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Abstract
In this lecture we shall briefly review some motivations for physics beyond the
Standard Model. We focus our attention on the hierarchy problem and discuss
the role of gravity in defining and solving this problem.

1 Motivation for beyond the Standard Model physics
Fundamental physics is about understanding the laws of Nature at different length scales. Let me give
examples of some of the important ones. The Hubble length, LH ∼ 1028 cm, which represents the size
(and the age) of our observable Universe, is, by default, the largest observed length in Nature. Another
important length, Lexp.gr ∼ 0.2 mm, is the shortest length down to which Newton’s law of gravity
has been experimentally tested [1]. Then comes a so-called quantum chromodynamics (QCD) length,
LQCD ∼ 10−14 cm, at which the strong interaction changes regime and from the theory of composite
hadrons (such as pions, protons, neutrons) becomes a theory of quarks and gluons. Then there is a weak
interaction length, LW ∼ 10−16 cm, set by the Compton wavelengths of W and Z bosons. Not very
far from the weak scale, there is a length scale, LLHC ∼ 10−17 cm, that will be probed by the Large
Hadron Collider (LHC) experiments. An extremely important role in gravitational interactions is played
by the Planck length, LP ∼ 10−33 cm. Finally, let me introduce the notion of the shortest length scale
of Nature, which I shall denote by L∗. The physical meaning of this length is that it marks an absolute
bound on the resolution capability of the most powerful microscope. As we shall see, assuming that our
understanding of large-distance Einsteinian gravity is correct, the absolute lower bound on L∗ is set by
LP. That is, in any consistent theory of gravity that in the far-infrared flows to Einstein’s general theory
of relativity, the minimal length L∗ cannot be below LP, but can be much longer.

Currently, it is well accepted that the physics of known elementary particles at distances of the
order of or larger than the weak length is extremely well described by the Standard Model (SM) of strong
and electroweak interactions, which is based on the gauge group SU(3)C ×SU(2)L×U(1)Y . Moreover,
at distances L > Lexp.gr, there is no evidence for any departure from Einstein’s general relativity (GR).

So, then, why do we need any physics beyond the Standard Model (BSM)? The motivation for
physics beyond the Standard Model is that the Standard Model contains certain mysteries. These mys-
teries can be expressed in the following sets of questions/issues that we shall group in different categories.

(A) Naturalness questions
(1) The origin and hierarchy of the fermion families and of the hierarchy of their masses. The Standard

Model contains three generations of quarks and leptons, with identical gauge quantum numbers,
but very different masses that change (if we count neutrinos) within 11–12 orders of magnitude.
This triplication of families and the origin of their mass hierarchy is a big mystery.

(2) The strong CP-problem [2]. Why does the strong interaction not violate CP maximally? It has
every right to do so because of the existence of the so-called θ term, θTr F̃F , which for some
mysterious reason appears to be very small in our vacuum, θ < 10−9.

(3) The hierarchy problem. We shall pay special attention to this problem in our lecture.
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(B) Cosmological/astrophysical mysteries

The second set of questions appears when we consider the Standard Model in the cosmological and
astrophysical context. These are:

(1) the origin of the dark matter in the Universe;
(2) the origin of the baryon asymmetry; and
(3) the origin of the inflation.

Note that the inflationary paradigm, according to which the Universe underwent a quasi-de Sitter stage
of expansion, makes it impossible to attribute the origin of the baryon asymmetry to some suitable initial
conditions. Within the inflationary framework, baryogenesis requires a dynamical explanation, and the
Standard Model alone cannot provide it.

(C) Unification principle

The third set of questions has to do with the Unification principle. This principle has proven to be
extremely successful in the past and suggests that the Standard Model cannot be a final theory. An
extremely important question in this direction is unification with gravity.

2 The hierarchy problem
The main focus of this lecture is the hierarchy problem and the role of gravity in it. Among all the
questions listed above, the hierarchy problem is the only one that directly motivates the existence of
some new physics at LHC distances. Even the dark matter gives a direct motivation for new physics
around LLHC only when embedded within the context of particular solutions of the hierarchy problem.
Therefore, we shall consider the hierarchy problem in more detail.

