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Abstract
We examine the contributions from interior, surface and exterior parts of the
matrix elements for (d,p) neutron-transfer matrix elements, and show how
their sum may be written as interior-post, exterior-prior terms along with a
surface term. If we locate our surface according to the distance of the trans-
ferred neutron to the target, then the three terms depend on the neutron wave
function at specific radii, and the surface and exterior terms depend only on
that part of the neutron wave function determined by R-matrix parameters for
neutron-target scattering.

1. Deuteron stripping

Deuteron-induced reactions, in particular (d,p) one-neutron transfer reactions, have been used for decades
to investigate the neutron single-particle structure of bound states of nuclei. The reaction typically in-
volves a large momentum transfer of the neutron from a high-energy beam to a bound state, so the
shape of the exit proton angular distribution depend on the transferred angular momentum `. The ana-
lyzing powers for polarized deuterons depends on the neutron j value, and the magnitude of that cross
sections is used to extract a spectroscopic factor S` j for each discrete bound state. In first order the
cross section scales exactly with the spectroscopic factor, while for some cases higher-order corrections
introduce non-linearities. These high-order corrections arise from collective excitations in the entrance
or exit channels, leading to Coupled-Channels Born Approximation (CCBA) methods. They may also
arise for weakly-bound neutron bound states, when multi-step transfers become significant, leading to
Coupled-Reaction Channels (CRC) methods.

At excitation energies above the weakly-bound states, we see of course resonances. Specific res-
onances are very often of importance in astrophysics and other applications because their existence may
change low-energy cross sections by many orders of magnitude. It is therefore of great importance to
measure their structure by whatever means are possible. Resonances with open neutron channels, there-
fore, can and should be probed by (d,p) transfer reactions. Resonances, however, are not characterized
by spectroscopic factors, but by their resonance energies Er and widths Γ. For a resonance which can
be populated (and hence decay) by multiple channels c, each channel has a partial width Γc such that
the total width of the resonance is the sum Γ = ∑c Γc. These channels, for example, could be inelastic
excitations of the target, (n,γ) capture, or proton or α-particle emissions. Ideally each partial width Γc
should be measured. These energies and widths are directly related to the parameters (pole energies
and reduced-width amplitudes) of R-matrix theory [1, 2], either by fitting to observed cross sections, or
by derivation from some microscopic model. It is therefore very desirable to have predictions of (d,p)
cross sections that are based on R-matrix parameters for the neutron-target interaction. These are ex-
actly the parameters that would describe neutron scattering on the target, so, in ideal cases, observables
from (d,p) experiments could be used to predict neutron scattering and the multichannel cross sections
for γ , proton or α exit channels. If the target is radioactive and therefore unable to be a target, then
results from inverse kinematic experiments with deuteron targets may be used to predict neutron cross
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sections.
But is it possible to formulate of (d,p) resonant cross sections in terms of R-matrix parameters

for the neutron? These parameters describe surface and external properties of the wave function of
neutron-target scattering, so we have to determine the dependence of (d,p) cross sections also on the
neutron wave function inside the surface of the target.

One possible obstacle is that the `-dependence of the (d,p) cross section involving resonances is
much less than for reactions to bound states, because the momentum transfer is reduced. Since resonant
(d,p) reactions involve the continuum, they represent one form of deuteron breakup. In the limit of
‘transfer’ to neutron states at the energies of about half the beam energy, the energy and momentum
transfers pass through a minimum, and we must then expect almost no dependence on the transferred
angular momentum `. This means that (d,p) transfers to resonances may well require higher beam
energies for the deuteron, even though this leads to lower cross sections.

2. Post-prior transformations
To examine the dependence of (d,p) cross sections on the interior, surface and exterior regions of the
final neutron state, we use the new formalism [3] devised by Akram Mukhamedzhanov of our TORUS
collaboration. This is to define a surface operator by means of transforming from post to prior matrix
elements not over all space as usual, but at a specific surface radius ρ measured for the neutron-target
distance rn. Let us see how this comes about.

