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It has been shown recently that relativistic distortions generate a dipolar modulation in the
two-point correlation function of galaxies. To measure this relativistic dipole it is necessary to
cross-correlate different populations of galaxies with for example different luminosities or colours.
In this paper, we construct an optimal estimator to measure the dipole with multiple populations.
We show that this estimator increases the signal-to-noise of the dipole by up to 35 percent. Using
6 populations of galaxies, in a survey with halos and number densities similar to those of the
millennium simulation, we forecast a cumulative signal-to-noise of 4.4. For the main galaxy sample
of SDSS at low redshift z ≤ 0.2 our optimal estimator predicts a cumulative signal-to-noise of 2.4.
Finally we forecast a cumulative signal-to-noise of 7.4 in the upcoming DESI survey. These forecasts
indicate that with the appropriate choice of estimator the relativistic dipole should be detectable in
current and future surveys.

I. INTRODUCTION

The two-point correlation function of galaxies, and its Fourier transform the power spectrum, have been measured
with increasing precision over the last decades. These observables contain valuable information about the global
properties of our universe: its initial conditions, the law of gravity governing its evolution and the amount and nature
of dark energy. To a good approximation, the observed two-point correlation function of galaxies follows the two-
point correlation function of the underlying dark matter. The galaxy correlation function shares therefore the same
statistical properties as the dark matter correlation function. In particular this implies that the galaxy correlation
function is isotropic and that its shape depends only on the galaxies’ separation. The relation between the galaxy
and the dark matter correlation function is simply given via the square of the bias, which in the linear regime is
usually assumed to be scale independent. In this context, measuring the galaxy correlation function allows to directly
characterise the distribution of dark matter in our universe.

Since the 80’s we know however that this description of the two-point function of galaxies is too simplistic since it
does not account for the fact that our observations are made in redshift-space [1–3]. In redshift-space, the peculiar
velocities of galaxies distort the two-point correlation function. As a consequence the correlation function is not
isotropic anymore: it depends on the orientation of the pair of galaxies with respect to the observer’s line-of-sight. One
can show that in the distant-observer approximation, redshift distortions generate a quadrupole and an hexadecapole.
Measurements of these multipoles have been performed in various galaxy surveys (see e.g. [4–10]). These measurements
provide additional information on our universe since they are sensitive to the galaxies’ peculiar velocities. In particular,
combined measurements of the monopole and of the quadrupole allow to measure separately the bias and the growth
rate of fluctuations 1. The fact that we observe in redshift-space is therefore not a complication, but rather an
interesting source of information.

In the past few years, it has been shown that redshift-space distortions are just one of the many distortions that
affect the observed distribution of galaxies. The fractional over-density of galaxies ∆ is distorted by gravitational
lensing [11–19], Doppler effects, gravitational redshift, Sachs-Wolfe effects, Shapiro time-delay and integrated Sachs-
Wolfe [20–23]. These terms distort the coordinate system in which our observations are performed (i.e. redshift and
incoming photon’s direction) and they generate consequently additional fluctuations to ∆. These effects (apart from

1 More precisely, one can measure separately bσ8 and fσ8.
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lensing and Doppler effects) have been called relativistic distortions, since they are suppressed by powers of H/k with
respect to the standard contributions –namely density and redshift-space distortions– and they are therefore expected
to become relevant at large scales, near the horizon. A natural question arises then: can we use similar techniques as
those developed for redshift-space distortions to isolate the relativistic distortions from the standard terms?

In a recent paper [24] (see also [25–27]), we showed that some of the relativistic distortions have a remarkable
property: they break the symmetry of the correlation function under the exchange of the two galaxies in the pair
(this property has been identified previously in Fourier space, where the relativistic distortions generate an imaginary
part to the power spectrum [28, 29]). Obviously to observe such a breaking of symmetry we need more that one
population of galaxies. In [24], we showed that the cross-correlation function between a bright and a faint population
of galaxies contains in addition to the standard monopole, quadrupole and hexadecapole, a dipole and an octupole
directly generated by the relativistic distortions. This suggests that we can isolate the contributions from relativistic
distortions by fitting for a dipole and an octupole in the two-point function. Since these new multipoles are orthogonal
to the monopole, quadrupole and hexadecapole, this method would allow us to get rid of the dominant standard terms
and to target specifically the new relativistic terms. In essence this is very similar to the method used in [30, 31] to
measure gravitational redshift in clusters and to separate it from the dominant Doppler redshift.

