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Abstract
The nuclear matrix elements for two-neutrino double-beta (2νββ ) and zero-
neutrino double-beta (0νββ ) decay of 76Ge are evaluated in terms of the con-
figuration interaction (CI), quasiparticle random phase approximation (QRPA)
and interacting boson model (IBM) methods. We show that the decom-
position of the matrix elements in terms of interemediate states in 74Ge is
dominated by ground state of this nucleus. We consider corrections to the
CI results that arise from configurations admixtures involving orbitals out-
side of the CI configuration space by using results from QRPA, many-body-
perturbation theory, and the connections to related observables. The CI two-
neutrino matrix element is reduced due to the inclusion of spin-orbit part-
ners, and to many-body correlations connected with Gamow-Teller beta de-
cay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced
due to particle-particle correlations that are connected with the odd-even os-
cillations in the nuclear masses. The CI zero-neutrino matrix element for the
light neutrino contains both types of correlations that approximately cancel
each other.

Many properties of the active neutrinos are measured, but it is not yet established whether they
are Dirac or Majorana type particles and their absolute masses are not known. Left-right symmetric
extensions to the standard model provide an explanation for the non-zero masses of the left-handed
light neutrinos and also predict the existence of right-handed heavy neutrinos [1]. Neutrinoless double-
beta (0νββ ) decay of nuclei provides unique information and constraints on these neutrino properties
[2], [3], [4], [5], [6]. The ββ decay process and the associated nuclear matrix elements (NME) have
been investigated by using several approaches including the quasiparticle random phase approxima-
tion (QRPA), [7], [8] the configuration interaction (CI) model, the interacting boson model (IBM), the
generator coordinate method [9], and the projected Hartree-Fock Bogoliubov model [10].

Assuming contributions from the light left-handed (ν) neutrino-exchange mechanism and the
heavy right-handed (N) neutrino-exchange mechanism, the decay rate of a neutrinoless double-beta
decay process can be written as [4], [11][

T 0ν

1/2

]−1
= G0ν

(∣∣M0ν
∣∣2 |ην |2 +

∣∣M0N
∣∣2 |ηN |2

)
, (1)

where G0ν is the phase space factor [12], [13], M are the nuclear matrix elements (NME), and η are
combinations of the neutrino masses [11], [4].

Since the experimental decay rate is proportional to the square of the calculated nuclear matrix
elements, it is important to calculate these matrix elements with good accuracy to be able to determine
the absolute scale of neutrino masses. However, the theoretical methods used give results that differ
from one another by factors of up to 2-3. It is important to understand the nuclear structure aspects of
these matrix elements and why the models give differing results.
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Fig. 1: The ββ decay of 76Ge. The top part shows the conversion of two neutrons (blue on the left) into two
protons (red on the right) in 2νββ decay. The bottom part shows the 0νββ decay where a virtual neutrino is
exchanged.

In this talk we discuss the NME for the ββ decay of 76Ge obtained with the CI, QRPA and
IBM-2 methods. We will show that all of these methods have deficiencies. Some of the deficiencies
can be addressed with many-body perturbation theory (MBPT) approaches, and connections to other
observables.

The nuclear matrix elements can be presented as a sum of Gamow-Teller (MGT ), Fermi (MF ),
and Tensor (MT ) matrix elements (see, for example, Refs. [14], [15]),

M = MGT −
(

gV

gA

)2

MF +MT , (2)

where gV and gA are the vector and axial constants, correspondingly. We use gV = 1 and gA = 1.27. The
Mα are matrix elements of scalar two-body potentials. The Gamow-Teller has the form VGT (r,A,µ) σ1 ·
σ2 τ

−
1 τ
−
2 and the Fermi has the form VF(r,A,µ) τ

−
1 τ
−
2 , where τ− are the isospin lowering operators.

