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Abstract

This paper presents a new method of reconstructing the individual charged and neutral had-
rons in tau decays with the ATLAS detector. The reconstructed hadrons are used to classify
the decay mode and to calculate the visible four-momentum of reconstructed tau candidates,
significantly improving the resolution with respect to the calibration in the existing tau re-
construction. The performance of the reconstruction algorithm is optimised and evaluated
using simulation and validated using samples of Z → ττ and Z(→ µµ)+jets events selected
from proton–proton collisions at a centre-of-mass energy

√
s = 8 TeV, corresponding to an

integrated luminosity of 5 fb−1.
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1 Introduction

Final states with hadronically decaying tau leptons play an important part in the physics programme of
the ATLAS experiment [1]. Examples from Run 1 (2009–2013) of the Large Hadron Collider (LHC) [2]
are measurements of Standard Model processes [3–7], Higgs boson searches [8], including models with
extended Higgs sectors [9–11], and searches for new physics phenomena, such as supersymmetry [12–
14], new heavy gauge bosons [15] and leptoquarks [16]. These analyses depended on robust tau recon-
struction and excellent particle identification algorithms that provided suppression of backgrounds from
jets, electrons and muons [17].

With the discovery of a Higgs boson [18, 19] and evidence for the Higgs-boson Yukawa coupling to tau
leptons [8, 20], a key future measurement will be that of the CP mixture of the Higgs boson via spin
effects in H → ττ decays [21–23]. This measurement relies on high-purity selection of the τ− → π−ν,
τ− → π−π0ν and τ− → π−π+π−ν decays, as well as the reconstruction of the individual charged and
neutral pion four-momenta. The tau reconstruction used in ATLAS throughout Run 1 (here denoted as
“Baseline”), however, only differentiates tau decay modes by the number of charged hadrons and does
not provide access to reconstructed neutral pions.

This paper presents a new method (called “Tau Particle Flow”) of reconstructing the individual charged
and neutral hadrons in tau decays with the ATLAS detector. Charged hadrons are reconstructed from
their tracks in the tracking system. Neutral pions are reconstructed from their energy deposits in the
calorimeter. The reconstructed hadrons, which make up the visible part of the tau decay (τhad−vis), are used
to classify the decay mode and to calculate the four-momentum of reconstructed τhad−vis candidates. The
superior four-momentum resolution from the tracking system compared to the calorimeter, for charged
hadrons with transverse momentum (pT) less than ∼100 GeV, leads to a significant improvement in the
tau energy and directional resolution. This improvement, coupled with the ability to better identify the
hadronic tau decay modes, could lead to better resolution of the ditau mass reconstruction [24]. The
performance of the Tau Particle Flow is validated using samples of real hadronic tau decays and jets in
Z+jets events selected from data. The samples correspond to 5 fb−1 of data collected during proton–proton
collisions at a centre-of-mass energy of

√
s = 8 TeV, which was the amount of data reprocessed using Tau

Particle Flow. While similar concepts for the reconstruction of hadronic tau decays have been employed
at other experiments [25–31], the Tau Particle Flow is specifically designed to exploit the features of the
ATLAS detector and to perform well in the environment of the LHC.

The paper is structured as follows. The ATLAS detector, event samples, and the reconstruction of physics
objects used to select τhad−vis candidates from the 8 TeV data are described in Section 2. The properties
of τhad−vis decays and the Tau Particle Flow method are described in Section 3, including its concepts
(Section 3.1), neutral pion reconstruction (Section 3.2), reconstruction of individual photon energy de-
posits (Section 3.3), decay mode classification (Section 3.4) and τhad−vis four-momentum reconstruction
(Section 3.5). Conclusions are presented in Section 4.
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2 ATLAS detector and event samples

2.1 The ATLAS detector

The ATLAS detector [1] consists of an inner tracking system surrounded by a superconducting solenoid,
electromagnetic (EM) and hadronic (HAD) calorimeters, and a muon spectrometer. The inner detector
is immersed in a 2 T axial magnetic field, and consists of pixel and silicon microstrip detectors inside
a transition radiation tracker, which together provide charged-particle tracking in the region |η| < 2.5.1

The EM calorimeter is based on lead and liquid argon as absorber and active material, respectively. In the
central rapidity region, the EM calorimeter is divided radially into three layers: the innermost layer (EM1)
is finely segmented in η for optimal γ/π0 separation, the layer next in radius (EM2) collects most of the
energy deposited by electron and photon showers, and the third layer (EM3) is used to correct leakage
beyond the EM calorimeter for high-energy showers. A thin presampler layer (PS) in front of EM1 and
in the range |η| < 1.8 is used to correct showers for upstream energy loss. Hadron calorimetry is based
on different detector technologies, with scintillator tiles (|η| < 1.7) or liquid argon (1.5 < |η| < 4.9) as
active media, and with steel, copper, or tungsten as absorber material. The calorimeters provide coverage
within |η| < 4.9. The muon spectrometer consists of superconducting air-core toroids, a system of trigger
chambers covering the range |η| < 2.4, and high-precision tracking chambers allowing muon momentum
measurements within |η| < 2.7. A three-level trigger system is used to select interesting events [32].
The first-level trigger is implemented in hardware and uses a subset of detector information to reduce
the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels
which together reduce the average event rate to 400 Hz.

2.2 Physics objects

This section describes the Baseline τhad−vis reconstruction and also the reconstruction of muons and the
missing transverse momentum, which are required for the selection of samples from data. Tau Particle
Flow operates on each reconstructed Baseline tau candidate to reconstruct the charged and neutral had-
rons, classify the decay mode and to provide an alternative τhad−vis four-momentum. Suppression of
backgrounds from other particles misidentified as τhad−vis is achieved independently of the Tau Particle
Flow.