The hierarchy problem is sometimes posed as a problem of a very small number, the ratio of
gravitational (Newton) and weak (Fermi) interaction constants,

GN

GF
∼ 10−34. (1)

In the units ~ = 1, the Newton and Fermi constants can be expressed in terms of length scales as
GN = L2

P and GF = L2
W respectively. The problem, however, is not a big or a small number per se, but

its quantum sensitivity to the size of a black box, the cut-off of the low-energy effective field theory. As
we shall explain, in the absence of any new physics, the size of this black box is controlled by gravity.
Thus, gravity plays a central role in posing the problem. Therefore, let us elaborate on the nature of
gravity and its role in the hierarchy problem.

2.1 What is gravity?
Einstein’s gravity is a theory of a dynamical metric, gµν(x), which, depending on a particular situation,
can be represented as a background metric 〈gµν〉 plus a small perturbation, δgµν ,

gµν = 〈gµν〉+ δgµν . (2)

Obviously, gµν is a frame-dependent quantity. In studying the gravitational properties of a given localized
source, it would be useful for us to go into the reference frame in which the centre of mass of the source
is static. That is, we choose a frame in which we are freely falling together with (but not relative to)
the source in a gravitational field created by the rest of the Universe. In this way we shall eliminate the
influence of the external sources.
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In fact, this is how we probe the gravitational attraction of the Earth in our everyday life. We
exclude the influence of the rest of the Universe by freely falling together with the Earth in the Universe’s
gravitational field.

In such a case, the metric created by most of the sources within our Universe is Minkowskian to a
very good approximation, and thus can be presented as

gµν = ηµν + δgµν , (3)

where δgµν � 1. For example, for the gravitational field on the surface of the Earth, we have δg00 ∼
10−8. In such a case, δgµν can be written in terms of a linear perturbation of a canonically normalized
massless spin-2 field, the graviton,

δgµν =
hµν
MP

. (4)

In a semiclassical treatment, hµν describes a massless spin-2 particle with two propagating degrees of
freedom. As said above, for most sources (in the coordinate frame specified above) we can assume that
δgµν � 1, which in the language of the graviton translates as hµν � MP. The exception to this rule
is provided by black holes and objects that are close to becoming black holes (e.g. neutron stars). If
we approach a black hole from infinity, near the horizon we get δgµν ∼ 1 and the linear approximation
breaks down.

Note that the same is true about the entire Universe. For example, we can randomly fix an origin
of the coordinate system and move radially. Then δgµν(r) will be determined by the mass inside the
sphere of radius r. The departure from the Minkowski metric will become of order one for r ∼ LH. This
is not surprising, since the entire mass of the Universe within its Hubble size is almost exactly equal to
the mass of the same (Hubble) size black hole. From this point of view, we can say that the Universe is
the largest black hole we know!

In our treatment, we shall never need to go beyond the horizon, and we shall always stop short
of the place where the linear approximation breaks down. All our conclusions will be derived from the
observations that we can reliably make in the linearized limit. As we shall see, these conclusions will
allow us to go surprisingly far in our understanding of gravity.

The linear theory of gravity can be derived by taking a linearized limit of Einstein’s GR described
by the Einstein–Hilbert action (numerical factors of order one will be ignored),

SEH =

∫
dx4
√−g (L−2P R+ SM Lagrangian). (5)

Before going to linearized theory, let me make some remarks. I have written the theory in terms of LP.
If we restore dependence on ~, the Planck length is defined as

L2
P = ~GN. (6)

From the above expression, it is obvious that the Planck length is intrinsically quantum in its nature. This
is already apparent from the fact that it vanishes in the limit ~→ 0. We shall explore the significance of
the Planck length in great detail below.

Another comment we would like to make is that the Einstein–Hilbert action is unique in the sense
that it is the only action that on any small-curvature (sub-Planckian curvature) classical background
propagates two degrees of freedom of a weakly coupled massless spin-2 particle. For example, the
addition of other invariants (other than possibly boundary terms) results in propagation of additional
degrees of freedom.