The neutrino potentials depend on the relative distance between the two decaying nucleons, r, the mass
number A, and the closure energy µ [16]. The radial forms are given explicitly in [14]. For the heavy-
neutrino exchange, the potential does not depend on µ . For the light neutrino matrix element the closure
approximation is good to within 10% [17].

The operators for MGT are given to a good approximation by f (r) σ1 ·σ2 τ
−
1 τ
−
2 , where f (r)2ν = 1

(in closure), f (r)0ν = a/r and f (r)0N = bδ (r) where the constants a and b depend on A, µ and the SRC.
The results discussed below follow from the expansions of the many-body matrix elements for these
three operators in terms of the particle-hole (ph) in 76As or particle-particle (pp) intermediate states in
74Ge [18]. The expansion over pp states (Jm = Jpp) in 74Ge is shown in Fig. 1. The left-hand column
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Fig. 2: Nuclei involved in the calculations for the double-beta decay of 76Ge.

shows the light-neutrino results (ν) for the sum of the GT, F and T contributions. The middle column
shows the light-neutrino results for GT contribution only. The right-hand column shows the heavy-
neutrino results (N) for the sum of the GT, F and T contribution. The bottom row shows the running
sums for 0+ intermediate states. The middle row shows the running sums for 0+ and 2+ intermediate
states. The top row shows the running sums for all intermediate states. The red dots are the exact
results for the sum over all intermediate states. This shows that the Jpp=0+ contribution is completely
dominated by a path through the ground state of 74Ge. There is some cancellation from higher Jpp
values mainly coming from 2+ that is spread over intermediate states up to about 6 MeV.

The expansion of the NME over intermediate J values obtained from the QRPA calculations is
shown in Fig. 2. This figure shows the different types of correlations for the three operators. The
2ν decay is completely determined by the 1+ states of the ph channel and its expansion over pp is
complicated. The heavy neutrino is dominated by the 0+ states of the pp channel and its expansion
over ph states is complicated. The light neutrino NME is some where between these and but looks
simplest in the pp channel.

The 2ν tensor NME is zero and the Fermi NME is zero since isospin is conserved. For 0ν and
0N the Fermi and tensor parts are both relatively small, and we define a correction factor for these given
by RGT = M/MGT , where M contains all three terms of Eq. 2. The CI calculations give R0ν

GT = 1.10(3).
Larger values of 1.23 for QRPA [19] and 1.33 for IBM-2 [20] were obtained with the older calculations.
But more recently, it was found that the 2ν Fermi matrix element was not zero because isospin was
being treated incorrectly in QRPA [21] and IBM-2 [22]. After this was corrected the new M2ν

F values
are now zero in all methods. The new results for R0ν

GT are 1.10 [21] and 1.19 [8] for QRPA, and 1.04
[22] for IBM-2. Taking these results into account we adopt a correction factor from the tensor plus
Fermi contributions of R0ν

GT = 1.12(7). The ratio for the heavy neutrino is 1.20 for CI, 1.26 for QRPA
[8] and 1.00 for IBM-2 [22]. The adopted correction factor is R0N

GT = 1.13(13).
In the following we first focus on results for MGT . At the end, the total matrix element M will be

obtained from MGT via a product of correction factors R given by M = [MGT (CI)][RV ][RS][RGT ]. RGT
is defined above. We start with the use of short-range correlations (SRC) [15] based on the CD-Bonn
potential [23]. At the end we will give a value and error for the correction to this, RS, based on a range
of assumptions about the SRC. RV represents the correction coming from a “vertical" expansion of the
CI model space that includes the effect of orbitals below and above those in j j44. RV is the main focus
of attention of this talk. The orbitals, model spaces and expansion methods are shown in Fig. 3.

The model space for CI and IBM-2 is j j44 that consists of the four valence orbitals 0 f5/2, 1p3/2,
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Fig. 3: Expanion of the NME over intermediate states 74Ge.

