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Abstract
We describe nucleon-nucleus (NA) and nucleus-nucleus (AA) elastic scatter-
ing based on the chiral two-nucleon forces (2NFs) and chiral three-nucleon
forces (3NFs), using the standard microscopic framework composed of the
Brueckner-Hartree-Fock method (BHF) and the g-matrix folding model. The
g-matrix for symmetric nuclear matter is calculated from chiral 2NFs of N3LO
and chiral 3NF of N2LO by using the BHF method. For elastic scattering, the
optical potentials are calculated by folding chiral g-matrix with projectile and
target density. This microscopic framework reproduces the experimental data
with no adjustable parameter. Chiral-3NF effects are small for NA scatter-
ing, but sizable for AA scattering. Chiral 3NF, mainly originated from the
2π-exchange diagram, makes the folding potentials less attractive and more
absorptive.

1. Introduction

One of the important issue in nuclear physics is to clarify the effects of three-nucleon force (3NF) on
finite nuclei, nuclear matter, and nuclear reactions. Recently, a theoretical breakthrough on this issue
was made with chiral effective field theory (Ch-EFT); see Refs. [1, 2] and references therein. Ch-EFT
is a theory based on chiral perturbation theory and enables to determine two-nucleon force (2NF), 3NF,
and many-nucleon forces systematically. The effects of chiral 3NF were analyzed in many papers, see
Refs. [3, 4, 5] for some examples.

Another important issue in nuclear physics is microscopic understanding of the nucleon-nucleus
(NA) and nucleus-nucleus (AA) scattering. Elastic scattering is the simplest process of the nuclear
reaction, and it can be described with the optical potentials between two nuclei. Moreover the optical
potentials are essential in describing not only elastic scattering but also inelastic scattering and transfer
and breakup reactions.

The g-matrix folding model is the standard method for obtaining the optical potential microscop-
ically. In this model, the potential is obtained by folding the g-matrix effective interaction with target
density for NA scattering and with projectile and target densities for AA scattering. The g-matrix effec-
tive interaction is usually evaluated by Brückner-Hartree-Fock (BHF) method for positive energy with
realistic 2NF and is obtained as density- and energy-dependent complex interaction [6, 7, 8].

In present work, we calculate the g matrix based on chiral 2NF and 3NF by the BHF method
for positive energy, and apply the g matrix for NA and AA elastic scattering by using g-matrix folding
model. The folding model with chiral g matrix well reproduce the experimental data for NA and AA
scattering with no adjustable parameter. Therefore we can investigate chiral-3NF effects quantitatively
on NA and AA elastic scattering with present framework. This work is summarized in Ref. [9].
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2. Theoretical framework

2.1 g matrix calculation for 3NF

The g matrix for symmetric nuclear matter is evaluated from BHF method. The 3NF v123 is hard to treat
in nuclear matter. We then derive an effective 2NF v12(3) from v123 by using mean field approximation
[5], that is, v123 is averaged over the third nucleon in the Fermi sea:

〈k′1,k′2|v12(3)|k1,k2〉A = ∑
k3

〈k′1,k′2,k3|v12(3)|k1,k2,k3〉A, (1)

where the subscript A represents the antisymmetrization and the symbol ki stands for quantum numbers,
momentum and z component of spin and isospin, of the i-th nucleon. By using this approximation, the
potential energy is evaluated as

1
2 ∑
k1,k2

〈k1,k2|v12|k1,k2〉A +
1
3! ∑
k1,k2,k3

〈k1,k2,k3|v123|k1,k2,k3〉A

=
1
2 ∑
k1,k2

〈k1,k2|v12 +
1
3

v12(3)|k1,k2〉A. (2)

This means that the g matrix g12 should be calculated by

g12 = v12 +
1
3

v12(3)+(v12 +
1
3

v12(3))G0g12 (3)

with the nucleon propegator G0 including the Q represents the Pauli exclusion operator. Here the single-
particle energy ek for a nucleon with momentum k in the denominator of G0 is obtained by

ek = 〈k|T |k〉+Re[U (k)], (4)

with the single-particle potential,

U (k) =
kF

∑
k′
〈k,k′|g12 +

1
6

v12(3)(1+G0g12)|k,k′〉A, (5)

where T is a kinetic-energy operator. See the ref [5] for detail of BHF calculation. In the present BHF
calculation, the cutoff energy Λ = 550 MeV is used both for N3LO 2NF and N2LO 3NF. The low-
energy constants of chiral nuclear forces are taken from Ref. [10] as (c1,c3,c4) = (−0.81,−3.4,3.4) in
units of GeV−1, and the other constants (cD,cE) = (−4.381,−1.126) are from Ref. [11].