The linearized equation for small metric perturbation about the Minkowski space has the form

G(L)µν = LPTµν , (7)
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where Tµν is a conserved energy–momentum tensor that at the linear level we shall treat as an external
source, and G(L)µν is a linearized Einstein tensor, which in terms of a canonically normalized graviton hµν
takes the following form:

G(L)µν = �hµν − ηµν�h− ∂µ∂αhαν − ∂ν∂αhαν + ∂µ∂νh+ ηµν∂
α∂βhαβ. (8)

In fact, equation (7) is also unique. It is a unique ghost-free linear equation describing propagation of
a massless spin-2 field on a Minkowski background. It exhibits a gauge freedom under the shift of a
graviton by a symmetrized derivative of an arbitrary vector, ξµ,

hµν → hµν + ∂µξν + ∂νξµ. (9)

Note that gauge symmetry (or, to be more precise, gauge redundancy) is not imposed, but rather is a con-
sequence of the consistency requirement. Any other form of the kinetic term would result in propagation
of unwanted degrees of freedom, for which it would be impossible to impose a simultaneous positivity
of the energy and the norm.

We now wish to understand how the graviton responds to the sources. That is, we shall introduce
an external source Tµν and find a corresponding hµν . This task is seemingly complicated by the fact that
the differential operator acting on hµν does not look easily invertible. But this technicality can be easily
circumvented by using the gauge redundancy. We shall choose ∂µhµν = 1

2∂νh. Using this gauge and
taking into account the relations obtained by tracing equation (7), we can rewrite it in a nice invertible
form,

�hµν = LP(Tµν − 1
2ηµνT ). (10)

We shall be interested in static sources of mass M , which can be approximated by a spherical uniform
mass distribution of size R,

Tµν = δ0µδ
0
ν

3M

4πR3
θ(R− r).

The graviton field produced by such a source outside of the mass distribution is

δg00 =
h00
MP

=
2MGN

r
. (11)

The quantity in the numerator has the dimension of a length, which we shall denote by rg ≡ 2GNM .
This length scale has a special name, and is called the gravitational (Schwarzschild) radius of the source.
It is an extremely important length scale. In order to understand its physical meaning, let us rewrite (11)
as

δg00 =
h00
MP

=
rg
r
. (12)

This equation indicates that rg sets a distance at which the metric perturbation created by the source
becomes of order one.

Let us imagine now that the source of interest is an elementary particle of mass M or momentum
p. Then the following new quantum length scales enter the problem. These are the well-known Compton
and de Broglie wavelengths of the source of mass M or momentum p,

LC ≡
~
M

or LdB ≡
~
p
. (13)

The physical meaning of LC (LdB) is to set the scale at which the energy of the quantum fluctuations
(E = ~/LC) would become comparable to the energy of the source.

Both lengths, LP and LC, as well as the Planck length, LP, vanish in the limit ~ → 0 when GN

and M are kept fixed. One of the consequences of this fact is that in classical GR (~ = 0) one can have
black holes of arbitrarily small size. In reality, however, ~ and GN are the fixed constant and the only
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parameter we can vary is the mass of the source M . The classicality is then achieved when we increase
M so that rg � LP, LC.

Consider now an elementary particle with rest mass M � MP ≡ ~/LP. For such a source
rg � LP � LC. Approaching this source from infinity, we shall encounter strong quantum effects way
before we can probe its gravitational radius. So although rg can be formally defined and the particle is
point-like, it cannot be called a black hole.

The situation will change if we start increasing the mass of a particle. With increasing mass,
rg increases and the Compton wavelength decreases. The two will cross at LP when the mass of an
elementary particle becomes equal to MP.

Further increase of M will create a situation when rg � LP � LC. The roles of rg and LC have
now been exchanged. Approaching such a source from infinity, we shall encounter a strong classical
gravitational effect (δg00 ∼ 1) way before we have any chance to probe the quantum nature of the
source. To call such a source an elementary particle is a meaningless statement. Instead, it is a classical
black hole.