The Baseline τhad−vis reconstruction and energy calibration, and the algorithms used to suppress back-
grounds from jets, electrons and muons are described in detail in Ref. [17]. Candidates for hadronic tau
decays are built from jets reconstructed using the anti-kt algorithm [33, 34] with a radius parameter value
of 0.4. Three-dimensional clusters of calorimeter cells calibrated using a local hadronic calibration [35,
36] serve as inputs to the jet algorithm. The calculation of the τhad−vis four-momentum uses clusters within
the core region (∆R < 0.2 from the initial jet-axis). It includes a final tau-specific calibration derived from
simulated samples, which accounts for out-of-cone energy, underlying event, the typical composition of
hadrons in hadronic tau decays and contributions from multiple interactions occurring in the same and
neighbouring bunch crossings (called pile-up). Tracks reconstructed in the inner detector are matched

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam direction. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse (x, y) plane, φ being the azimuthal angle around the beam
direction. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The distance ∆R in the η–φ space
is defined as ∆R =

√
(∆η)2 + (∆φ)2.
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Process Generator PDFs UE tune

Z → ττ Pythia 8 [43] CTEQ6L1 [44] AU2 [45]
W → µν Alpgen [46]+Pythia 8 CTEQ6L1 Perugia [47]
W → τν Alpgen+Pythia 8 CTEQ6L1 Perugia
Z → µµ Alpgen+Pythia 8 CTEQ6L1 Perugia
tt̄ MC@NLO [48–50]+Herwig [51, 52] CT10 [53] AUET2 [45]

Table 1: Details regarding the simulated samples of pp collision events. The following information is provided for
each sample: the generator of the hard interaction, parton shower, hadronisation and multiple parton interactions;
the set of parton distribution functions (PDFs) and the underlying event (UE) tune of the Monte Carlo.

to the τhad−vis candidate if they are in the core region and satisfy the following criteria: pT > 1 GeV, at
least two associated hits in the pixel layers of the inner detector, and at least seven hits in total in the
pixel and silicon microstrip layers. Furthermore, requirements are imposed on the distance of closest
approach of the tracks to the tau primary vertex in the transverse plane, |d0| < 1.0 mm, and longitudinally,
|z0 sin θ| < 1.5 mm. The τhad−vis charge is reconstructed from the sum of the charges of the associated
tracks.

Backgrounds for τhad−vis candidates originating from quark- and gluon-initiated jets are discriminated
against by combining shower shape and tracking information in a multivariate algorithm that employs
boosted decision trees (BDTs) [37]. The efficiency of the jet discrimination algorithm has little depend-
ence on the pT of the τhad−vis candidates (evaluated using candidates with pT > 15 GeV) or on the number
of reconstructed primary vertices, which is correlated to the amount of pile-up, and has been evaluated up
to a maximum of 25 primary vertices per event. All τhad−vis candidates are required to have pT > 15 GeV,
to be in the fiducial volume of the inner detector, |η| < 2.5, and to have one or three associated tracks.
They must also meet jet discrimination criteria, corresponding to an efficiency of about 55% (40%) for
simulated τhad−vis with one (three) charged decay products [17], leading to a rate of false identification
for quark- and gluon-initiated jets of below a percent. A discriminant designed to suppress candidates
arising from the misidentification of electrons [17] is also applied.

Muons are reconstructed using tracks in the muon spectrometer and inner detector [38]. The missing
transverse momentum is computed from the combination of all reconstructed and fully calibrated physics
objects and the remaining clustered energy deposits in the calorimeter not associated with those ob-
jects [39].

2.3 Event samples and selection

The optimisation and measurement of the τhad−vis reconstruction performance requires Monte Carlo sim-
ulated events. Samples of simulated pp collision events at

√
s = 8 TeV are summarised in Table 1. Tau

decays are provided by Z → ττ events. The sophisticated tau decay option of Pythia 8 is used, which
provides fully modelled hadronic decays with spin correlations [40]. Tau decays in the tt̄ sample are gen-
erated by Tauola [41]. Photon radiation is performed by Photos [42]. Single-pion samples are also used,
in which the pions originate from the centre of the ATLAS detector and are generated to have a uniform
distribution in φ and η (|η| < 5.5) and also in log(E) (200 MeV < E < 2 TeV).
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The response of the ATLAS detector is simulated using Geant4 [54, 55] with the hadronic-shower model
QGSP_BERT [56, 57]. The parameters of the underlying event (UE) simulation were tuned using collision
data. Simulated pp collision events are overlaid with additional minimum-bias events generated with
Pythia 8 to account for the effect of pile-up. When comparing to the data, the simulated events are
reweighted so that the distribution of the number of pile-up interactions matches that in the data. The
simulated events are reconstructed with the same algorithm chain as used for the collision data.

Samples of τhad−vis candidates are selected from the data using a tag-and-probe approach. Candidates
originating from hadronic tau decays and jets are obtained by selecting Z → ττ and Z(→ µµ)+jets events,
respectively. The data were collected by the ATLAS detector during pp collisions at

√
s = 8 TeV. The

sample corresponds to an integrated luminosity of 5 fb−1 after making suitable data quality requirements
for the operation of the tracking, calorimeter, and muon spectrometer subsystems. The data have a max-
imum instantaneous luminosity of 7 · 1033 cm−2 s−1 and an average number of 19 pp interactions in the
same bunch crossing.

The Z → ττ tag-and-probe approach follows Ref. [17]; events are triggered by the presence of a muon
from a leptonic tau decay (tag) and must contain a τhad−vis candidate (probe) with pT > 20 GeV, which is
used to evaluate the tau reconstruction performance. The τhad−vis selection criteria described in Section 2.2
are used. In addition the τhad−vis must have unit charge which is opposite to that of the muon. A discrim-
inant designed to suppress candidates arising from the misidentification of muons [17] is also applied to
increase signal purity. The invariant mass of the muon and τhad−vis, m(µ, τhad−vis), is required to be in the
range 50 GeV < m(µ, τhad−vis) < 85 GeV, as expected for Z → ττ decays. The background is dominated
by multijet and W(→ µν)+jets production and is estimated using the techniques from Ref. [7].