In first-order DWBA for A(d,p)B reactions, the post and prior matrix elements for transfer from
the bound state Φd(r) in a deuteron to a final state Φn(rn) around a target are

Mpost
d p = 〈Φn(rn)up(rp)|Vpost|Φd(r)ud(R)〉 (1)

and Mprior
d p = 〈Φn(rn)up(rp)|Vprior|Φd(r)ud(R)〉, (2)

where ud(R) and up(rp) are the incoming deuteron and outgoing proton optical-model wave functions
with potentials UdA and UpB respectively. The transfer operators are Vpost =Vnp+VpA−UpB and Vprior =
VnA +VpA−UdA .

It can be proven in this first-order case that the post and prior expressions are exactly equivalent.
This proof uses the Hermiticity of the total kinetic energy operator T , which has equivalent represen-
tations for post

←−
T = TnA + TpB and prior

−→
T = Tnp + TdA based on the two equivalent sets of Jacobi

coordinates {rn,rp} and {r,R} for this three-body problem consisting of the proton, neutron and target
A.

The kinetic energy operator is Hermitian in this case because at least one of the bound states
Φd(r) and Φn(rn) goes to zero at large distances. Since the deuteron bound state wave function Φd(r)
decays to zero for large r, the post-prior equivalence of the DWBA matrix element holds not only for
bound final states, but also for unbound scattering states of the neutron on the target.

We can also choose to interchange the two forms of the kinetic energy,
←−
T and

−→
T for limited

regions of the integral over the neutron coordinate rn. Let us define Mpost
d p (a,b) and Mprior

d p (a,b) as the
respective integrals over the range a < rn < b (the integral over the full range of the rp coordinate is
implied). These two matrix element differ by

Mpost
d p (a,b) = Msurf(a)+Mprior

d p (a,b)−Msurf(b), (3)

where we define Msurf(ρ) = 〈Φn(rn)up(rp)|
←−
T −−→T |Φd(r)ud(R)〉rn>ρ . (4)

The result in the previous paragraphs follows from Msurf(0) = Msurf(∞) = 0.
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Fig. 1: Interior, surface, and exterior contributions for 48Ca(d,p)49Ca stripping to the 3/2− ground state, at
Ed = 13 (top left), 19.3 (top right), and 56 MeV (bottom). Shown are the peak cross sections of the individual
contributions (which are proportional to |M(post)

int (0,ρ)|2, |Msurf(ρ)|2, |M(prior)
ext (ρ,∞)|2, respectively), as a function

of surface radius selected. The results are normalized to the peak cross section of the full calculation.

If Md p is the matrix element over the whole space (prior or post, since they are equal), then [3]

Md p = Mprior
d p (0,ρ)+Mprior

d p (ρ,∞), (5)

hence Md p = Mpost
d p (0,ρ)+Msurf(ρ)+Mprior

d p (ρ,∞). (6)

This final equation (6) is of considerable practical value, as it shows a way to separate interior, surface
and exterior contributions of different kinds. The split can be examined for a range of surface radii ρ .
The interior post (first) term is model-dependent, while the exterior prior and surface (second and third)
terms are related to the asymptotic properties of the wave function.

The term Msurf(ρ) is called a surface term, although given in equation (4) as a volume integral,
because the Green’s theorem allows us to convert a volume integral into the surface integral∫

r≥ρ

dr f (r)
[←−

T −−→T
]

g(r) =
h̄2

2µ

∮
r=ρ

dS [g(r)∇r f (r) − f (r)∇r g(r)]

=
h̄2

2µ
ρ

2
∫

dΩr

[
g(r)

∂ f (r)
∂ r

− f (r)
∂g(r)

∂ r

]
r=ρ

. (7)
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Fig. 2: Examination of interior, surface, and exterior contributions for transfers to resonance states in 21O, for
the 3/2+ resonance at 4.77 MeV. The left panel shows the interior (post) term, the surface term, and the exterior
(prior) term, as a function of the surface radius. The right panel shows that improvements to the surface-term-
only approximation can be achieved by including contributions from the prior-exterior term and selecting a small
surface radius. The potential VnA, which binds the neutron to the 20O nucleus, has a radius of 3.39 fm and a
diffuseness of 0.65 fm.