Another way to give precise meaning to the quantum-to-classical transition described above, with-
out referring to the geometric properties, is through the concept of the occupation number of gravitons
created by the source.

Following Ref. [3], we shall now introduce this concept. Consider again a spherical source of
uniform density and physical radius R well above its gravitational radius R � rg. For such a source,
the approximation of linear gravity is valid everywhere, and the gravitational field produced by it can
be easily found from (10). For example, the Newtonian component of the metric perturbation about the
flat space outside the source is given by (12) and falls off as r2 for r < R. From the quantum field
theory point of view, the above linearized metric represents a superposition of gravitons. The level of
classicality is measured by their occupation number. These gravitons are non-propagating longitudinal
gravitons, but this is unimportant for characterizing the classical properties of the fields. In a certain
sense, we can think of these gravitons as representing a Bose condensate. The only peculiarity of this
condensate is that, as long as R� rg, the condensate cannot self-sustain. In order to exist, it requires an
external source.

The measure of classicality of this field is the occupation number of gravitons in it, N . This
number can be estimated easily as

N =
1

~
Mrg. (14)

The physical meaning of the number N becomes transparent from the following reasoning. The gravita-
tional part of the energy is

Egrav ∼
Mrg
R

. (15)

We should think of this energy as being the sum of the energies of the individual gravitons with wave-
lengths λ and occupation numbers Nλ,

Egrav ∼
∑

λ

Nλ~λ−1. (16)

The reason why the total gravitational energy is extremely well approximated by a simple sum of the
energies of the individual quanta is the following. First, the peak of the distribution is at λ = R.
The contribution from shorter wavelengths is exponentially suppressed and can be ignored. Thus, for
R � LP, the gravitons contributing to the energy are of very long wavelengths and thus are weakly
interacting. Thus, for the purpose of our estimate, the interaction between the gravitons can be ignored.
Note that, forR� rg, not only can the interactions between the individual gravitons be ignored, but also
the interaction between any individual graviton and the entire collective gravitational energy. In other
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words, for R � rg we can ignore gravitational self-sourcing. This is why in this regime the condensate
cannot be self-sustained.

Then we easily obtain the occupation number of gravitons by dividing the total gravitational energy
by the characteristic energy of a single quantum, N ∼ NR ∼ Eg/(~R−1), which gives us (14).

For the future, it is very important to note that, even when R ∼ rg, the interactions among the
individual gravitons continue to be negligible. However, the gravitational energy becomes of the order
of the energy of the source. At this point the self-sourcing by the collective gravitational energy becomes
important and the condensate becomes self-sustained. However, interactions among the individual gravi-
tons are still negligible as long as rg � LP. So the occupation number of gravitons can still be safely
estimated as given by (14).

Since, by default, the physical size of the source cannot become less than rg, the occupation
number of gravitons for an arbitrary source is thus universally given by (14).

The criterion of classicality then is
N � 1. (17)

The above criterion has a clear physical meaning. A given configuration is classical when there are many
gravitons in it. We can rewrite N in the following equivalent forms:

N =
L2
P

L2
C

=
M2

M2
P

=
r2g
L2
P

. (18)

The quantity N diverges for ~→ 0, as it should, since in the classical limit the number of quanta in any
field configuration is infinite.

The fact thatN is a good measure of classicality can be seen from the fact that, for any elementary
particle lighter than MP, it is less than one. For example, for an electron, N = (m2

e/M
2
P) ∼ 10−44!

This is why an electron can never be regarded as a classical gravitating object despite the fact that it does
create a Newtonian gravitational field. The Newtonian gravity produced by a non-relativistic electron
does not contain even a single quantum of graviton.

Alternatively, any source for which N � 1 is classical with a good approximation. Such sources
decouple from the low-energy effective theory and their quantum effects are exponentially suppressed.
The probability of such sources decaying into two (or few) particle states is suppressed by exp(−N).

Summarizing the above findings, we have reached the following conclusions. Quantum elemen-
tary particles exist as long as their Compton wavelength dominates over their gravitational radius – or,
equivalently, as long as at r = LC, the metric perturbation created by the source is much less than one,
δg00(r ∼ LC)� 1. Whenever this is not the case, we are no longer dealing with an elementary particle
but a classical object. The quantum effects of such objects are exponentially suppressed. In Einstein
gravity this crossover happens at M = MP, and thus the Planck scale is an upper bound on the mass of
any elementary particle.