In this paper, we calculate the detectability of the relativistic distortions in large-scale structure using this method.
We construct an optimal estimator to isolate the dipole. We then calculate the signal-to-noise for the dipole in a multi-
population case and we show that our optimal estimator allows us to improve the measurement of the relativistic
distortions by up to 35 percent. In a survey with halos and number densities similar to those of the millennium
simulation we expect a cumulative signal-to-noise of 4.4. For the main galaxy sample of SDSS (DR5) at low redshift
we can reach a cumulative signal-to-noise of 2.4. Finally we forecast a cumulative signal-to-noise of 7.4 in the upcoming
Dark Energy Spectroscopic Instrument (DESI) survey. This demonstrates the feasibility of our method to current
and future surveys. The advantage of this method is that it does not require to measure the correlation function
at extremely large scales, of the size of the horizon. By fitting for a dipole we can indeed isolate the relativistic
distortions from the standard terms at scales accessible by current surveys.

The remainder of the paper is organised as follow: in section II we construct a general estimator combining different
populations of galaxies, which isolates the anti-symmetric part of the correlation function. In section III we derive the
variance of this estimator. In section IV we find the kernel which minimises the variance. In section V we calculate
the signal-to-noise of the dipole and in section VI we forecast our method to the millennium simulation, the main
galaxy sample of SDSS and the DESI survey.

II. THE TWO-POINT CORRELATION FUNCTION FOR MULTIPLE POPULATIONS OF GALAXIES

To measure anti-symmetric terms in the two-point correlation function we need more than one population of galaxies.
If all galaxies are the same, we have indeed by construction that 〈∆(x, z)∆(x′, z′)〉 is symmetric under the exchange
of the two galaxies in the pair. If however we split the galaxies into multiple populations with different characteristics,
e.g. different luminosities, then the cross-correlation between two populations with respective luminosities L and L′

can have an anti-symmetric part

〈∆L(x, z)∆L′(x
′, z′)〉 6= 〈∆L(x′, z′)∆L′(x, z)〉 . (1)

The goal of this paper is to construct an estimator which isolates the anti-symmetric part of the correlation function.
We start by splitting the galaxies depending on their luminosity. For each pixel i in the sky, we then count how many
galaxies we have at each luminosity (or in each bin of luminosity). Let us denote this number by nLi(xi), where Li is
the luminosity of the population under consideration and xi is the position of the pixel 2. The overdensity of galaxies
in pixel i with luminosity Li is then

δnLi
(xi) = nLi

(xi)− dn̄Li
, (2)

where dn̄Li
denotes the mean number of galaxies per pixel, with luminosity Li. Note that dn̄Li

depends on the size

2 Here and in the following we work in the distant-observer approximation and we neglect the evolution of our observables with redshift
(see text after eq. (8)). All variables are therefore evaluated at the mean redshift of the survey z̄. For example nLi

(xi, zi) ' nLi
(xi, z̄).

For simplicity we drop the dependence on z̄ in the notation, when it is not needed.
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of the pixels. The most general estimator we can construct, combining all populations of galaxies, is then 3

ξ̂ =
∑
ij

∑
LiLj

wxixjLiLjδnLi(xi)δnLj (xj) , (3)

where the kernel wxixjLiLj depends on the position of the pixels i and j and on the luminosities Li and Lj . This
kernel must be symmetric under the exchange of i and j, which just represents a relabelling of the pixels

wxixjLiLj = wxjxiLjLi . (4)

We want to construct a kernel which isolates the anti-symmetric part of the correlation function. The general
expression for the overdensity of galaxies reads

δnLi(xi) = dn̄Li ·∆Li(xi) = dn̄Li

[
bLiδi −

1

H
∂r(V · n)i + (5sLi − 2)

∫ ri

0

dr
ri − r
2rri

∆Ω(Φ + Ψ) + ∆rel
Li

(xi)

]
, (5)

where Φ and Ψ are the two metric potentials 4, δ is the density contrast, V is the peculiar velocity, n is the observed
direction, H is the conformal Hubble parameter, r is the conformal distance to the source and ∆Ω denotes the angular
Laplacian. The indices i represents a value evaluated in pixel i, and bLi

and sLi
denote respectively the bias and the

slope of the luminosity function of the galaxy population with luminosity Li. The first term in eq. (5) is the density
contribution and the second term is the contribution from redshift-space distortions. We call the sum of these two
contributions the standard terms

δnstand
Li

(xi) = dn̄Li

[
bLi

δi −
1

H
∂r(V · n)i

]
. (6)