3. Surface transfer operator in first-order models

The matrix elements of a surface transfer operator Msurf(ρ) can be very simply calculated in first-order
DWBA. We may simply take the difference of equations (5) and (6) above, giving

Msurf(ρ) = Mpost
d p (0,ρ)−Mprior

d p (0,ρ) . (8)

This can be easily accomplished using any code for first-order finite-range transfer calculations, such
as FRESCO [4]. Using this equation we first examined [5, 6] the sizes of the three terms in equation (6)
for a range of bound and resonant states for the final neutron in a (d,p) reaction.

Fig. 1 shows, within the DWBA formalism, that the surface contribution is dominant for bound
states at around 5-7 fm for the 48Ca(d,p) at three different beam energies. But still there are non-
negligible contributions from both the interior (post) and exterior (prior) terms.

We have also carried out calculations that test the dominance of the surface term for transfer
reactions that populate resonances, such as the 3/2+ resonance in 21O at 4.77 MeV measured recently
in a 20O(d,p) experiment [7]. We see in the left panel of Fig. 2 that at around ρ = 5 fm the surface term
appears to largely dominate. However, the other terms contribute not incoherently as cross sections, but
coherently as amplitudes. The red-dashed curve in the right panel shows the angular distribution arising
solely from the surface term, and this is clearly short of the exact result. Adding in an exterior-prior
contribution does improve the accuracy considerably, but still not entirely.

4. Surface transfer operator in coupled-channel models

The surface contributions extracted in the previous section are within the context of first-order theory, as
then post and prior matrix elements give identical results and differences can be taken. If breakup in the
entrance channel, say, is important, then it is necessary to go beyond first order. In that case, only the
post matrix element uses the coupled-channels wave function in the entrance channel from the CDCC
methods discussed earlier. This means that the surface operator has to be calculated explicitly in terms
of the multi-channel CDCC wave functions ψCDCC(R,r). In coupled-channel models for transfers,
we use a source term Sβ (R′) that depends on ψCDCC(R,r) to calculate the matrix elements Mβ as the
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asymptotic amplitude of the outgoing wave solutions of [Eβ −Hβ ]uβ (R′) = Sβ (R′), where R′ ≡ rp is the
coordinate of the exiting proton.

In order to calculate transfer cross sections with the surface operator at some final neutron radius
r′ = ρ , we now have to implement the general surface operator of eq. (7), not just its value from the
‘prior–post’ difference as used in eq. (8) above.

The source term Sβ (R′) for the transfer channel using the surface operator at radius r′ = ρ is

Ssurf
β

(R′) = 〈Yβ (R̂
′, r̂′)Φβ (r

′)|←−T −−→T |ψCDCC(R,r)〉r′>ρ (9)

= 〈Yβ (R̂
′, r̂′)Φβ (r

′)|←−TvA−
−→
TvA|ψCDCC(R,r)〉r′>ρ (10)

where r′ ≡ rn is the coordinate of the neutron in the final state. Transforming this matrix element into a
surface integral with Green’s theorem, we have

Ssurf
β

(R′) =
h̄2

2µn

∫
∞

0
dr′
〈

Yβ (R̂
′, r̂′)

∣∣∣δ (r′−ρ)

[
ψCDCC(R,r)

∂Φβ (r′)
∂ r′

−Φβ (r
′)

∂ψCDCC(R,r)
∂ r′

]〉
=

h̄2

2µn

∫
∞

0
dr′
〈

Yβ (R̂
′, r̂′)

∣∣∣δ (r′−ρ)

[
∂Φβ (r′)

∂ r′
−Φβ (r

′)
∂

∂ r′

]∣∣∣ψCDCC(R,r)
〉

(11)

Since the derivative operator ∂/∂ r′ acts on both the radial and angular components of the vectors (R,r)
in the entrance channel, a large number of terms and derivatives need to be evaluated:

We will need the following derivatives for the linear combination r = pr′+qR′:

∂

∂ r′
Y m
` (r̂)

ϕα(r)
r

=
ϕα(r)

r
∂

∂ r′
Y m
` (r̂)+Y m

` (r̂)
∂

∂ r′
ϕα(r)

r

=
p
r

{√
4π`(2`+1)