1p1/2 and 0g9/2 for protons and neutrons. The model space for QRPA are the 21 orbitals with oscillator
quanta N ≤ 5 where N = 2n+ ` for protons and neutrons. The QRPA results are also given when the
evaluation of the NME are restricted to j j44 and to f pg ( j j44 plus 0 f7/2 and 0g7/2). In addition to our
own CI calculations with the JUN45 [24] and jj4bpn [25] Hamiltonians, we will show results from the
gcn28:50 Hamiltonian [26] for 2ν [27], 0ν [28] and 0N [29].

The method and parameters used for the QRPA calculations [30] are similar to those used in
[21]. For the particle-particle channel in order to restore the isospin symmetry, we follow the formalism
introduced in [31], [21], by separately fitting the T = 0 and T = 1 parts of the interaction. For the T = 1
part, gT=1

pp = 0.985 is taken to give M2ν
F = 0. For the T = 0 particle-particle channel, two parameter sets

were used: (a) gT=0
pp = 0.673 reproduces the experimental value for M2ν

GT , and (b) gT=0
pp = 0.643 gives a

value for M2ν
GT that is a factor of (1/0.75)2 larger than experiment, anticipating that there may be MBPT

corrections beyond QRPA that could reduce the strength to low-lying states.
Results for the 2νββ NME are shown in Fig. 4. This NME is completely determined by Jπ

ph = 1+

intermediate states in 76As. In CI the summation over intermediate including the energy denominator
(Eq. 2 in [27]) is obtained with the strength-function method [32]. The IBM-2 result is not shown
because it uses an approximation for the NME based on the closure result for the operator σ1 ·σ2 τ

−
1 τ
−
2

together with average closure energies from other methods (Eq. 16 in Ref. [22]). Experiment is reduced
by a factor of about R2ν

V = 0.45 compared to CI. R2ν
V = M2ν/M2ν(CI) denotes the correction beyond

the j j44 model space, due to a “vertical" expansion that includes correlations from orbitals below and
above the j j44 model space. The QRPA results for j j44 and p f g show that part of this reduction
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Fig. 4: The NME obtained in the QRPA calculations expressed in terms of their contributions from the Jph states
in 76As on the left-hand side and the Jpp states in 74Ge on the right-hand side. The color code is blue for the
results obtained in j j44, black for the results obtained in f pg and red for the results obtained in the 21-orbit
model spaces.

is due to the missing spin-orbit partners in the j j44 model space. The particle-hole correlations are
dominated by a strong repulsive interaction in the 1+ channel. Relative to the non-interacting single-
particle distribution, Gamow-Teller strength is reduced in low-lying states and shifted into the giant
Gamow-Teller resonance. As shown by the QRPA results for j j44 and f pg, both spin-orbit partners are
important for the reduction. A similar behavior was observed for CI in the case of 136Xe [33].

Beyond QRPA, it is known that two-particle two-hole (2p-2h) admixtures into the model space
wavefunctions are important for Gamow-Teller beta decay. The experimental Gamow-Teller strength
is observed to be reduced by a factor of R′V = 0.5− 0.6 relative to the CI calculations in the sd [35]
and p f [36] model spaces. Also the strength extracted from charge-exchange reactions for the total
Gamow-Teller strength up to about 25 MeV in excitation energy is reduced by this factor relative to
QRPA [37] and the 3(N−Z) Ikeda sum rule [38]. Arima et al. [39] and Towner [40] have explained
this reduction using MBPT in terms of 2p-2h admixtures into the model-space wavefunctions. Earlier
calculations claimed that the reduction in GT strength was due to ∆ excitations [41] in the nucleus.
However, calculations with a realistic N∆π interaction vertex have shown that the influence of ∆ (and
other mesonic-exchange currents) is small [39], [40]. These results are compared to the empirical sd
results in Fig. 13 of [35]. In order to conserve the Ikeda sum rule, the reduction in low-lying B(GT)
strength is associated with a spreading of strength to high excitation energy [42] that gets removed from
the 2ν NME due to the energy denominator in the summation over intermediate states. In summary,
relative to CI in the j j44 model space, reductions due to a spin-orbit complete model space, together
with 2p-2h admixtures are required for the 2νββ NME. The observed factor of RV = 0.45 is consistent
with expectations.