The Z(→ µµ)+jets tag-and-probe approach follows Ref. [58], with the following differences: both muons
are required to have pT > 26 GeV, the dimuon invariant mass must be between 81 and 101 GeV, and the
highest-pT jet is selected as a probe τhad−vis candidate if it satisfies the τhad−vis selection criteria described
in Section 2.2 but with pT > 20 GeV and without the electron discriminant. In this approach, two more
steps are made when comparing simulated events to the data. Before the τhad−vis selection, the simulated
events are reweighted so that the pT distribution of the Z boson matches that in data. After the full event
selection, the overall normalisation of the simulation is scaled to that in the data.

3 Reconstruction of the τhad−vis

Over 90% of hadronic tau decays occur through just five dominant decay modes, which yield one or three
charged hadrons (h±), up to two neutral pions (π0) and a tau neutrino. The neutrino goes undetected
and is omitted in further discussion of the decay modes. Table 2 gives the following details for each of
the five decay modes: the branching fraction, B; the fraction of simulated τhad−vis candidates that pass
the τhad−vis selection described in Section 2.2 without the jet and electron discrimination, A · εreco; and
the fraction of those that also pass the jet and electron discrimination, εID. The h±’s are predominantly
π±’s with a minor contribution from K±’s. The modes with two or three pions proceed mainly through
the intermediate ρ or a1 resonances, respectively. The h±’s are sufficiently long-lived that they typically
interact with the detector before decaying and are therefore considered stable in the Tau Particle Flow.
The π0’s decay almost exclusively to a pair of photons. Approximately half of the photons convert into
an e+e− pair because of interactions with the beampipe or inner-detector material. Modes with more π0’s
tend to have lower εID as they have wider showers that are more similar to those produced by quark- and
gluon-initiated jets. The mode dependence of A · εreco is due to a mixture of effects. The fraction of
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Decay mode B [%] A · εreco [%] εID [%]

h± 11.5 32 75
h± π0 30.0 33 55
h± ≥2π0 10.6 43 40
3h± 9.5 38 70
3h± ≥1π0 5.1 38 46

Table 2: Five dominant τhad−vis decay modes [59]. Tau neutrinos are omitted from the table. The symbol h± stands
for π± or K±. Decays involving K± contribute ∼3% to the total hadronic branching fraction. Decays involving
neutral kaons are excluded. The branching fraction (B), the fraction of generated τhad−vis’s in simulated Z → ττ
events that are reconstructed and pass the τhad−vis selection described in Section 2.2 without the jet and electron
discrimination (A·εreco) and the fraction of those τhad−vis candidates that also pass the jet and electron discrimination
(εID) for each decay mode are given.

energy carried by visible decay products is mode dependent and the response of the calorimeter to h±’s
and π0’s is different, both of which impact the efficiency of the τhad−vis pT requirement. The efficiency of
the track association is also dependent on the number of h±’s and to a lesser extent the number of π0’s,
which can contribute tracks from conversion electrons.

The goal of the Tau Particle Flow is to classify the five decay modes and to reconstruct the individual
h±’s and π0’s. The performance is evaluated using the energy and directional residuals of π0 and τhad−vis
and the efficiency of the τhad−vis decay mode classification. The η and φ residuals are defined with respect
to the generated values: η − ηgen and φ − φgen, respectively. For ET, the relative residual is defined with
respect to the generated value ET/E

gen
T . The core and tail resolutions for η, φ and ET are defined as half of

the 68% and 95% central intervals of their residuals, respectively. Decays into higher-multiplicity states
are accommodated by including modes with more than two π0’s in the h± ≥2π0 category and more than
one π0 in the 3h± ≥1π0 category. Decays with more than three charged hadrons are not considered. No
attempt is made to reconstruct neutral kaons or to separate charged kaons from charged pions.

3.1 Concepts of the Tau Particle Flow method

The main focus of the Tau Particle Flow method is to reconstruct τhad−vis’s with pT values between
15 and 100 GeV, which is the relevant range for tau leptons produced in decays of electroweak and SM
Higgs bosons. In this case the hadrons typically have pT lower than 20 GeV (peaked at ∼4 GeV) and
have an average separation of ∆R ≈ 0.07. The h±’s are reconstructed using the tracking system, from
which the charge and momentum are determined. Each track associated with the τhad−vis candidate in
the core region is considered to be a h± and the π± mass hypothesis is applied. Approximately 2% of
the selected τhad−vis’s have a misclassified number of h±’s. Overestimation of the number of h±’s is
primarily due to additional tracks from conversion electrons, which are highly suppressed by the strict
track selection criteria described in Section 2.2. Underestimation of the number of h±’s is primarily caused
by tracking inefficiencies (∼10% for charged pions with pT > 1 GeV [1]), which arise from interactions
of the h±’s with the beampipe or detector material. The h±’s also produce a shower in the calorimeter
from which their energy and direction can be determined, but the tracker has a better performance in
the relevant momentum range. The shower shapes of h±’s are also highly irregular, with a typical width
of 0.02 < ∆R < 0.07 in the EM calorimeter, combined with large fluctuations in the fractional energy
depositions in the layers of the calorimeter. The π0’s are reconstructed from their energy deposits in
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the EM calorimeter. The main challenge is to disentangle their energy deposits from h± showers, which
have a width similar to the average separation between hadrons. The photons from π0 decays are highly
collimated, with a typical separation of 0.01 < ∆R < 0.03. The majority of the π0 energy is reconstructed
in a single cluster in the EM calorimeter. Compared to h±’s, π0 showers are smaller and more regular,
leaving on average 10%, 30% and 60% of their energy in PS, EM1 and EM2, respectively. Almost no
π0 energy is deposited beyond EM2, so EM3 is considered part of the HAD calorimeter in Tau Particle
Flow. The characteristic shower shapes and the kinematics of h±’s and π0’s are used to identify π0’s and
to classify the tau decay mode.

In the following sections, the individual steps of the Tau Particle Flow method for τhad−vis reconstruction
are described. The first step is the reconstruction and identification of neutral pions. Next, energy deposits
from individual photons in the finely segmented EM1 layer are reconstructed to identify cases where two
π0’s are contained within a single cluster. The decay mode is then classified by exploiting the available
information from the reconstructed h±’s and π0’s and the photons reconstructed in EM1. Following the
decay mode classification, the τhad−vis four-momentum is reconstructed from the individual hadrons and
then combined with the Baseline energy calibration to reduce tails in the ET residual distribution. The
performance of the Tau Particle Flow is evaluated using τhad−vis candidates from simulated Z → ττ

events.