The above makes the hierarchy problem real. Without gravity, one could argue that the problem
is artificial. After all, the weak scale has to be somewhere and just happened to be around 100 GeV. But
with gravity the problem becomes real, since now a universal regulator scale exists in the form of the
Planck mass MP, and one needs to explain why the weak scale is so much below it. Indeed, if the Higgs
mass were not much below MP, nobody would ask the question why it is not even higher. We know that
it cannot be higher, since in such a case Higgs would no longer exist as a quantum particle.

So what keeps the Higgs light? In this lecture we shall focus on one possible approach to the
problem, in which the solution is provided by gravity itself. We will not discuss other approaches, such
as supersymmetry or technicolor [4].
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3 The role of gravity
Our discussion has already prepared the basis for a most straightforward solution of the hierarchy prob-
lem. We have seen that a universal regulator scale is set by a distance at which the particle Compton
wavelength and its gravitational radius cross. In Einstein’s GR this happens at LP. Following Ref. [5],
let us ask, what if the crossover scale is much longer?

Let us denote this new generalized strong gravity scale by L∗. If L∗ were around 10−17 cm, the
hierarchy problem would be nullified. What is the physical meaning for such a large L∗? This means that
for a source of mass∼ TeV, the metric perturbation must become 1032 times stronger than the analogous
perturbation in Einstein gravity. What is the underlying physical mechanism for such enhancement? It
is very simple. The only way to achieve this is to make gravity 1032 times stronger (more attractive) at
distances L∗ than what it is in Einstein. Field-theoretically this translates as gravitational force being
mediated by more messengers. That is, the metric fluctuation should propagate additional spin-2 degrees
of freedom. In order not to mess up the predictions of GR at large distances, these new degrees of freedom
must be massive, but with Compton wavelengths larger than or of the order of L∗. The upper bound on
their Compton wavelengths is phenomenological and comes from non-observation of any deviation from
Newtonian gravity in table-top measurements that have been conducted down to 0.2 mm [1].

The most general expansion of the linearized metric perturbation in terms of new degrees of free-
dom has the form

δgµν =
1

MP

∑

m

g(2)m h(m)
µν +

1

MP

∑

m

g(0)m ηµνφ
(m), (19)

where h(0)µν and φ(m) stand for spin-2 and spin-0 degrees of freedom, respectively. The g(2)m and g(0)m

parametrize the strength of their coupling relative to a zero-mode Einsteinian graviton, for which we
have g(2)0 = 1. Note that, since we couple metric perturbation only to the conserved energy–momentum
tensor, the potential contribution from the derivatively coupled scalars of the form ∂µ∂νφ

(m), as well as
contributions from spin-1 states, vanish.

At the linear level a ghost-free equation of motion satisfied by a massive spin-2 field is unique,
and is given by the Pauli–Fierz form [6]

G(L)µν −m2(h(m)
µν − ηµνh(m)) =

g
(2)
m

MP
Tµν , (20)

where the first term is the same as in massless theory and is given by (8).

This equation (20) shows that hµν propagates five degrees of freedom. Let us see how this counting
goes. First, let us note that the presence of the mass term promotes h(m)

µν into a gauge-observable. In other
words, in terms of this quantity, there is no longer a gauge redundancy of the form (9). For this reason,
sometimes it is said that the mass term breaks the gauge symmetry explicitly. This is, however, the
wrong terminology, because the original redundancy (9), existing at the massless level, is still there and
is realized at the level of the components of the massive field h(m)

µν , which contains three extra degrees
of freedom in comparison with the massless one, hµν . We shall uncover this redundancy in a moment.
Let us come back to the counting of the degrees of freedom. Since h(m)

µν is a gauge-invariant symmetric
tensor, the maximal number of components is 10. We wish to find out how many of these correspond
to the independent propagating degrees of freedom. In order to see this, let us note that by taking the
divergence of the equation (20) and by taking into the account the conservation of the source, we arrive
at the following constraint:

∂µh(m)
µν = ∂νh

(m). (21)

This eliminates four out of the 10 potential degrees of freedom. Next, by taking the trace of the equation
(20) and by taking into account the constraint (21), we arrive at the following equation:

h(m) =
1

3m2

g
(2)
m

MP
T. (22)
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This equation shows that the trace is fully determined by the source. This eliminates one more potential
independent degree of freedom, and we are left with five. A further reduction in the number of degrees of
freedom is impossible. It is useful to group these five degrees of freedom into irreducible representations
of the Poincaré group corresponding to the massless case. This decomposition has the form

h(m)
µν = hµν + ∂µAν + ∂νAµ +

1

6
ηµνχ+

1

3

∂µ∂ν
m2

χ, (23)

where hµν ,Aµ and χ stand for the tensor, vector and scalar helicities, respectively. The physical meaning
of these representations is that they diagonalize the kinetic terms, and only mix through the mass term.
Thus, in the m → 0 limit they would disintegrate into the independent representations of the Poincaré
group, corresponding to massless spin-2, spin-1 and spin-0 particles, respectively.

The form (23) makes it obvious that the original gauge redundancy of the massless spin-2 case (9)
is maintained fully intact. This is because the gauge shift of hµν is compensated by the vector component

hµν → hµν + ∂µξν + ∂νξµ, Aµ → Aµ − ξµ. (24)

We now wish to invert the equation (20) in order to find out what field is caused by a given source.
This is easy to do. By using the constraint (21) and expressing the trace through the source via Eq. (22),
we can easily invert the equation in the following way:

h(m)
µν =

g
(2)
m

MP

1

�−m2

[
Tµν −

1

3

(
ηµν −

∂µ∂ν
m2

)
T

]
. (25)

Note that the physical effect of this contribution to the metric perturbation is measured by convoluting it
with a probe conserved source tµν , ∫

d4x tµνh(m)
µν . (26)

As a result, the derivative terms in (25) will vanish. So, we shall ignore them.

Consider a localized static source Tµν = δ0µδ
0
νMδ(r) with Schwarzschild radius rg. For such a

source, the equation (25) can be easily solved. In particular, for the Newtonian component h(m)
00 we get

h
(m)
00 =

4

3

g
(2)
m

MP

M

r
e−mr. (27)

Substituting this expression into (19) we get for the total metric perturbation the expression

δg00 =
rg
r

∑

m

ρm e−mr, (28)

where rg = 2GNM is the usual Einsteinian gravitational radius, and ρm parametrizes the relative
strengths of massive spin-2 states with respect to the massless graviton. That is, ρm ≡ 4

3(g
(2)
m )2, whereas

ρ0 = 1.

In our parametrization the criterion of gravity becoming strong at the scale L∗ is that a source
of the Compton wavelength L∗ creates an order-one metric perturbation at distance r ∼ L∗. That is,
δg00(r = l∗) = 1.

Since each gravitational degree of freedom of mass m contributes only at distances r < 1/m, at
any distance r we are allowed to take into account only modes that are not heavier than 1/r. Thus we
can truncate the sum at m = 1/r. At the same time we can approximate the exponential factors for all
the light modes by one. The sum then simplifies to

δg00(r) =
rg
r

m=1/r∑

m=0

ρm. (29)
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Now the criterion of making gravity strong at L∗ reads

δg00(r = L∗) =
L2
P

L2∗

m=1/L∗∑

m=0

ρm = 1. (30)

Our task is now very simple. If we want to solve the hierarchy problem by making gravity strong
at TeV energies, or equivalently at L∗ ∼ 10−17 cm distances, the new spin-2 degrees of freedom must
satisfy

m=1/L∗∑

m=0

ρm ∼ 1032. (31)

The physical meaning of the above equation is very simple. If we want to increase the fundamental
length from LP ∼ 10−33 cm all the way to L∗ ∼ 10−17 cm, then at distance L∗ we have to make gravity
1032 times stronger. The cumulative strength of all the new degrees of freedom at this scale must be 1032.
This can be achieved in different ways. We introduce either many weakly coupled states or alternatively
a few strongly coupled ones.