3
ϕα(r)

r

1

∑
λ=−1
〈`−1 m−λ ,1λ |`m〉Y m−λ

`−1 (r̂)Y λ
1 (r̂′)+Y m

` (r̂)r̂ · r̂′
[

ϕ
′
α(r)−

`+1
r

ϕα(r)
]}

(12)

The needed source term Ssurf
βα

(R′) in a final (proton) channel β from the initial (deuteron) channel
α is, with the surface operator,

Ssurf
βα

(R′) = 〈Yβ (R̂
′, r̂′)Φβ (r

′)|←−TnA−
−→
TnA|Φα(r)YL(R̂)uα(R)〉r′>ρ

=
−h̄2

2µn

∫
∞

0
dr′
〈

Yβ (R̂
′, r̂′)

∣∣∣δ (r′−ρ)

[
∂Φβ (r′)

∂ r′
−Φβ (r

′)
∂

∂ r′

]∣∣∣Φα(r)YL(R̂)
〉

uα(R), (13)

where Φβ is the final state of the neutron, whether bound or unbound. This coupling is non-local as
R′ 6= R, and depends on the derivatives of the deuteron incoming wave function uα(R), so we need to
calculate the two non-local kernel functions Xβα(R′,R) and Yβα(R′,R) to give the source term as

Ssurf
βα

(R′) =
∫

∞

0
dR Xβα(R

′,R)uα(R)+
∫

∞

0
dR Yβα(R

′,R)
[

u′α(R)−
Lα+1

R
uα(R)

]
. (14)

The derivative operators in Eq. (13) operate on all of the radii r,R and their angles r̂, R̂, so X has
four terms. Using the Φα(r) and Φ̂α(r) = 1

r (ϕ
′
α(r)− `+1

r ϕα(r)) variables for both entrance and exit
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Fig. 3: Comparison of methods to calculate the surface transfer contribution, for the 90Zr(d,p) reaction at deuteron
energy of 11 MeV. On the left the surface radius is a = 4 fm, and on the right 8 fm. The gs is a d5/2 neutron state,
and the excited state is a s1/2 state.

channels, kinematical coefficients a′,b′, p,P,J, and Clebsch-Gordan products Gα ′α
m′`MLm`

, we have derived

Xα ′α(R′,R) = J
h̄2

2µn

ρ

a′b′ ∑
m′`m`

1

∑
ML=−1

Gα ′α
m′`MLm`

P|m
′
`|

`′ (cosθr′)P
|ML+m`−m′`|
L′ (cosθR′)[

Φ
′
β
(ρ) Y ML

L (R̂) Y m`
` (r̂)Φα(r)

−Φβ (ρ) Y ML
L (R̂)

p
r

√
4π`(2`+1)

3

1

∑
λ=−1
〈`−1 m`−λ ,1λ |`m`〉Y m`−λ

`−1 (r̂)Y λ
1 (r̂′)Φα(r)

−Φβ (ρ) Y ML
L (R̂)p r̂ · r̂′ Y m`

` (r̂)Φ̂α(r)

−Φβ (ρ) Y m`
` (r̂)Φα(r)

P
R

√
4πL(2L+1)

3

1

∑
Λ=−1

〈L−1 ML−Λ,1Λ|LML〉Y ML−Λ

L−1 (R̂)Y Λ
1 (r̂′)

]
,

(15)

and the derivative term (with ML = 0):

Yα ′α(R′,R) =− J
h̄2

2µn

ρ

a′b′
PΦβ (ρ)Φα(r) R̂ · r̂′

× ∑
m′`m`

Gα ′α
m′`0m`

P|m
′
`|

`′ (cosθr′)P
|m`−m′`|
L′ (cosθR′) Y m`

` (r̂)Y 0
L (R̂). (16)

We use the rotated coordinate frame that has the z-axis parallel to R and the x-axis in the plane of R
and R′. The resulting operator is still non-local like other finite-range transfer operators, but does not
require any internal quadrature over angles. The integral operators, when r = aR+bR′, are now∫

dR̂′
∫

dR̂′ δ (r′−ρ) =
8π2ρ

a′b′RR′

∣∣∣
u=(ρ2−a′2R2+b′2R′2)/(2a′b′RR′)

. (17)

These expressions (15) and (16) have been directly implemented in a LLNL version of our coupled-
channels code FRESCO [4]. In this way we can go beyond first order for neutron transfers both to bound
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and resonance states. The new calculations for the surface term have been validated by comparison with
the angular cross sections obtained in the work described in the previous section 3.. The comparisons
are shown in Figure 3.