The results for 0N (heavy neutrino) are shown in Fig. 5. In addition to our own QRPA results,
we show the QRPA result from [8]. The Jpp intermediate states are dominated by the 0+ ground state
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vertical expansion

particle-hole configurations for all orbitals

1) QRPA in 

a)   jj44  =        (0f5/2, 1p3/2, 1p1/2, 0g9/2 )  
b)   fpg = 0f7/2, (0f5/2, 1p3/2, 1p1/2, 0g9/2) 0g7/2 
c)   21 orbits (as on the left)

2) Many-body perturbation theory
(MBPT) to include 2 particle-2 hole (2p-2h)
excitations to high excitation.

 particle admixtures and mesonic
exchange currents (MEC)

Fig. 5: The j j44 model space used for the IBM and CI calculations and the vertical explansion terms considered
in QRPA and MBPT for the factor RV .

of 74Ge (see Ref. [18] for details on the analysis). In QRPA the NME increases by a factor of R0N
V = 1.9

as the number of orbitals included in the sums increases from j j44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians and the resulting increase in the number
of coherent pairs contributing to the 0N NME. The pairing also gives rise to the odd-even staggering
of the nuclear binding energies quantified by the pairing energies D [43], [44]. For the germanium
isotopes the experimental pairing energies are a factor of 1.45 larger than that obtained with the first-
order expectation value of the CD-Bonn Hamiltonian. Based on the average of this result and the
increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 6. The largest term in the 0ν NME is

from the Jπ
pp = 0+ ground state of 74Ge [18]. In QRPA the NME is nearly constant as the number of

orbitals included in the sums increase. Qualitatively this is due to a competition between the reduction
from the particle-hole channel observed for 2ν and the enhancement due to the particle-particle channel
observed for 0N. The connection of the 0ν matrix elements with pairing has been previously discussed
[45]. The new point of our analysis is that the increase expected from pairing coming from MBPT
beyond the j j44 model space is cancelled by the reduction from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the NME from Jpp = 0+. Within j j44 the
reduction is dominated by the Jpp = 2+ states [18]. For the 0ν NME within j j44, one finds R0ν

pp =

{M0ν
GT/[M

0ν
GT (Jpp = 0+)]} = 0.53 for CI [18], 0.90 for IBM-2 [20] and 0.72 for QRPA. The reason for

these differences may be due to the truncation within j j44 made by IBM-2 and QRPA. For the 0N
NME this ratio is R0N

pp = 0.89 in CI [18]; the cancellation from higher Jpp is much less, and the result
is dominated by the Jpp = 0+ contribution and its connection to pairing is discussed above. In the j j44
model space the agreement between the 0N NME (Fig. 5) for CI, QRPA and IBM-2 is much better than
that for 0ν (Fig. 6) since the cancellation from higher Jpp terms is small.

Holt and Engel [46] considered the effect of 2p-2h admixtures beyond the j j44 model space
by treating the effective transition operator in MBPT. They found a 20% increase of the 0ν NME for
76Ge. Part of these MBPT contributions go beyond QRPA. At present this is the best estimate for the
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Fig. 6: Nuclear matrix elements for 2νββ decay of 76Ge. The top point in green is the experimental value [34].
The QRPA results are shown for gT=0

pp = 0.673 (red dots) and gT=0
pp = 0.643 (red crosses). The CI results are

shown for the JUN45 (dot), jj44bpn (cross) and gcn28:50 (triangle) Hamiltonians.

Fig. 7: The 0N NME for heavy neutrino decay of
76Ge. See caption to Fig. 4. The QRPA point with
the triangle is from Ref. [8].

