∑
n=7

|{1−Π(H,H′)}φH(0)A(H,H′, n)|2,

(3.5)

where nH′ is the occupancy in the H’ shell, φH(0) is the wave function at the origin of

the captured electron, A(H,H′, n) is the probability amplitude for the excitation of the

electron in H’ to an unoccupied S-wave bound state with n its principal quantum number,3

and Π(H,H′) is the operator interchanging the two implicated electrons. More precisely,

1−Π(H,H′) stands for the operation of symmetrizing the product of captured wave function

and transition amplitude in the singlet antisymmetric spin state, antisymmetrizing it in

the triplet symmetric spin state and adding the resulting square moduli with weights 1/4

and 3/4.

3.3 Shake-off

The creation of a second hole H’ in the capture leaving a hole H can also occur as the

shake-off of the electron in the orbital H’ to the “continuum” of unbound electrons:

Ho→ Dy[H,H′] + e− + νe. (3.6)

2If there were a small mixture of an extra mass eigenstate, it could be seen as a kink in the

spectrum [22, 23].
3In the particular case of (H, H’) = (M1, N1) one would have A(H,H′, n) = Bn, as defined and estimated

in eq. (3.13).
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In such a 3-body decay, neither the electron nor the neutrino are approximately monochro-

matic. The neutrino energy, Eν , and the ejected electron’s kinetic energy, Te, satisfy

Eν + Te = Q−ETot. The electron’s energy and the daughter Dy ion energy excess add up

to the observable calorimetric energy Ec = Te + ETot.

Let |Ho[H]〉 be the wave function, in Ho, of the orbital whose electron is to be captured

and |Dy[H,H′; pe]〉 the continuum wave function of the electron ejected off the daughter

two-hole Dy ion. In the sudden limit the shakeoff distribution in electron momentum pe
(or in its energy Te) ensues from the square of the wave function overlap:

dM

dpe
≡ |{1−Π(H,H′)}φH(0) 〈Ho[H′]|Dy[H,H′; pe]〉|2, (3.7)

dM

dTe
=
me

pe

dM

dpe
, (3.8)

where we have defined the auxiliary function dM/dpe, to be used anon.

It is simplest to discuss the rate for the shake-off process of eq. (3.6) by doing it for

starters in the vanishing-width approximation for the daughter holes. In this case

dR

dTe
= κ Eν pν nH nH′

pe
4π2

dM

dTe
. (3.9)

The resulting Ec distribution is:

dR

dEc
=

∫ Q−ETot

0

dR

dTe
δ(Ec − ETot − Te) dTe . (3.10)

To undo the zero-width approximation, substitute the above δ function by BW [Ec −
Te, ETot,ΓTot], with BW defined as in eq. (3.2).

3.4 The shake-off shape

Electron capture in Ho results in a Dy atom — which we shall in what follows denote as

Dy* — with a hole in the orbital from which the capture took place. The absent-electron

charge partially shields the one of the absent-proton. Relative to a process without a

similar effect — such as the creation of a primary hole by photo-ionization — the partial

shielding generally leads to a reduced probability for the creation of a second hole. This

is because the wave functions of the potentially vacated second orbitals in the parent and

daughter atoms have a closer overlap in the presence of shielding. And — in the sudden

approximation traditionally used to make these kind of estimates — the square of this

overlap is the probability of not creating a second hole.

Intemann and Pollock [24] were the first to show how to properly treat the shake-off

of a second electron in EC. In what follows we apply their method and refer as an example

to M1 capture accompanied by N1 shakeoff, or, more precisely, to the M1N1{c,o} process

(the most relevant one closest to the spectral endpoint). The trick is to start by treating

the result of M1 capture (the absent proton and the absent electron) as a perturbation of

the Coulomb potential of the form:

α b(r) ≡ α
(

1

r
−
∫
d3r1

|φM1(r1)|2

|~r − ~r1|

)
. (3.11)

– 7 –
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To first order in α the wave function of the N1 level in Dy* (the daughter atom with an

M1 hole) is then expressed as a linear combination of Ho eigenfunctions:

|Dy∗[N1]〉 ' |Ho[N1]〉+
∑
n

Bn |Ho[n]〉+
1

2π

∫ ∞
0

dpe Boff(pe) |Ho[pe]〉, (3.12)

Bn ≡
α

EN1 − En

∫
d3r φ∗n(r)φN1(r) b(r), (3.13)

Boff(pe) ≡
α

EN1 + Te

∫
d3r φ∗(pe, r)φN1(r) b(r) (3.14)

where n in the wave functions |Ho[n]〉 stands for the l = 0 bound levels with n 6= 4 and

(positive) binding energy En, φ(pe, r) is the unbound wave function of the state |Ho[pe]〉,
defined as in [25], of an l = 0 electron with momentum pe and kinetic energy Te = p2

e/(2me).