Furthermore, their values depends only on the wave function Φβ (ρ) and derivative Φ′
β
(ρ) of the

final neutron wave function at the surface, and these are precisely the numbers that can be uniquely
obtained from standard R-matrix fits of pole positions and reduced-width amplitudes.

When using the surface term derived from CDCC wave functions, the exterior-prior term in eq.
(6) does not appear. That is because the prior term is the coupling derived from Vprior =VnA+VpA−UdA,
and this interaction potential is expected to be that which is diagonalized by the CDCC solution.

5. Results

Nevertheless, as shown in the previous section, the interior-post terms are still significant and need to
be added coherently to the surface contributions. The exterior-prior term is not expected to be present
if we use sufficiently accurate CDCC wave functions in the source term.

Figure 4 shows the relative sizes of these terms for a 20O(d,p)21O reaction that populates a d-
wave neutron resonance at 0.9 MeV. The different panels show the effects of different radii of the
surface, where the black curve shows the surface term, the red line the interior post by itself, and the
green curve shows their coherent sum. Except for the smallest surface radius, the coherent sums are
nearly constant, but there are large variations in the relative sizes of the surface and interior-post terms.
This will provide an essential tool for probing how much these transfer cross sections measure the
surface properties described by R-matrix theory, compared with measuring in part the interior part of
the resonance wave functions.
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6. Discussion
Our aim is to fit neutron pole energies and partial widths to (d,p) cross sections across a resonance.
There have been experiments with many wide and narrow resonances, often overlapping, such as the
early 15N(d,p)16N∗ experiments of [8, 9]. Our results can be generalized to multichannel exit wave
functions, so that, for example, if experiments measure 12N(d,p)16N∗→ α+12B, then the results of our
analyses can be used to predict the (n,α) cross section for a 12N target.

Experimentally, resonance structures are most often studied in elastic and inelastic scattering
reactions. For those reactions, the phenomenological R-matrix approach has been extremely useful for
the interpretation of experiments and for extracting resonance energies and widths from measured cross
sections. The surface integral formalism [3] is essentially an extension of the R-matrix approach to
(d,p) transfer reactions. It holds the potential to overcome present difficulties in describing transfers
to resonance states and to become a practical and sound way for extracting structure information from
transfer experiments, since: a) It reduces the dependence of the cross section calculations on the model
used for the nuclear interior; b) it reduce (in DWBA) or eliminates (in CDCC) the impact of the slow
convergence of calculations of the exterior term when resonances are considered; and c) it establishes a
useful link between resonance properties and transfer observables, since the surface term Msurf(ρ) can
be parameterized in terms of quantities that are familiar from traditional R-matrix approaches. When
resonance studies were carried out in the DBWA formalism, convergence was found to be difficult to
achieve, but the results obtained so far show trends similar to what was found for bound states, with
reduced contributions from the nuclear interior.

In conclusion, we note that the surface formalism for studying resonances with (d,p) uses success-
ful R-matrix ideas to emphasize asymptotic properties of the wave function. It is based on a separation
into interior and exterior, and leads to a surface term which can be expressed in terms of familiar R-
matrix parameters, thus providing spectroscopic information. Our DWBA and CDCC studies show that
the surface term is dominant both in first-order and higher-order calculations, and that the dependence
on a model for nuclear interior is reduced. The surface term alone is not sufficient, however, to entirely
describe the cross sections for transfer reactions, since we find that corrections are required. We ex-
pect that an accurate CDCC implementation (which includes breakup effects) should already include
copings in the exterior, so that there will be no need to include the exterior-prior term when using the
formalism laid out here.
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