3.2 Reconstruction and identification of neutral pions

The reconstruction of neutral pion candidates (π0
cand) within hadronic tau decays using the Tau Particle

Flow proceeds as follows. First, π0
cand’s are created by clustering cells in the EM calorimeter in the core

region of the τhad−vis. In the next step, the π0
cand energy is corrected for contamination from h±’s. To do

this, the energy that each h± deposits in the EM calorimeter (EEM
h± ) is estimated as the difference between

the energy of the h± from the tracking system (Etrk
h± ) and the energy deposited in the HAD calorimeter

which is associated with the h± (EHAD
h± ): EEM

h± = Etrk
h± − EHAD

h± . To calculate EHAD
h± , all clustered energy

deposits in the HAD calorimeter in the core region are assigned to the closest h±, determined using the
track position extrapolated to the calorimeter layer that contains most of the cluster energy. The EEM

h± of
each h± is then subtracted from the energy of the closest π0

cand if it is within ∆R = 0.04 of the h±.

At this stage, many of the π0
cand’s in reconstructed hadronic tau decays do not actually originate from

π0’s, but rather from h± remnants, pile-up or other sources. The purity of π0
cand’s is improved by applying

a minimum pT requirement and an identification criterion designed to reject π0
cand’s not from π0’s. The

pT thresholds are in the range 2.1–2.7 GeV. After the pT requirement the background is dominated by
h± remnants. The π0 identification uses a BDT and exploits the properties of the π0

cand clusters, such as
the energy density and the width and depth of the shower. The variables used for π0

cand identification are
described in Table 3. The BDT is trained using τhad−vis’s that have only one h±, and which are produced
in simulated Z → ττ events. The π0

cand’s are assigned to signal or background based on whether or
not they originated from a generated π0. Figure 1(a) shows signal and background distributions for the
logarithm of the second moment in energy density, which is one of the more important identification
variables. The discriminating power of the π0 identification is quantified by comparing the efficiency of
signal and background π0

cand’s to pass thresholds on the identification score, as shown in Fig. 1(b). The pT
and identification score thresholds are optimised in five |η| ranges, corresponding to structurally different
regions of the calorimeter, to maximise the number of τhad−vis’s with the correct number of reconstructed
h±’s and identified π0

cand’s (π0
ID’s).
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Cluster pseudorapidity, |ηclus|

Magnitude of the energy-weighted η position of the cluster

Cluster width, 〈r2〉clus

Second moment in distance to the shower axis

Cluster η width in EM1, 〈η2
EM1
〉clus

Second moment in η in EM1

Cluster η width in EM2, 〈η2
EM2
〉clus

Second moment in η in EM2

Cluster depth, λclus
centre

Distance of the shower centre from the calorimeter front face measured along the
shower axis

Cluster PS energy fraction, f clus
PS

Fraction of energy in the PS

Cluster core energy fraction, f clus
core

Sum of the highest cell energy in PS, EM1 and EM2 divided by the total energy

Cluster logarithm of energy variance, log〈ρ2〉clus

Logarithm of the second moment in energy density

Cluster EM1 core energy fraction, f clus
core,EM1

Energy in the three innermost EM1 cells divided by the total energy in EM1

Cluster asymmetry with respect to track,Aclus
track

Asymmetry in η–φ space of the energy distribution in EM1 with respect to the ex-
trapolated track position

Cluster EM1 cells, Nclus
EM1

Number of cells in EM1 with positive energy

Cluster EM2 cells, Nclus
EM2

Number of cells in EM2 with positive energy

Table 3: Cluster variables used for π0
cand identification. The variables |ηclus|, 〈r2〉clus, λclus

centre, f clus
core and log〈ρ2〉clus are

taken directly from the cluster reconstruction [36]. To avoid confusion with other variables used in tau reconstruc-
tion, the superscript clus has been added to each variable.

The h± and π0 counting performance is depicted in Fig. 2 by a decay mode classification matrix which
shows the probability for a given generated mode to be reconstructed as a particular mode. Only τhad−vis
decays that are reconstructed and pass the selection described in Section 2.2 are considered (corres-
ponding efficiencies are given in Table 2). The total fraction of correctly classified tau decays (diagonal
fraction) is 70.9%. As can be seen, for τhad−vis’s with one h±, the separation of modes with and without
π0’s is quite good, but it is difficult to distinguish between h± π0 and h± ≥2π0. The largest contributions to
the misclassification arise from h± ≥2π0 decays where one of the π0’s failed selection or where the energy
deposits of both π0’s merge into a single cluster. It is also difficult to distinguish between the 3h± and
3h± ≥1π0 modes because the π0’s are typically soft with large overlapping h± deposits.
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Figure 1: (a) Distribution of the logarithm of the second moment in energy density of π0
cand clusters that do (signal)

or do not (background) originate from π0’s, as used in the π0 identification. (b) 1 − efficiency for background π0
cand’s

vs. the efficiency for signal π0
cand’s to pass thresholds on the π0 identification score. The π0

cand’s in both figures are
associated with τhad−vis’s selected from simulated Z → ττ events.
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cays containing neutral kaons are omitted. Only decays from τhad−vis’s that are reconstructed and pass the selection
described in Section 2.2 are considered. The statistical uncertainty is negligible.
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Two alternative methods for π0 reconstruction were also developed. In the first method (Pi0Finder) the
number of π0’s in the core region is first estimated from global tau features measured using calorimetric
quantities and the momenta of the associated h± tracks. Clusters in the EM calorimeter are then chosen
as π0

cand’s using a π0 likeness score based on their energy deposition in the calorimeter layers and the
τhad−vis track momenta. The likeness score does not exploit cluster moments to the same extent as the π0

identification of the Tau Particle Flow and cluster moments are not used at all to estimate the number of
π0. This method was used to calculate variables for jet discrimination in Run 1 [17], but was not exploited
further. The other method (shower shape subtraction, SSS) is a modified version of Tau Particle Flow,
which attempts to subtract the h± shower from the calorimeter at cell level using average shower shapes
derived from simulation. The shower shapes are normalised such that their integral corresponds to EEM

h±

and centred on the extrapolated position of the h± track. They are then subtracted from the EM calorimeter
prior to the clustering, replacing the cluster-level subtraction of EEM

h± .