To take into account Fermi statistics, one must — it goes without saying — also do

the calculations encapsulated in eqs. (3.11)–(3.14) with the exchange M1 ↔ N1, since the

two-hole final state, at a given Te, is the same independently of which electron is captured

or ejected. Thus, in the sudden approximation, the square of the (monopolar) matrix

element for an electron being shaken-off with energy Te results in:

dM

dTe
=

me

4π2 pe
|{1−Π(M1,N1)}φM1(0)Boff(pe)|2 (3.15)

for the distribution function of eq. (3.8).

A crucial point in estimating wave-function overlaps is to choose them with the correct

spatial scale. To provide an estimate of the shape of dM/dTe we shall use non-relativistic

Coulomb wave functions4 of Ho with effective values of Z chosen to reproduce the relevant

orbits’ mean radii, as calculated with more precise Hartree-Fock methods [26]. Let rB ≡
1/(αme) denote the Bohr radius. For 〈r(M1)〉 = 0.246 rB and 〈r(N1)〉 = 0.555 rB the

effective charges are Zeff(M1) = 54.9, to be used in eq. (3.11) and Zeff(N1) = 43.2 , to be

used for the bound and free wave functions in eqs. (3.13), (3.14).

4 The M-hole region and beyond

In what follows we present results for the spectral domain extending from the M2 and M1

single-hole contributions to the spectral endpoint, assumed to be at Q = 2833 keV. First

we take at face value the results of the calculations described in the previous section. Since

the results are very optimistic — in the sense of facilitating a potential constraint on mν

— we shall later discuss the possibility that our predictions are gross overestimates.

In figure 4 we show the separate contributions of the one-hole spectrum, the dominant

contribution to the two-hole spectrum in this energy domain (M2H plus M1H), and the one-

plus-two-hole result.5 This is a theorist’s spectrum, with an arbitrarily normalized vertical

4These would give very poor estimates of the wave functions at the origin, for which we use instead the

values given by the accurate calculations in [13, 17–19].
5We did not include other two-hole contributions (like N1M4 and N1M5) giving small structures below

the M2 peak.
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Figure 4. The “theorist’s” calorimetric spectrum in the M region. In blue the single-hole contri-

bution ΣH. In red the two-hole shake-up plus shake-off contributions, with one of the holes being

M1 or M2. In black, the sum of all contributions. The units of the vertical scale are arbitrary.

scale, mν = 0 and an experimental width, ∆Eexp, whose square is negligible relative to

that of any of the hole’s natural widths. All the subsequent figures will also, in the same

sense, depict arbitrarily normalized spectral shapes, occasionally with mν 6= 0.

The enhancement above the M1 peak of the total spectrum in figure 4, relative to the

single-hole result, is quite considerable. A very good way to present this phenomenon is to

plot the bare spectrum, i.e. the result of dividing the numbers of events of figure 4, by Eν pν ,

the factors originating from the nuclear matrix element and the phase space, respectively.

This is done in figure 5. In this and subsequent plots of “bare spectra” the vertical scale

is arbitrary and we do not even label it.

Notice in figure 5 that, at Ec ∼ Q, the two-hole contributions are overwhelmingly

dominant, a factor ∼ 40 larger than the single-hole contribution.6 In a closer look at the

figure one concludes that this large effect would be equivalent, in the absence of two-hole

contributions, to a Q-value of ∼ 2150 eV, a point of the green single-hole curve with an

ordinate as high as the endpoint of the (total) blue curve.

An analogous improvement is expected on another subject: the possible observation

of antineutrinos of the cosmic background via their capture in 163Ho. The quantity of

radioactive isotope necessary to obtain ten events of signal is a strongly increasing function

of the Q-value [29]: with only single-hole EC it should be 1274 (23.2) kg y for Q = 2.8

(2.2) keV. Including the contribution to the two-hole spectrum the same quantity comes

out to be 30.6 kg y even if Q = 2.833 keV. Gathering this amount of 163Ho is still a wee

bit unrealistic.
6The figure is plotted for a fixed height of the M1 peak. With this constraint, the NH and MH contri-

butions increase the overall normalization of the spectrum by ∼ 9%, so that, for a fixed total number of

events, the enhancement would be closer to 40 than to 43, should we trust the double-hole predictions to

this level of precision.
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Figure 5. The “bare” spectrum defined in the text. The normalization of the ordinate is arbitrary.