Fig. 8: The 0ν NME for the light-neutrino decay
of 76Ge. See captions to Figs. 2 and 3.

correction beyond CI in the j j44 model space. We will use R0ν
V = 1.2(2) with a generously large value

of 20% for its uncertainty.
The results shown above are based on the CD-Bonn SRC. This is the weakest of several SRC

that have been used [15]. The strongest is the AV18 SRC, and the UCOM [47] SRC is about half way
between. For our final result we use the average of CD-Bonn and AV18 with an error that encompasses
both. The result is that the 0N NME are multiplied by R0N

S = 0.80(20) and the 0ν NME are multiplied
by R0ν

S = 0.97(3), where RS is the SRC correction relative to the CD-Bonn starting point.
Finally, we combine all of the factors discussed above in the form M = [MGT (CI)][RV ][RS][RGT ].

Based on the experimental value [34] for 2ν the NME is,

M2ν = 0.140(5) = [0.31(3)][0.45][1][1]. (3)

The second term is the empirical correction for RV due to mixing beyond the j j44 model space. The
error in the CI NME reflects the spread obtained with the three different Hamiltonians used (Fig. 4).
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For 0N,
M0N = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80), (4)

where the CI value is from Fig. 5. The error for 0N is dominated by the SRC correction. Finally For
0ν ,

M0ν = [3.0(3)][1.2(2)][0.97(3)][1.12(7)] = 3.9(8), (5)

where the CI value is from Fig. 6. The error for 0ν is dominated by an estimated uncertainty of
20% in the correction beyond j j44. Comparison to previous values must take into account the isospin
correction for QRPA and IBM discussed above, and the choice of SRC (in our RS factor). The range is
from 2.8 for CI [28] to 4.7 for IBM-2 [22] and 5.3 for QRPA [8]. Our result is in between these, but it
is not an average since we have made comments on the deficiencies of all of these models. Using Eq.
1 with the experimental limit of the half-life (T 0ν

1/2 > 3×1025 yr [48]), and the phase space factor from
[12], we obtain | ην | mec2 < 0.3 eV.

Sometimes the 2ν correction factor (0.45 in this case) is expressed in terms of an effective gA
value (g′A = 0.85 in this case). Since the factor (gA)

4 appears inside the phase-space factor of Eq. 1,
one might think that the decay rate for 0ν and 0N could be reduced by a factor of (g′A/1.27)4 = 0.20
[22], [49]. However, this g′A is only for a specific operator associated with a specific observable (2νββ

decay) relative to a specific model (CI in j j44 in this case). The operators involved in 0ν and 0N beta
decay are different (short ranged), and corrections beyond CI cannot be expressed in terms of an overall
change in gA. It is better to express the renormalizations in terms of factors such as RV that are operator
and model space dependent.

The model-space truncation contributions to Rpp should be understood. The error for the RGT
correction could be reduced if reasons for the variations within the models is understood. The error for
the RV correction could be reduced if the MBPT results such as those in [46] should be expanded to
include the renormalization of the separate effects in the ph and pp channels in order to compare to the
results found previously relative to the j j44 model space. This includes the reduction in Gamow-Teller
beta decay strength [39], [40], and the enhancements of the pairing strength seen in the D values. The
basic division between CI and its MBPT corrections from all other orbitals can be checked by no-core
and ab-initio CI in lighter nuclei where they are tractable. Other methods such as in-medium SRG [50]
and coupled cluster [51] can be used in place of MBPT, and at this level the division between short-
range renormalization, RS, and long-range renormalization, RV , might be merged. The CI results for
the A = 76 region can be further checked against spectroscopic observables (occupations number are in
good agreement with CI [28]) including two-nucleon transfer. Future calculations should be presented
in terms of changes relative to various contributions we have discussed, and evaluations for other cases
of interest [52] should be made.
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