If we postulate that all the new degrees of freedom have the same strength of couplings as the zero-
mode graviton, ρm = 1, then we are left with a single parameter, the number of new graviton species,
Nspecies, which is fixed at

Nspecies = L2
P/L

2
∗. (32)

For L∗ ∼ 10−17 cm, this gives Nspecies ∼ 1032.

3.1 Origin of species
We shall now discuss how the gravitational species can originate from extra dimensions. For simplicity,
we shall discuss the story with one extra dimension. Let xµ be our four space-time coordinates, whereas
y is an extra (fifth) space dimension. We shall denote the five-dimensional space-time index by capital
latin letters, A, B, . . . . Let us consider two observers in this five-dimensional space. One of them,
Alice, is a five-dimensional observer, whereas the other observer, Bob, is a four-dimensional one. For
definiteness, let us assume that Bob is localized at y = 0 slice (brane). At the moment let us assume that
the five-dimensional space is flat and non-compact.

Let us consider a five-dimensional massless particle, as seen by the two observers. This particle
satisfies a five-dimensional massless dispersion relation,

pAp
A = pµp

µ − p2y = 0, (33)

where pµ and py are four-dimensional and extra dimensional projections of the momentum, respectively.
Both Alice and Bob observe the same physical picture, but they describe it in two different languages.

From the point of view of Alice, she deals with a single massless particle that can assume different
momenta. Since space is non-compact, the momenta are not quantized.

From the point of view of Bob, who can only measure the four-dimensional projection of the mo-
mentum, the same object represents a continuum of particles with different masses. From his perspective,
the fifth momentum is just a constant entering the dispersion relation in the same way that mass would
enter. Thus, Bob thinks that he sees a continuum of particles with masses m2 = p2y.

Let us assume now that the particle in question is a five-dimensional massless graviton hAB, which
satisfies a five-dimensional linearized Einstein’s equation,

G(L)AB = L
3/2
5 TAB, (34)
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where L5 is a five-dimensional Planck length, TAB is a conserved energy–momentum tensor, and G(L)AB

is a linearized Einstein tensor, which, in terms of a canonically normalized graviton hAB, takes the
following form:

G(L)AB = �hAB − ηAB�h− ∂A∂ChCB − ∂B∂ChCA + ∂A∂Bh+ ηAB∂
C∂DhCD. (35)

The above equation exhibits a five-dimensional gauge freedom,

hAB → hAB + ∂AξB + ∂BξA, (36)

where ξA is an arbitrary five-dimensional vector.

Just as in the case of an above-considered generic particle, from the point of view of Alice, there is
a single five-dimensionally massless graviton propagating in a five-dimensional Minkowski space. The
same graviton is seen by Bob as a continuum of four-dimensional massive gravitons. This can be easily
seen by a standard dimensional reduction. For this we can rewrite our theory by introducing the anzatz

hµν(x, y) =

∫
dmbm(y)h̃

(m)
µν , (37)

hµ5(x, y) =

∫
dmbm(y)

′A(m)
µ , (38)

h55(x, y) =

∫
dmbm(y)

′′φ(m), (39)

where the prime stands for a y derivative and bm(y) represent a complete set of harmonic functions
satisfying b′′m = −m2bm. Thus, the expressions (37)–(39) represent a Fourier expansion of the graviton
components in plane waves with respect to the fifth coordinate. Introducing the notation

h(m)
µν = h̃(m)

µν + ∂µ(A
(m)
ν + ∂νφ

(m)/2) + ∂ν(A
(m)
µ + ∂µφ

(m)/2), (40)

it is easy to see that each h(m)
µν satisfies the four-dimensional equation (20). We thus end up with a

continuum of massive gravitons, a so-called Kaluza–Klein (KK) tower.