In black (red) the sum of the two-hole spectrum, one of the holes being M1 (M2). In green, the

single-hole contribution. In dark blue, the total. The units of the vertical scale are arbitrary.
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Figure 6. The M1H two-hole contributions in figure 5, in full detail. In green (red), one of the

holes is captured, the other one shaken up (off). In black a total bare spectral shape, including the

(blue) single-hole contribution, but not the M2H contributions, negligible above the M1 peak. The

units of the vertical scale are arbitrary.

The details contributing to the construction of figure 5 are given in figures 6, 7, where,

respectively, the various M1H and M2H double-hole contributions are specified.

We have seen that some two-hole effects successfully compete with single-hole ones

when the sizable contribution of the former is at Ec values at which the latter is not close

to its peak. The triple-hole contributions, contrariwise, are largest at Ec values at which the

shake-off contribution of double holes is relatively large. Given the smallness of the extra
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Figure 7. The M2H two-hole contributions in detail. In green (red), one of the holes is captured,

the other one shaken up (off). In black a total bare spectrum including the (blue) single-hole

contribution, but — unrealistically — not the M1H contribution. Enhanced by two orders of

magnitude, the M1N1O1{c,u,o} three-hole contribution is also shown. The units of the vertical

scale are arbitrary.

wave-function overlap in three-hole contributions (relative to the two-hole ones), three-hole

effects are always negligible. The example of M1N1O1{c,u,o}, arbitrarily multiplied by a

factor of one hundred, is shown in figure 7.

5 The endpoint analysis

The spectral shape in the last ∼ 700 eV below the endpoint is shown in the upper figure 8,

where the dominance of double-hole contributions is predicted to be most significant. The

lower figure is a “Kurie” (or Kurie-like plot), simply depicting the square root of the number

of (theorist’s) “events”. Notice that in the last 200 eV, there being no significant spectral

features (double hole {c,u} peaks or {c,o} thresholds) the Kurie plot is linear but, as we

proceed to discuss, not quite. Recall here, and in what follows, that we have assumed that

our “experiment” has a perfect resolution.

The uppermost ∼ 200 (30) eV of the Kurie plot are shown in the upper (lower) part of

figure 9. We are only interested in checking the degree of non-linearity of this theoretical

plot, so our disrespect for statistical issues will be irrelevant. Our theorists’ “Kurie data”,

generated with mν = 0, Q = 2833 eV, are fit to a linear and a quadratic polynomial in Ec,

in a theorist’s way. To wit, the interval Q−200 ≤ Ec ≤ Q−2 eV (or Q - 10 eV, to check that

the a-priori ignorance of a precise calorimetric Q-value makes little difference) is binned in

∼ 100 2-eV intervals. Two least square fits to this binned “data” are performed, ignoring

the fact that, in reality, the real data would be statistically more precise as Ec decreases.

The results of the fits are:

A(Ec) = 51.9226− 0.018363Ec, (5.1)

B(Ec) = 162.652− 0.0994605Ec + 1.4842 10−5E2
c . (5.2)
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Figure 8. Above: the uppermost ∼ 700 eV of the spectrum, with an arbitrary vertical scale. Below :

the corresponding Kurie plot (the square root of above-plotted spectral shape).

The linear fit is not very good, while the quadratic one very snugly describes the

“data”. The condition A(Ec) = 0 results in Q = 2827.56 eV, wrong by ∼ 0.19% relative to

the “data’s” Q = 2833 eV. The condition B(Ec) = 0 results in Q = 2833.14 eV, correct to

5 parts in 105.

In the lower part of figure 9 we test “by eye” how the mentioned “Kurie data” or the

linear and quadratic fits thereof would, given the required statistics and the other obvious

provisos, exclude neutrino masses of 2 or 5 eV.