Because the original chiral g matrix obtained from BHF calculation is numerical and nonlocal, it
is inconvenient for many applications such as g-matrix folding model. The original chiral g matrix is
localized by following the Melbourne group procedure [12, 13]. The localized g matrix is equivalent
with the on-shell and near-on-shell matrix elements of the original g matrix. In the present work,
we adopt three-range Gaussian form as the local g matrix for each of central, spin-orbit, and tensor
components and for each spin-isospin channel

gST (s,ρ,E) =
3

∑
i=1

gST
0 (ρ,E)es2/λ 2

i , (6)

where λi is the range parameter and gST
0 (ρ,E) is the complex strength parameter. Here ρ is the density

of the nuclear matter and E is the incident energy of the nucleon. The range parameters and strength
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parameters are determined so as to reproduce the on-shell and near-on-shell matrix elements of the
original chiral g matrix. We obtain the range parameters as (0.4,0.9,2.5) for central component and
(0.5,0.9,1.8) for spin-orbit and tensor components to minimize the χ2-values of the matrix elements.

2.2 folding model
The NA and AA elastic scattering can be described by the one-body Schrödinger equation,

[TR+U−E]χ = 0, (7)

with the optical potential U(R), where E is the incident energy of the projectile and TR is the kinetic-
energy operator concerning the relative coordinateR between the projectile and the target. The optical
potential U is composed of the central (CE) and spin-orbit (LS), and the Coulomb (Coul) component,

U =UCE +ULSL ·σ+VCoul (8)

The central and spin-orbit components of optical potential are calculated by single folding model for
NA scattering and double folding model for AA scattering. The folding potentials contain the direct and
knock-on exchange term UDR and UEX. The knock-on exchange term is nonlocal, but the term can be
localized with high accuracy by the Brieva-Rook approximation [6]. The validity of this approximation
is shown in Refs. [14, 15]. The central component of the localized folding potential for NA scattering
is written as

UDR
CE (R) = ∑

µ ′

∫
drTρ

µ ′

T (rT)gDR
µµ ′(s,ρ), (9)

UEX
CE (R) = ∑

µ ′

∫
drTρ

µ ′

T (|rT−s/2|)3 j1(kFs)
kFs

gEX
µµ ′(s,ρ) j0(K(R)s), (10)

where µ is the z component of the isospin, rT stands for the coordinate of the interacting nucleon
from the center of mass of target, s = R− rT. ρ

µ ′

T is the proton and neutron density of the target
nucleus. gDR(EX)

µµ ′ is the direct (knock-on exchange) component of the effective interaction between two
nucleons which is described by the combination of gST . Here, K(R) is the local momentum defined as
h̄K(R) ≡

√
2µ(E−UCE−VCoul), and K(R) is obtained self-consistently. For spin-orbit component of

the folding potential and detail of the single folding model, see Ref. [16].
For AA scattering, the central component of the localized folding potential is written as

UDR
CE (R) = ∑

µµ ′

∫
drPrTρ

µ

P (rP)ρ
µ ′

T (rT)gDR
µµ ′(s

′,ρ), (11)

UEX
CE (R) = ∑

µµ ′

∫
drPdrTρ

µ

P (|rP−s′/2|)3 j1(kP
Fs′)

kP
Fs′

ρ
µ ′

T (|rT +s
′/2|)3 j1(kT

Fs′)
kT

Fs′

×gEX
µµ ′(s

′,ρ) j0(K(R)s′/M), (12)

where rP stands for the coordinate of the interacting nucleon from the center of mass of projectile,
s′ = rP− rT +R, and M is defined by the mass number of projectile and target nuclei AP and AT as
M = APAT/(AP +AT). See Refs. [17, 18] for the detail of the double folding model and the treatment
of the local density ρ .

For the 4He density, we use the phenomenological proton-density determined from electron scat-
tering [19] in which the finite-size effect due to the proton charge is unfolded in the standard manner
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[20]. The neutron density is assumed to have the same geometry as the proton one. For the target den-
sity, we take the matter densities calculated by the spherical Hartree-Fock method with the Gogny-D1S
interaction [21] in which the spurious center-of-mass motion is removed in the standard manner [22].

3. Results

Fig. 1: The angular distribution of (a) differential cross sections and (b) vector analyzing powers for proton elastic
scattering at E = 65 MeV. The solid and dashed lines represent to the results of chiral g matrix with and without
3NF effects, respectively. Each cross section is multiplied by the factor shown in the figure, while each vector
analyzing power is shifted up by the number shown in the figure. Experimental data are taken from Ref. [23].