The norm of each KK graviton is given by the integral
∫ +∞
−∞ dy |bm(y)|2 and, correspondingly,

the coupling to a four-dimensional energy–momentum source TAB = δ(y)δµAδ
ν
BTµν , localized, say, at

y = 0, is given by

gm =
|bm(0)|√∫ +∞

−∞
dy |bm(y)|2

. (41)

Of course, in the non-compact limit the norm is divergent and consequently the coupling constant
of each individual member of the continuum is infinitely small.

Let us now compactify the fifth coordinate on a circle of radius R. The effect of this compactifi-
cation is that now the py momentum is quantized in units of 1/R, and correspondingly the continuum of
the massive KK tower becomes discrete. The norm becomes finite,

∫ 2πR
0 dy |bm(y)|2 = 2πR, and each

member now couples with the strength L3/2
5 /
√
2πR. Translating this in terms of the four-dimensional

Planck length, we get the relation
L2
P = L3

5/(2πR). (42)

Noting that the number of KK species with Compton wavelengths below L5 is Nspecies = (R/L5), we
see that (42) exactly reproduces (32).
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Our analysis can be straightforwardly generalized to more than one extra dimension. For d ex-
tra dimensions, the geometric relation between the four-dimensional and fundamental Planck lengths
reads [5]

L2
P = L2

∗(2πRL
−1
∗ )d. (43)

However, in terms of the number of species, the relation is universal and is given by (32).

We can now apply the above findings to the solution of the hierarchy problem. As said above,
having L∗ ∼ 10−17 cm requires Nspecies ∼ 1032. Expressed in geometric terms, this translates as the
radius of extra dimensions being

R ∼ 10(32/d)−17 cm. (44)

This rules out the possibility of a single flat extra dimension, since in this case the radius has to be of
Solar System size, in obvious contradiction with observations. However, d = 2 or higher is within the
current limits of gravity measurements [1].

We see that extra dimensions provide a tower of new gravitational degrees of freedom, with the
coefficients ρm in (30) being set by the values of the KK wave functions ρm = |bm(0)|2 evaluated at the
position of the source in the y coordinate. For the flat extra dimensions [5] the KK modes are just plane
waves and ρm = 1.

The situation can be different if extra dimensions are warped [7] or if the graviton wave function
is strongly distorted due to the interactions with the branes [8]. In such a case bm(y) no longer satisfy a
simple wave equation, but a more complicated equation in an effective y-dependent background poten-
tial. The form of the potential depends on the precise geometry of the extra space. So, in such a case ρm
can be a strongly non-uniform function of m.

In particular, if warping is strong (as in Ref. [7]), already the first few KK excitations can become
coupled 1032 times stronger than the Einstein’s zero-mode graviton. In any case, the effective four-
dimensional picture reduces down to the equation (30). So the defining property of any extra dimensional
model from the point of view of a four-dimensional observer is the m dependence of parameter ρm. By
changing this dependence, one can scan the entire landscape of extra dimensional models. Such scanning
is beyond the scope of the present lecture.

4 Summary
The purpose of this lecture was to discuss the hierarchy problem, as the main motivation for BSM physics
around TeV energies, and to stress the role of gravity in defining the problem, as well as in its potential
solution. This role originates from the fact that gravity provides a universal regulator scale, the Planck
length (or the Planck mass), which marks the boundary between the quantum elementary particles and
the (semi)classical black holes. A straightforward solution offered by gravity then is to postulate that the
fundamental length is around 10−17 cm. We have discussed in a model-independent way what it takes
to have such an increase of the fundamental length and have shown that this requires the introduction
of new graviton species. Their number and the coupling strengths are model-dependent, but the relation
(31) that they must satisfy is universal. We have discussed how such new graviton species originate
from extra dimensions. A universal model-independent prediction of the above class of theories is a
production of new graviton species [9, 10] and production of micro-black holes at LHC [5, 11]. The
latter signature follows from the fact that the fundamental length marks the crossover to the black hole
regime. Any attempt at probing shorter distances results in black hole formation. However, the transition
is gradual and the lightest black holes are simply quantum resonances, not much different from ordinary
particles. Their precise properties can only be predicted qualitatively, and one needs more experimental
input to understand their characteristics at a more quantitative level.
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