The π0 ET, η and φ residual distributions for all π0 reconstruction algorithms are shown in Figs. 3(a), 3(b)
and 3(c), respectively. The core angular resolutions for each algorithm are quite similar with ∼0.0056
in η and ∼0.012 rad in φ. The Pi0Finder algorithm has the poorest performance, with core resolutions
of 0.0086 and 0.016 rad in η and φ, respectively, and significantly larger tails. The core ET resolutions
are almost identical for the Tau Particle Flow and SSS, both with 16%, compared to 23% for Pi0Finder.
The Tau Particle Flow and SSS both show a shift in the reconstructed ET of a few percent, due to incom-
plete subtraction of the h± remnant. In the calculation of the τhad−vis four-momentum in the Tau Particle
Flow (Section 3.5), this bias is corrected for by a decay-mode-dependent calibration. Despite the more
sophisticated shower subtraction employed in the SSS algorithm, it does not perform significantly better;
the improvement in the total fraction of correctly classified tau decays is ∼1%. This is partly because
many of the π0

cand’s are sufficiently displaced from h±’s so that they have little energy contamination and
are unaffected by the subtraction, and partly because the signature of clusters that contain π0’s, even in
the presence of overlapping h± energy, is distinct enough for the BDT to identify. Contributions from
pile-up have little effect on the π0

cand reconstruction in Tau Particle Flow; on average the ET increases by
∼15 MeV and its resolution degrades fractionally by ∼0.5% per additional reconstructed vertex.

3.3 Reconstruction of individual photon energy deposits in EM1

During the π0 reconstruction, the energy deposits from both photons typically merge into a single cluster.
Furthermore, for Z → ττ events, in about half of the h± ≥2π0 decays misclassified as h± π0 by the π0

reconstruction, at least three of the photons from two π0’s are grouped into a single cluster. The fraction
increases for higher τhad−vis pT due to the collimation of the tau decay products. The identification of the
energy deposits from individual photons in the finely segmented EM1 layer can be exploited to improve
the π0 reconstruction, as discussed in the following.

Almost all photons begin to shower by the time they traverse EM1, where they deposit on average ∼30%
of their energy. In contrast, particles that do not interact electromagnetically rarely deposit a significant
amount of energy in this layer, making it ideal for the identification of photons. Furthermore, the cell
segmentation in η in this layer is finer than the average photon separation and comparable to the average
photon shower width, allowing individual photons to be distinguished.

The reconstruction of energy deposits in EM1 proceeds as follows. First, local energy maxima are
searched for within the core region. A local maximum is defined as a single cell with ET > 100 MeV
whose nearest neighbours in η both have lower ET. Maxima found in adjacent φ cells are then combined:
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Figure 3: Distributions of the π0 residuals in (a) transverse energy ET, (b) pseudorapidity η and (c) azimuth φ in
correctly reconstructed h± π0 decays of tau leptons in simulated Z → ττ events.
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their energy is summed and the energy-weighted mean of their φ positions is used. Figure 4 shows the
efficiency for photons to create a local maximum (maxima efficiency), evaluated in the sample of single
π0’s. The efficiency decreases rapidly at low photon pT as many of the photons fall below the 100 MeV
threshold. The fraction of misreconstructed maxima due to noise or fluctuations from the photon shower
is very low for maxima with ET > 500 MeV, but increases quickly at lower ET. At high photon pT,
corresponding to high π0 pT, the boost of the π0 becomes large enough that the pair of photons almost
always creates a single maximum. Figure 4 also shows the probability that a maximum is shared with the
other photon in the single π0 sample (share probability).
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Figure 4: Efficiency for a photon to create a maximum in the first layer of the EM calorimeter in simulated π0 → γγ
events and the corresponding probability to create a maximum that is shared with the other photon. The photons
are required to not interact with the material in the tracking system.

The h± ≥2π0 decay mode classification is improved by counting the number of maxima associated with
π0

cand’s. An energy maximum is assigned to a π0
cand if its cell is part of the π0

cand cluster and it has an ET
of more than 300–430 MeV (depending on the η region). The energy threshold is optimised to maximise
the total number of correctly classified tau decays. Maxima with ET > 10 GeV are counted twice, as they
contain the merged energy deposits of two photons from a π0 decay with a probability larger than 95%.
Finally, τhad−vis candidates that were classified as h± π0, but have a π0

cand with at least three associated
maxima are reclassified as h± ≥2π0. The method recovers 16% of misclassified h± ≥2π0 decays with a
misclassification of h± π0 decays of 2.5%.

3.4 Decay mode classification

Determination of the decay mode by counting the number of reconstructed h±’s and π0
ID’s alone can

be significantly improved by simultaneously analysing the kinematics of the tau decay products, the π0

identification scores and the number of photons from the previous reconstruction steps. Exploitation of
this information is performed via BDTs.
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As the most difficult aspect of the classification is to determine the number of π0’s, three decay mode
tests are defined to distinguish between the following decay modes: h±’s with zero or one π0, h± {0, 1}π0;
h±’s with one or more π0’s, h± {1,≥2}π0; and 3h±’s with and without π0’s, 3h± {0,≥1}π0. Which of the
three tests to apply to a τhad−vis candidate is determined as follows. The τhad−vis candidates with one or
three associated tracks without any reconstructed π0

cand’s are always classified as h± or 3h±, respectively.
The τhad−vis candidates with one associated track and at least two π0

cand’s, of which at least one is π0
ID,

enter the h± {1,≥2}π0 test. The τhad−vis candidates with one π0
ID that are classified as h± ≥2π0 by counting

the photons in this cluster, as described in Section 3.3, retain their classification and are not considered
in the decay mode tests. The remaining τhad−vis candidates with one or three associated tracks enter the
h± {0, 1}π0 or 3h± {0,≥1}π0 tests, respectively.