First, we consider proton elastic scattering at E = 65 MeV from 40Ca, 58Ni, and 208Pb targets.
Figure 1 shows the differential cross sections dσ/dΩ and vector analyzing power Ay as a function
of scattering angle θc.m.. The solid and dashed lines represent the results of chiral g matrix with and
without 3NF effects. One can see that the chiral g matrix well reproduce the experimental data [23]
without any adjustable parameters. Chiral-3NF effects are small for dσ/dΩ at forward and middle
angles where the data are available, because the scattering is governed by the potentials in the surface
region where 3NF effects are small. However chiral-3NF effects for Ay are seen at middle angles
θc.m. ' 60◦, because Ay is more sensitive for the difference of the potential than dσ/dΩ.

Next, we show the results of 4He elastic scattering at E/A= 72 MeV from 58Ni and 208Pb targets.
Figure 2 show dσ/dΩ as a function of scattering angle θc.m.. The solid and dashed lines represent the
results of chiral g matrix with and without 3NF effects. For both targets, chiral g matrix reproduce the
experimental data [24] and chiral-3NF effects are sizable at middle angles θc.m. > 20◦. The reason why
chiral-3NF effects are sizable for 4He scattering can be explained by near-far decomposition [25]. When
a detector is set on the right-hand side of the target, the outgoing wave going through the right-hand (left-
hand) side of the target is called the near-side (far-side) scattering. The near-side (far-side) component is
mainly induced by repulsive Coulomb (attractive nuclear) force, and in general the near-side (far-side)
component dominates forward-angle (middle-angle) scattering. The oscillations of dσ/dΩ, which are
shown at θc.m. = 5–20◦ in Fig.2, are appeared because of the interference between the near- and far-side
component. When the scattering is dominated by the far-side component, dσ/dΩ has no oscillation and
is sensitive to the change of nuclear force. For 4He scattering, the middle angle θc.m. < 20◦ is dominated
by the far-side component and chiral 3NF effects appear in this region.
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Fig. 2: The angular distribution of differential cross sections for 4He elastic scattering at E = 72 MeV/nucleon
from 58Ni and 208Pb targets. The solid and dashed lines represent the results of the chiral g matrix with and
without 3NF effects, respectively. Each cross section is multiplied by the factor shown in the figure. Experimental
data are taken from Ref. [24]

Figure 3 shows the central part UCE(R) of the folding potential for 4He+208Pb scattering at 72
MeV/nucleon. The solid and dashed lines represent the results of the chiral g matrix with and without
3NF effects. Chiral 3NF, mainly in its the 2π-exchange diagram, makes the potential less attractive and
more absorptive. The repulsive effect mainly comes from the repulsion in the 1E channel of gST because
of the Pauli suppression of isobar ∆ excitation in the nuclear-matter medium, and the absorptive effect
mainly originated in the enhancement of the tensor correlations. The repulsive effect of chiral 3NF
reduces dσ/dΩ at θc.m. > 20◦ for 4He scattering, whereas stronger absorption from chiral 3NF better
separates the far-side amplitude from the near-side one.

4. Summary

We described nucleon-nucleus (NA) scattering at 65 MeV and nucleus-nucleus (AA) scattering at 72
MeV/nucleon based on chiral two-nucleon forces (2NFs) and three-nucleon forces (3NFs), using the
standard BHF method and the g-matrix folding model. We calculated the g matrix for the symmetric
nuclear matter from N3LO 2NF and N2LO 3NF for positive energy by BHF method. Chiral-3NF
effects are mainly come from the 2π-exchange diagram. Chiral 3NF in the 3E channel enhances the
tensor correlations and makes the optical potential more absorptive. In the 1E channel, chiral-3NF effect
make the optical potential less attractive because of the Pauli suppression of isobar ∆ excitation in the
nuclear-matter medium in the conventional picture.

We provided the chiral g matrix with a three-range Gaussian form by following the Melbourne-
group procedure [12, 13]. The localization of the g matrix was performed by making a χ2 fitting to the
on-shell and near-on-shell matrix elements of the original chiral g matrix. This localized Gaussian g
matrix makes the folding procedure much easier. The g-matrix folding model with the chiral g matrix
well reproduced the experimental data with no adjustable parameter for proton and 4He scattering from
various target. We found that chiral-3NF effects are small for proton scattering but sizable for 4He
scattering at the middle angle θc.m. > 20◦. Chiral 3NF reduced the differential cross section at the
middle angle because of its repulsive nature.
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Fig. 3: R dependence of the central part of the folding potential for 4He+208Pb elastic scattering at E = 72
MeV/nucleon. The solid and dashed lines represent the results of chiral g matrix with and without 3NF effects.
Panels (a) and (b) correspond to the real and imaginary parts of UCE.
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