6 An evident caveat

We have been treating our predictions as if they were to be precisely trusted. But we

have seen, by comparing them with the preliminary data in the N-region of energies, that

they are not. The theory appears to overestimate some double hole contributions, and to

underestimate others. Moreover our results about the analysis of the endpoint appear to

be unprecedently optimistic, and this will be even more so when we discuss the pile-up

issue. Thus, we adopt in this section a complementary very pessimistic point of view.
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Figure 9. Above: the uppermost ∼ 200 eV of the Kurie plot, showing a linear and a quadratic fit

to the theoretical Q = 2833 eV, mν = 0 “data”. Below : the last ∼ 30 eV, including the expectations

for mν = 2, 5 eV, which disagree with the input “data”.
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Figure 10. Bare spectrum with all double-hole contributions arbitrarily divided by 40, with their

sum in black. Blue: the sum of single holes. Red: total.

– 13 –



J
H
E
P
0
5
(
2
0
1
6
)
0
1
5

2805 2810 2815 2820 2825 2830 2835

0.00

0.02

0.04

0.06

0.08

0.10

Ec(eV )

TOTAL

Double holes⌃

Ba
re

 S
pe

ct
ru

m
Ku

rie
 p

lo
t

“Data”
Quadratic 
Fit

m⌫ = , eV5 2

Single holes⌃

2100 2200 2300 2400 2500 2600 2700 2800
0.0

0.2

0.4

0.6

0.8

Figure 11. Above: bare spectrum of the uppermost ∼ 700 eV of an mν = 0 set of “data” with the

predicted two-hole contributions arbitrarily diminished by a factor of 40. Below : the corresponding

Kurie plot in the last 30 eV, showing also a linear and a quadratic fit, as well the theoretically

excludable expectations for mν = 2, 5 eV.

Assume that all the double hole contributions relevant to the endpoint analysis (M1H

and M2H) have been overestimated by a collective factor of 40, chosen to have their sum

at Ec ∼ Q be comparable to the M1-dominated single hole contribution in that domain.

The corresponding bare spectral shapes are shown in figure 10.

In the upper part of figure 11 we show the bare spectrum, at energies above Q−700 eV.

The lower part is the corresponding Kurie plot, showing a quadratic fit to the “data”

analogous to that described in connection with the lower part of figure 9.

Once again, we make linear and quadratic fits to the “data”, binned in the last ∼ 200 eV

below the endpoint. The results are:

A′(Ec) = 11.9492−0.0042288Ec, (6.1)

B′(Ec) = 47.8908−0.0305521Ec+4.81759 10−6E2
c . (6.2)

The linear fit is not very good, while the quadratic one very snugly describes the

“data”. The condition A′(Ec) = 0 results in Q = 2825.67 eV, wrong by ∼ 0.26% relative
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to the “data’s” Q = 2833 eV. The condition B′(Ec) = 0 results in Q = 2833.65 eV, correct

to 2.3 parts in 104.

6.1 A preliminary conclusion

Assume that, in a particular experiment, the experimental resolution function and the

background are well understood. Traditionally, Kurie plots for well understood processes

— such as tritium β-decay — are defined in such a way that they are expected to be linear

in energy. They are then fit with three parameters: mν and the constant and the slope of

a linear function of energy or, equivalently, mν , the slope and Q.

In the case of the calorimetric measurement in 163Ho EC the shape of the BW functions

describing single-hole or HH’{c,u} double-hole contributions, as we shall discuss, are very

well understood. The “problem” is that the precise shape and magnitude of the HH’{c,o}
double-hole contributions are not. Even if these contributions are measured to be significant

as one approaches the endpoint, we have argued, the use of one more parameter in the fits

(the extra coefficient in a quadratic function of energy) should solve this apparent problem.

It goes without saying that these theoretical conclusions would gain (or lose) weight

if and when they are tested with adequate simulations of data in a realistic observational

environment. The advantages of a possibly increased statistics in the endpoint region (com-

pared with single-hole expectations) may be a tempting reason to perform such an analysis.

7 Pile-up

The finite time required to record an EC event gives rise to the inescapable problem of

pile-up: the additional contribution of the spectrum of two “simultaneous” events. If the

“singles” spectrum (of single events) has a sizable contribution of HH’{c,o} events towards

its endpoint, the concern with pile-up diminishes.

Let dR̂/dEc be the singles spectrum, with its integral in the interval 0 < Ec < Q

normalized to unity. The pileup spectrum, also normalized to unity in the interval 0 <

Ec < 2Q, is:

dRP
dEc

=

∫ Q

0
dE1

∫ Q

0
dE2

dR̂

dE1

dR̂

dE2
δ(Ec − E1 − E2). (7.1)

For the sake of illustration, let the probability of pileup be 4×10−5. In the upper part

of figure 12 we show the corresponding singles and pileup spectra for the case in which

they are exclusively dominated by single-hole captures; the vertical scale is arbitrary, but

the ratio of the two spectra is not, it corresponds to the assumed energy-integrated pileup

probability. With the same proviso,7 the spectra corresponding to our estimate of two-hole

effects are shown in the lower part of figure 12.