A BDT is trained for each decay mode test using τhad−vis candidates from simulated Z → ττ events,
to separate τhad−vis’s of the two generated decay types the test is designed to distinguish. The τhad−vis
candidates entering each decay mode test are then further categorised based on the number of π0

ID’s. A
threshold is placed on the output BDT score in each category to determine the decay mode. The thresholds
are optimised to maximise the number of correctly classified τhad−vis candidates. The BDT training was
not split based on the number of π0

ID’s due to the limited size of the training sample.

The variables used for the decay mode tests are designed to discriminate against additional misidentified
π0

cand’s, which usually come from imperfect h± subtraction, pile-up or the underlying event. The associ-
ated clusters typically have low energy and a low π0 identification score. Remnant clusters from imperfect
h± subtraction are also typically close to the h± track and have fewer associated photon energy maxima.
If the π0

cand clusters originate from tau decays, their directions and fractional energies are correlated with
each other. Additionally, with increasing number of tau decay products, the available phase space per
decay product becomes smaller. Each variable used in the BDTs is described briefly in Table 4. Table 5
summarises the decay mode tests and indicates which variables are used in each.

Figure 5 shows the discrimination power of the tests categorised by the number of π0
cand’s and π0

ID’s. The
decay mode fractions at the input of each test vary strongly, which impacts the position of the optimal
BDT requirements. The resulting classification matrix is shown in Fig. 6. The total fraction of correctly
classified tau decays is 74.7%. High efficiencies in the important h±, h± π0 and 3h± modes are achieved.
The decay mode purity is defined as the fraction of τhad−vis candidates of a given reconstructed mode
which originated from a generated τhad−vis of the same mode, also calculated using τhad−vis’s in simulated
Z → ττ events. The purity of the h±, h± π0 and 3h± decay modes is 70.3%, 73.5% and 85.2%, respectively.
For comparison, in the Baseline reconstruction where π0 reconstruction was not available, the fractions
of generated h± and h± π0 in τhad−vis’s with one reconstructed track are 27.4% and 52.2%, respectively,
and the fraction of 3h± in τhad−vis’s with three reconstructed tracks is 68.9%. Decays containing neutral
kaons are omitted from the table. They are classified as containing π0’s approximately half of the time.
Contributions from pile-up have little effect on the classification efficiency, degrading it by ∼0.04% per
additional reconstructed vertex. The number of τhad−vis candidates for each classified decay mode is
shown in Fig. 7(a) for real τhad−vis’s from the Z → ττ tag-and-probe analysis and in Fig. 7(b) for jets
from the Z(→ µµ)+jets tag-and-probe analysis. While systematic uncertainties have not been evaluated,
the figures indicate reasonable modelling of the decay mode classification for τhad−vis’s and jets. In both
selections, the 3h± efficiency is slightly underestimated and the h± ≥2π0 and 3h± ≥1π0 efficiencies are
slightly overestimated.
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π0 identification score of the first π0
cand

, SBDT
1

π0 identification score of the π0
cand with the highest π0 identification score

ET fraction of the first π0
cand

, fπ0,1
ET of the π0

cand with the highest π0 identification score, divided by the ET-sum of all
π0

cand’s and h±’s

Hadron separation, ∆R(h±, π0)
∆R between the h± and the π0

cand with the highest π0 identification score

h± distance, Dh±

ET-weighted ∆R between the h± and the τhad−vis axis, which is calculated by sum-
ming the four-vectors of all h±’s and π0

cand’s

Number of photons, Nγ

Total number of photons in the τhad−vis, as reconstructed in Section 3.3

π0 identification score of second π0
cand

, SBDT
2

π0 identification score of the π0
cand with the second-highest π0 identification score

π0
cand

ET fraction, fπ0

ET-sum of π0
cand’s, divided by the ET-sum of π0

cand’s and h±’s

π0
cand

mass, mπ0

Invariant mass calculated from the sum of π0
cand four-vectors

Number of π0
cand

, Nπ0

Standard deviation of the h± pT, σET,h±

Standard deviation, calculated from the pT values of the h±’s for τhad−vis with three
associated tracks

h± mass, mh±

Invariant mass calculated from the sum of h± four-vectors

Table 4: Variables used in the BDTs for the τhad−vis decay mode classification. They are designed to discriminate
against additional misidentified π0

cand’s, which usually come from imperfect subtraction, pile-up or the underlying
event.
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Decay mode test N(π0
cand) N(π0

ID) Variables

h± {0, 1}π0 ≥ 1 0
S BDT

1 , fπ0,1, ∆R(h±, π0), Dh± , Nγ1 1

h± {1,≥2}π0 ≥ 2 1
S BDT

2 , fπ0 , mπ0 , Nπ0 , Nγ
≥ 2 ≥ 2

3h± {0,≥1}π0 ≥ 1 0
S BDT

1 , fπ0 , σET,h± , mh± , Nγ
≥ 1 ≥ 1

Table 5: Details regarding the decay mode classification of the Tau Particle Flow. BDTs are trained to distinguish
decay modes in three decay mode tests. The τhad−vis’s entering each test are further categorised based on the number
of reconstructed, N(π0

cand), and identified, N(π0
ID), neutral pions. The variables used in the BDTs for each test are

listed.
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Figure 5: Decay mode classification efficiency for the h± {0, 1}π0, h± {1,≥2}π0, and 3h± {0,≥1}π0 tests. For each
test, “decay mode 1” corresponds to the mode with fewer π0’s. Working points corresponding to the optimal
thresholds on the BDT score for each test are marked.
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Figure 7: Number of τhad−vis candidates for each classified decay mode in the (a) Z → ττ and the (b) Z(→ µµ)+jets
tag-and-probe analyses. The simulated Z → ττ sample is split into contributions from each generated tau decay
mode. The background in the Z → ττ analysis is dominated by multijet and W(→ µν)+jets production. The
simulated Z(→ µµ)+jets events are reweighted so that the Z boson pT distribution and the overall normalisation
match that in the data. The hatched band represents the statistical uncertainty on the prediction.
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3.5 Four-momentum reconstruction