Comparing the emphasized regions in the upper and lower parts of figure 12 one

concludes that the end-point pileup problem is much less serious in the case that the

double-hole contributions are significant there. This is made clearer by comparing the

7A hawk-eyed reader may notice that these spectra do not have the little wiggles visible in figure 4.

They have been smoothed in the benefit of a faster numerical integration of eq. (7.1).
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Figure 12. “Singles” and “Pileup” spectral shapes, with a 4 × 10−5 pileup probability and an

arbitrary (but common) vertical scale normalization. Above: spectra with captures resulting only

in single holes. Below : spectra with the addition of events resulting in double holes. The regions

around Ec = Q are significantly different in the upper and lower plots.

Ec ∼ Q domains, which we do in figure 13. The ratio of single to pileup events at, for

instance, Ec = Q− 3 eV is ∼ 6 times larger in the lower part of this figure (where two-hole

effects are included) than in the upper part (where they are not).

The reason why we find improved expectations concerning pileup is simple. At Ec ∼ Q

the pileup spectrum is dominated by the addition of the N1H{c,o} and M1H{c,o} spectral

tails, while the singles spectrum is dominated by the latter. But in the pile-up integral of

eq. (7.1) all spectral features are partially smoothed out.

8 Single-hole peaks, BW tails and residua

A clear conclusion from the existing data is that there are spectral contributions not antic-

ipated in a simple single-hole theory. In the current exploratory phase of the experiments

it would be tempting to subtract from the data the single-hole expectation, to visualize

directly the residuum: the cited extra contributions. One could, for instance, subtract

the blue curve in figure 4 from the black one, to extract the red one: the residual sum of

double-hole contributions. We now address the question of the precision with which this

can be done.

Given the large statistics with which single-hole contributions will be measured at

and around their peaks, there is no question that their individual parameters (position,

height and width) will be exquisitely measured. But to obtain the residua a BW shape

in eqs. (3.1), (3.2), extending up to very many widths above the peak, must be assumed.
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dominated by single holes. Below : with the addition of two-hole processes. The vertical scales of

the two plots correspond to the same assumed activity of the source and data-taking time.

A Breit-Wigner is an approximation known to require, in certain cases, potentially large

explicit corrections [30].

The proof that in the calorimetric case at hand the simple standard BW shape we

have used is perfectly well suited is lengthy. We relegate it to appendix B.

9 The shortcomings of theory

The precise treatment of a process in an atom with 67 electrons is obviously intricate. One

limitation, in the case of EC, is the use of the sudden approximation. While it is justified

in the analysis of electrons captured from the inner orbitals, it is less so for captures from

the n ≥ 3 levels of interest here.

In the sudden approximation (e.g. in a β-decay) and in estimating secondary-hole

probabilities, the time required for the change of nuclear charge is assumed to be negligible

relative to the typical atomic orbital times: the time it takes them to “react” to the new
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environment. In EC this assumption — used for decades without hardly a comment —

is extended to the comparison of the time required to propagate the information that the

captured electron has disappeared, relative to the rest of the characteristic atomic times:

the former must be negligible.

The opposite to the sudden extreme is the adiabatic case, in which the electronic or-

bitals have time aplenty to slowly evolve from the parent-atom eigenstates to the daughter-

atom ones. In the extreme adiabatic limit the probability of making “second holes”

would vanish.

9.1 The nuclear capture time

The characteristic time, τN , for the EC process p + e → n + ν underlying the nuclear

transition is the inverse of the energy transfer q0. For a process with Q � me, such as

the one under discussion, q0 ' me and τN ' 1/q0 is orders of magnitude smaller than any

characteristic atomic time. In the nuclear sense, EC is instantaneous.

9.2 Our two-electron approach

In the simple approach that we have discussed in section 3, two electrons (the captured

one and the one that is potentially exiting its orbital) play a singular role. The rest of the

electrons are only there to imply some effective values of Z or to forbid some transitions.

But once more, a non-relativistic Coulombic approximation8 provides guidance, which in

the case of the adequacy of the sudden approximation turns out to be quite relevant.