The τhad−vis four-momentum reconstruction begins with summing the four-momenta of the h± and π0
cand

constituents (Constituent-based calculation). Only the first n π0
cand’s with the highest π0 identification

scores are included, where n is determined from the decay mode classification, and can be at most 2 π0
cand’s

in the h± ≥2π0 mode and at most 1 π0
cand in the 3h± ≥1π0 mode. A pion mass hypothesis is used for

π0
cand’s. There are two exceptions: if the decay mode is classified as h± π0 but there are two identified
π0

cand’s, the mass of each is set to zero and both are added to the τhad−vis four-momentum as they are most
likely photons from a π0 decay; or if the τhad−vis candidate is classified as h± ≥2π0 because three or more
photons are found in a single π0

cand, only this π0
cand is added and its mass is set to twice the π0 mass. A

calibration is applied to the Constituent-based τhad−vis energy in each decay mode as a function of the
Constituent-based ET, to correct for the π0

cand energy bias. The resulting four-momentum is used to set
the τhad−vis direction in the Tau Particle Flow. Figures 8(a) and 8(b) show distributions of the τhad−vis
η and φ residuals of the Tau Particle Flow and the Baseline four-momentum reconstruction. The core
angular resolutions of the Tau Particle Flow are 0.002 in η and 0.004 rad in φ, which are more than five
times better than the Baseline resolutions of 0.012 and 0.02 rad, respectively.

Figure 9(a) shows distributions of the ET residuals. The Constituent-based calculation is inherently stable
against pile-up as both the decay-mode classification used to select h±’s and π0

cand’s, and the reconstruction
of h±’s and π0

cand’s themselves, are stable against pile-up. The ET increases by ∼6 MeV and its resolution
degrades fractionally by ∼0.6% per additional reconstructed vertex. Figure 9(b) shows the resolution as
a function of the ET of the generated τhad−vis. For the final energy calibration of the Tau Particle Flow,
the Constituent-based ET is combined with the Baseline ET by weighting each by the inverse-square of
their respective ET-dependent core resolutions, which ensures a smooth transition to high pT where the
Baseline calibration is superior. The Baseline ET is used if the two ET values disagree by more than
five times their combined core resolutions, as it has smaller resolution tails. The resolution of the Tau
Particle Flow is superior in both the core and tails at low ET with a core resolution of 8% at an ET
of 20 GeV, compared to 15% from the Baseline. It approaches the Baseline performance at high ET.
Contributions from pile-up have little effect on the four-momentum reconstruction of the Tau Particle
Flow; the ET increases by ∼4 MeV and its core resolution degrades fractionally by ∼0.5% per additional
reconstructed vertex. The ET residual distributions of the Tau Particle Flow split into the reconstructed
decay modes are shown in Fig. 9(c). The total is non-Gaussian, as it is the sum of contributions with
different functional forms. Correctly reconstructed decays containing only h±’s have the best resolution,
followed by correctly reconstructed decays containing π0

cand’s. The excellent resolution of these decays
leads to a superior overall core resolution. Misreconstructed decays have the poorest resolution and result
in larger tails. In particular, misestimation of the number of π0

cand’s leads to a bias of up to 25%. Decays
containing neutral kaons exhibit a large low-energy bias because at least some of their energy is typically
missed by the reconstruction.

An alternative method for the ET calibration was also developed, based on Ref. [30]. It also uses a com-
bination of calorimetric and tracking measurements and the Tau Particle Flow decay mode classification.
The h± pT is measured using tracks and the π0 ET is estimated as the difference between the ET of the
seed jet at the EM scale [36] and the ET from the summed momenta of all h±’s, scaled by their expected
calorimeter response [60]. The method has similar overall performance to the Tau Particle Flow.

Figure 10(a) shows the distribution of the invariant mass of the muon and τhad−vis, m(µ, τhad−vis), cal-
culated using the τhad−vis four-momentum reconstruction from the Tau Particle Flow in the Z → ττ

tag-and-probe analysis before selection on m(µ, τhad−vis). The m(µ, τhad−vis) has a linear dependence on
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Figure 8: The τhad−vis (a) η and (b) φ residual distributions of the Tau Particle Flow compared to the Baseline
reconstruction.

the τhad−vis ET and analysis of the distribution has previously been used to calibrate the τhad−vis ET [17].
Data and simulation agree well, indicating that the τhad−vis ET is well modelled by the simulation. Finally,
Fig. 10(b) shows the mass spectrum of the τhad−vis reconstructed with the Tau Particle Flow in the Z → ττ

tag-and-probe analysis. The a1 resonance in the 3h± mode is reconstructed with negligible experimental
resolution compared to the intrinsic line shape due to the excellent four-momentum resolution of the in-
ner detector for h±’s. The ρ and a1 resonances in the h± π0 and h± ≥2π0 modes are also visible, but have
significant degradation due to the resolution from the reconstructed π0

cand four-momentum. The τhad−vis
mass spectra in data and simulation agree well, suggesting good modelling of the individual h± and π0

cand
four-momenta.
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Figure 9: The (a) τhad−vis relative ET residual distribution and (b) the half-widths spanned by the 68% and 95%
quantiles, i.e. the core and tail resolutions, of the relative ET residual distributions as a function of the generated
τhad−vis ET. The Baseline, Constituent-based and Tau Particle Flow calculations are shown. The relative ET residual
distribution of the Tau Particle Flow split in the reconstructed decay mode (c) is also shown.
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Figure 10: Distribution of (a) the invariant mass of the muon and τhad−vis, m(µ, τhad−vis) before selection on
m(µ, τhad−vis) is applied; and (b) the reconstructed mass of the τhad−vis, when using the Tau Particle Flow τhad−vis
four-momentum reconstruction in the Z → ττ tag-and-probe analysis. The simulated Z → ττ sample is split into
contributions from each generated tau decay mode. The background is dominated by multijet and W(→ µν)+jets
production. The hatched band represents the statistical uncertainty on the prediction.