The relativistic retardation of signals implies that the sudden nuclear transition Z→
Z− 1 cannot be instantaneously felt by an electron in an orbital of mean radius r. It takes

a time of order r for the orbital to be “informed”. Similarly, the absence of the electron

that was captured is felt by another atomic electron after a time of the order of the larger

of the two mean orbital radii.

Recall that the mean radius and binding energy of a Coulombic eigenfunction, in the

usual notation, are:

r[n, l] = [3n2 − l(l + 1)]/(2me Z α) (9.1)

E[n] = me (Z α)2/(2n2) (9.2)

The quantum-mechanical characteristic time for a bound state to “react” to a pertur-

bation is the inverse of its binding energy. Thus, deviations from the sudden approximation

in a transition amplitude are, up to a factor of O(1), governed by a figure of merit δ, the

ratio of the “retardation” time to the quantum-mechanical “reaction” time:

δ ∼ E × r = O(Z α) (9.3)

For δ � 1 the sudden approximation is justified, while δ � 1 corresponds to the adia-

batic limit.

8We used the limit v/c→ 0 everywhere but in allowing for the particularly large effect of EC from the

l = 1, j = 1/2 orbitals.
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In numerical examples, let us use the radius of an l = 0 orbital as a characteristic

light-travel time, t = r[n, 0]. The “retardation time” for another S-wave orbital, n′, to be

informed that the capture process has taken place is of order tr = max(t[n], t[n′]), so that

δ = E[n′] tr.

For an M1 capture and a putative second hole in N1, δ = 3Zα/4, that is a worrisome

δ = 0.24 for Zeff = 43.2. But for the energies and mean radii obtained in a non-relativistic

Hartree-Fock calculation, E(N1,Ho) = 0.414 keV, 〈r(N1,Ho)〉 = 0.29 Å, and E×r ∼ 0.062,

a much smaller result. After a brief scare, the sudden approximation appears once again

to be justified.

In our two-active-electron approach the use of (suddenly) overlapping wave-function

is safe, but the wave functions themselves are crude approximations. Thus the potential

interest of more ambitious calculations.

9.3 A many electron system

The methods of Faessler and collaborators [17–19] are relativistic,9 and consistently use

Slater determinants to describe the fully anti-symmetrized states of the Ho and Dy* atoms.

In each atom the individual orbitals span an orthonormal set. For Dy* this implies that

all of its electrons must have had ample time, after the nuclear capture, to readjust to the

new situation.

Consider the capture of an M1 electron; the mean radius of its orbital is 〈r(M1,Ho)〉 =

0.13 Å, which we will take as the pertinent time for the capture information to arrive to

three inner orbitals. For the other electron in the M1 state, whose binding energy is

E(M1,Ho) = 2.05 keV, the figure of merit is δ = E(M1) r(M1) ∼ 0.135. For an L1

electron, E(L1,Ho) = 9.05 keV and δ = E(L1) r(M1) ∼ 0.6. Finally, for a K electron

E(K,Ho) = 55.6 keV, and δ = E(K) r(M1) ∼ 3.7 > 1.

We conclude that the sudden approximation is not good for the Dy* atom in its

ensemble. This statement is very specific to cases in which the captured electron belongs

to a rather external orbit: M1 or higher in the case of 163Ho. Should we have discussed

K-capture, the characteristic radius (or time) to spread the information would have been a

K radius and the energies of the orbits in which second holes may be produced a K binding

energy, or a smaller one. The sudden-approximation figure of merit, δ, would have always

been significantly smaller than unity, justifying the sudden approximation.

10 Platinum

We have only discussed 163Ho. But measurements of the next-to-best electron-capturing

isotope [5], 193Pt, could be of help in understanding the difficult theoretical issues associated

with the two-hole contributions. The problem is simply one of QED, like in the case of

holmium or the slightly harder problem of understanding the human brain.

9The corrections to a non-relativistic approach are of O(Zα), like the effects neglected by use of the

sudden approximation.
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11 Conclusions

The current very preliminary data on the calorimetric spectrum of 163Ho decay, in the re-

gion of the N peaks, appear to be qualitatively described by the simplified theory we have

discussed. A similarly preliminary conclusion is that the description of the observations

becomes quantitively satisfactory when the various theoretical single- and double-hole fea-

tures are renormalized to fit the data. Once the data improve, we expect this conclusion

to become more solid.

On the way to measure or limit the neutrino mass, the relevant energy domain is

not yet explored. It is the one extending from the M2 and M1 single peaks towards the

spectral endpoint, the interval we have analized in detail. It is there that future data and

the comparison of its features with theory will be of utmost interest.

We argued that, relative to the “old theory” with only single-hole contributions,

double-hole effects may enhance the spectral endpoint region by a factor of ∼40. If this is

correct, the statistical sensitivity on mν — which varies as the fourth root of the number

of decays — would improve by a factor ∼2.5. We showed that the pileup problem would

also be reduced by an even larger factor.

We cannot indubitably trust the above optimistic conclusions. Thus, we have also

studied the possibility that double- and single-hole contributions be of similar magnitude

close to the endpoint. This choice makes the theoretical analysis of the data more chal-

lenging. But we have argued that also in this very pessimistic case the introduction of just

one extra parameter — besides mν , Q and the slope of a linear function of Ec — should

be enough to analyse the data along well-trodden paths.

An issue that remains to be investigated is the possible existence, in a given calorime-

ter’s substrate, of BEFS oscillations. These would be due to Ho-decay electrons undergoing

reflections in the crystal lattice [31, 32].

The possibility of a significant contribution of electron shake-ups, leading to double-

hole spectral peaks, was originally presented as very damning [12, 13]. Somewhat ironically,

the likely existence of a significant contribution of electron shake-offs may be a very wel-

come blessing.
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A Interferences

In the single-hole spectrum of eq. (3.1) quantum interferences have been omitted. To discuss

how good an approximation this is, we concentrate on the potentially most significant

interference: the one between the M1 and N1 amplitudes. For them to interfere, the
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Figure 14. Generous upper limits to the absolute value of the M1-N1 interferences, for a hypo-

thetical spectrum with only single M1 and N1 captures. Above: the spectrum and the maximum

interference. Below : the ratio of the maximum interference term to the non-interfering spectrum.

j = M1,N1 holes must decay into the same (generally two-hole) final state f . Introduce

the notation by writing the corresponding amplitude and probability as:

Afj ∝ φj(0)

√
γj/π

E − Ej + i γj

√
b(j → f) eiψ

f
j , (A.1)

Γf ∝
∣∣∣∣∑

j

Afj

∣∣∣∣2 =
∑
j

|Afj |
2 +

∑
k 6=j

Afk (Afj )∗ , (A.2)

where γj ≡ Γj/2 is the half-width, b(j→f) is the branching fraction for this decay and ψfj
is the unknown phase. Summing over all possible f in eq. (A.2), the first (second) term is

the single hole expression (the interference). The explicit expression for the latter is:

2φM (0)φN (0)

√
γMγN

π
β (A.3)

× [(E − EM )(E − EN ) + γMγN ] cos(ψ) + [γM (E − EN )− γN (E − EM )] sin(ψ)

[(E − EM )2 + γ2
M ] [(E − EN )2 + γ2

N ]
,

where we have suppressed the c in Ec, the 1 in M1 and N1, β stands for∑
f

√
b(M → f) b(N → f) and ψ is the residual unknown phase.

In searching for an upper limit to the interference term, we substitute β by the larger

number [
∑

f b(M → f)×
∑

f b(N → f)]1/2 ∼ 0.088, where the numerical value is from [27,

28]. Moreover, in eq. (A.3) we take either cos(ψ) or sin(ψ) to be unity, depending on which

of the two, at a given E, has the coefficient with the largest absolute value. The results of
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eqs. (A.2), (A.3) are used to draw figure 14, in whose lower panel we see that ∼ 2% would

be a generous upper limit for the fractional contribution of the interference term close to

the endpoint.

The conclusion is that interferences can be neglected in the endpoint analysis, more so

if two-hole effects are dominant there.

B The tails of resonances

In writing, in the usual fashion, the contribution to the calorimetric spectrum of a given hole

of (positive) binding energy EH , we have first employed the negligible-width approximation

and the two-body phase space, dN2, for the process Ho→ Dy∗ + ν to write:

dN2/dEν ∝ pν δ(Eν −Q+ EH)Eν , (B.1)

where the square of the capture matrix element is ∝ Eν . Since in this case Ec = EH one

simply has:
dN2

dEc
∝
√

(Q− Ec)2 −m2
ν δ(Ec − EH) (Q− Ec) (B.2)

The contribution of a hole of non-zero width ΓH can then be obtained by substituting the

δ function by a BW to get, for the sum of single-hole contributions, eqs. (3.1)–(3.3).

The purpose of the above naive reminder is to discuss the extent to which eq. (3.2) is a

good approximation, specially very many widths above a given resonance, in particular the

one corresponding to an M1 hole, whose contribution dominates the end of the spectrum.