4 Summary and conclusions

This paper presents a new method to reconstruct the individual charged and neutral hadrons in tau decays
with the ATLAS detector at the LHC. The neutral pions are reconstructed with a core energy resolution
of ∼16%. The reconstructed hadrons are used to calculate the visible four-momentum of reconstructed
tau candidates and to classify the decay mode, allowing the decays to be distinguished not only by the
number of h±’s but also by the number of π0’s, which is not possible with the existing tau reconstruction.
This improves the purity with which the τ− → π−ν, τ− → π−π0ν and τ− → π−π+π−ν decays can be
selected, by factors of 2.6, 1.4 and 1.2, respectively. The τhad−vis core directional resolution is improved
by more than a factor of five and the core energy resolution is improved by up to a factor of two at
low ET (20 GeV). The performance was validated using samples of Z → ττ and Z(→ µµ)+jets events
selected from pp collision data at

√
s = 8 TeV, corresponding to an integrated luminosity of 5 fb−1. The

results suggest good modelling of the τhad−vis decay mode classification efficiency and four-momentum
reconstruction.
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F. Paige25, P. Pais86, K. Pajchel119, G. Palacino159b, S. Palestini30, M. Palka38b, D. Pallin34,
A. Palma126a,126b, Y.B. Pan173, E.St. Panagiotopoulou10, C.E. Pandini80, J.G. Panduro Vazquez77,
P. Pani146a,146b, S. Panitkin25, D. Pantea26b, L. Paolozzi49, Th.D. Papadopoulou10, K. Papageorgiou154,
A. Paramonov6, D. Paredes Hernandez176, M.A. Parker28, K.A. Parker139, F. Parodi50a,50b,
J.A. Parsons35, U. Parzefall48, E. Pasqualucci132a, S. Passaggio50a, F. Pastore134a,134b,∗, Fr. Pastore77,
G. Pásztor29, S. Pataraia175, N.D. Patel150, J.R. Pater84, T. Pauly30, J. Pearce169, B. Pearson113,
L.E. Pedersen36, M. Pedersen119, S. Pedraza Lopez167, R. Pedro126a,126b, S.V. Peleganchuk109,c,
D. Pelikan166, O. Penc127, C. Peng33a, H. Peng33b, B. Penning31, J. Penwell61, D.V. Perepelitsa25,
E. Perez Codina159a, M.T. Pérez García-Estañ167, L. Perini91a,91b, H. Pernegger30, S. Perrella104a,104b,
R. Peschke42, V.D. Peshekhonov65, K. Peters30, R.F.Y. Peters84, B.A. Petersen30, T.C. Petersen36,
E. Petit42, A. Petridis1, C. Petridou154, P. Petroff117, E. Petrolo132a, F. Petrucci134a,134b,
N.E. Pettersson157, R. Pezoa32b, P.W. Phillips131, G. Piacquadio143, E. Pianori170, A. Picazio49,
E. Piccaro76, M. Piccinini20a,20b, M.A. Pickering120, R. Piegaia27, D.T. Pignotti111, J.E. Pilcher31,
A.D. Pilkington84, A.W.J. Pin84, J. Pina126a,126b,126d, M. Pinamonti164a,164c,ag, J.L. Pinfold3, A. Pingel36,
S. Pires80, H. Pirumov42, M. Pitt172, C. Pizio91a,91b, L. Plazak144a, M.-A. Pleier25, V. Pleskot129,
E. Plotnikova65, P. Plucinski146a,146b, D. Pluth64, R. Poettgen146a,146b, L. Poggioli117, D. Pohl21,
G. Polesello121a, A. Poley42, A. Policicchio37a,37b, R. Polifka158, A. Polini20a, C.S. Pollard53,
V. Polychronakos25, K. Pommès30, L. Pontecorvo132a, B.G. Pope90, G.A. Popeneciu26c, D.S. Popovic13,
A. Poppleton30, S. Pospisil128, K. Potamianos15, I.N. Potrap65, C.J. Potter149, C.T. Potter116,
G. Poulard30, J. Poveda30, V. Pozdnyakov65, M.E. Pozo Astigarraga30, P. Pralavorio85, A. Pranko15,
S. Prasad30, S. Prell64, D. Price84, L.E. Price6, M. Primavera73a, S. Prince87, M. Proissl46,
K. Prokofiev60c, F. Prokoshin32b, E. Protopapadaki136, S. Protopopescu25, J. Proudfoot6,
M. Przybycien38a, E. Ptacek116, D. Puddu134a,134b, E. Pueschel86, D. Puldon148, M. Purohit25,ah,
P. Puzo117, J. Qian89, G. Qin53, Y. Qin84, A. Quadt54, D.R. Quarrie15, W.B. Quayle164a,164b,

32



M. Queitsch-Maitland84, D. Quilty53, S. Raddum119, V. Radeka25, V. Radescu42, S.K. Radhakrishnan148,
P. Radloff116, P. Rados88, F. Ragusa91a,91b, G. Rahal178, S. Rajagopalan25, M. Rammensee30,
C. Rangel-Smith166, F. Rauscher100, S. Rave83, T. Ravenscroft53, M. Raymond30, A.L. Read119,
N.P. Readioff74, D.M. Rebuzzi121a,121b, A. Redelbach174, G. Redlinger25, R. Reece137, K. Reeves41,
L. Rehnisch16, J. Reichert122, H. Reisin27, C. Rembser30, H. Ren33a, A. Renaud117, M. Rescigno132a,
S. Resconi91a, O.L. Rezanova109,c, P. Reznicek129, R. Rezvani95, R. Richter101, S. Richter78,
E. Richter-Was38b, O. Ricken21, M. Ridel80, P. Rieck16, C.J. Riegel175, J. Rieger54, O. Rifki113,
M. Rijssenbeek148, A. Rimoldi121a,121b, L. Rinaldi20a, B. Ristić49, E. Ritsch30, I. Riu12,
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