In this respect, two related items need to be discussed, both concerning the single-hole

contributions to the calorimetric spectrum. The first is whether or not the two-body phase

space is the correct one to use, in spite of the fact that Dy* may decay to its ground

state by photon emission, in which case the process appears to have one extra final-state

body (the photon). More often, the Dy* de-excitation starts with a complicated chain of

electron emissions, an apparently many-body final state. In all cases the question arises:

is the two-body Breit-Wigner shape of eqs. (3.1), (3.2) adequate far away from its peak?

Consider, as a “sanity test”, the possible but relatively very improbable case in which

the hole made by EC in the neutral daughter atom, Dy*, decays to the Dy ground state by

having the Dy* outermost electron transit to the hole, with the emission of a photon. This is

a process in which Ec = Eγ , and its phase space, dN3, is a three-body one: Ho→ Dy+ν+γ.

Relative to eq. (B.2), the calorimetric spectrum acquires two extra factors:

dN3/dEc ∝ Ec |Mγ |2 dN2/dEc, (B.3)

where Ec = Eγ arises from the photon’s phase-space and Mγ is the photon emission matrix

element.

The Ec dependence in eqs. (3.2) differs from that in eq. (B.3). This is a well known

situation [30], generally “remedied” by “incorporating” the kinematics (the extra factor of

Ec) or the kinematics and dynamics (Ec |Mγ |2) into an effective width.

Suppose we adopt the first of the two mentioned remedies by substituting

ΓH → Γ̃H = ΓHEc/EH. (B.4)
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Figure 15. A dominant chain of decays in the process Ho → ν + Dy∗; Dy∗ → e′s & γ′s + Dy0,

with Dy0 the ground state of dysprosium. The subscripts of Dy are electric charges and the stars

the number of holes.

Take the example of M1 capture (EM1 ' 2048 eV). The modification of the width in the

denominator of the BW expression is immaterial at the endpoint, for (Q−EM1)2 � Γ̃2
M1/4.

But the modification of the width in the numerator would alter the naive result from

eq. (3.2) by a factor changing linearly from 1 at Ec = EM1 to Q/EM1 ' 1.37 at Ec = Q.

This seems to be worrisome.

As it turns out, in the specific case at hand, the traditional expression naively based on

two-body phase space considerations, eqs. (3.1), (3.2), is the correct one to use. One reason

is that the single-photon Dy* decay we discussed — which would require a three-body phase

space treatment — has a negligible branching ratio. The dominant decays consist of a series

of Auger or Coster-Kronig transitions (in which the neutral Dy* emits electrons, becoming

an increasingly charged ion), followed by radiative transitions in which an outer atomic

electron — or one coming from the negatively charged atomic neighborhood — drops into

the Dy-ion holes and a photon is emitted. These processes are depicted in figure 15.

Consider any of the electron emissions in figure 15. The corresponding phase space ex-

pression contains a factor pe, the momentum of the outgoing electron. But, at the relevant

very non-relativistic energies, this factor, to a very good approximation, is compensated

by the “Fermi-function”, F ∼ 1/pe, which reflects the fact that the wave function of the

outgoing electron is not that of a free particle, but the one of an electron subject to the

field of a charged ion. For any of the soft photon emissions in figure 15 the pertinent width

may be modified by a remedial factor Eγ/〈Eγ〉, but that function differs very little from

unity in its narrow allowed range (unless Emax
γ ∼ Q, the unlikely case discussed in the

next paragraph).

The emission of only one photon is highly suppressed, as we said above. There still re-

mains the possibility that one of the (many) photons emitted in the decay — as depicted in

figure 15 — carries all of the energy Ec ' Q, requiring a modified width in the correspond-

ing Breit-Wigner. But in that case all the other emitted photons have momenta p ' 0 and

the phase space (multiply) vanishes. The multi-body phase space has a multidimensional

pole at the central energies of each of the transitions. At Ec ' Q the overwhelmingly most

likely situation corresponds to all energies being close to this multiple pole and adding up

to Ec ' Q. All in all the overall process is described by the naive two-body phase space

expression of eq. (3.2), with its width unmodified.

To conclude: an event in the process we are discussing can be viewed as the two-body

decay of the calorimeter “before” to a neutrino and the unstable “excited calorimeter” im-

mediately after. The calorimeter then releases its excess energy — which is calorimetrically

recorded – to return to a new ground state (with one fewer Ho and one extra Dy atoms).
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