The third term in eq. (5) denotes the so-called lensing magnification bias which depends on the slope of the luminosity
function sLi and the last term encodes all the relativistic distortions. The relativistic distortions contain contributions
with one gradient of the gravitational potentials and contributions directly proportional to the potentials. As shown
in [24], the terms with one gradient of the potentials are those that generate an anti-symmetry in the correlation
function 5. They read

δnrel
Li

(xi) = dn̄Li

{
1

H
∂rΨi +

1

H
(V̇ · n)i +

[
1− Ḣ
H2
− 2

rH
+ 5sLi

(
1− 1

rH

)]
(V · n)i

}
, (7)

where the first term is the contribution from gravitational redshift and the other terms are Doppler contributions.
Here a dot denotes derivative with respect to conformal time η. In theories of gravity where Euler equation is valid,
we can rewrite the gradient of the potential as a function of velocity and we obtain

δnrel
Li

(xi) = −dn̄Li

(
Ḣ
H2

+
2

rH

)
(V · n)i . (8)

Here and in the following we neglect for simplicity the contribution proportional to the slope of the luminosity function
in eq. (7), i.e. we set sLi

= 0. We also neglect the anti-symmetric contributions generated by evolution effects and
wide-angle effects, assuming that all the anti-symmetric signal is due to the relativistic distortions in eq. (8). The
effect of evolution has been calculated in [24] and shown to be small: less than 5% of the relativistic signal at redshift
z = 0.25 and less than 9% at z = 0.5 (see blue dashed line of figure 11). The wide-angle effects have been calculated
in a companion paper [32], where we show that with the appropriate choice of kernel they are of the same order
of magnitude as the relativistic effects (albeit slightly smaller) and with an opposite sign, see figure 3 of [32] left
panel. In the following we disregard nevertheless the wide-angle effects. We are indeed primarily interested to find

3 Note that in the estimator we do not divide δnLi
(xi) by dn̄Li

, as is usually done for auto-correlations. The reason is that dn̄Li
depends

on luminosity and dividing by this factor is similar to applying a weighting to the different populations. Such a factor should therefore
be included in the general kernel wxixjLiLj

.
4 We use here the following convention for the metric ds2 = a2

[
− (1 + 2Ψ)dη2 + (1 − 2Φ)δijdx

idxj
]
, where a is the scale factor and η

denotes conformal time.
5 Note that the lensing magnification bias also generates an anti-symmetry in the two-point function. However, as shown in [24] this

contribution is always significantly smaller than the terms in eq. (7) and it can safely be neglected.
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Figure 1: Coordinate system in which the dipole is observed.

the kernel that will optimise the measurement of the relativistic dipole. As discussed in [24], once the dipole has
been measured we can in principle easily separate the wide-angle contribution from the relativistic contribution by
using measurements of the quadrupole. Another strategy would be to find the kernel that optimise the measurement
of the relativistic dipole while minimising the contribution from the wide-angle dipole. We defer this more involved
calculation to a future paper.

As shown in [24], in the case of two populations of galaxies –a bright and a faint population– the contribution (8)
generates a dipole in the correlation function

〈δnstand
B (xi)δn

rel
F (xj)〉+ 〈δnrel

F (xi)δn
stand
B (xj)〉 =

dn̄Bdn̄F(bB − bF)

(
Ḣ
H2

+
2

rH

)
H
H0

f

2π2

∫
dkkH0P (k, z̄)j1(kdij) · cosβij , (9)

where P (k, z̄) is the density power spectrum at the mean redshift of the survey:

〈δ(k, z̄)δ(k′, z̄)〉 = (2π)3P (k, z̄)δD(k + k′) , (10)

f is the growth rate, dij is the pair separation and βij denotes the orientation of the pair with respect to the
line-of-sight 6, as depicted on figure 1.

Eq. (9) is anti-symmetric under the exchange of the bright and faint population: dn̄Bdn̄F(bB−bF) = −dn̄Fdn̄B(bF−
bB). It is also anti-symmetric under the exchange of the relative position of the pixels, i.e. when βij goes into βij +π.
To isolate this term, we need therefore a kernel w which is anti-symmetric under the exchange of Li and Lj

wxixjLiLj = −wxixjLjLi , (11)

as well as anti-symmetric under the exchange of xi and xj

wxixjLiLj
= −wxjxiLiLj

. (12)

These properties of the kernel insure us that the standard density and redshift-space distortions do not contribute
to the mean of the estimator. Inserting (6) into (3) we have indeed〈

ξ̂stand
〉

=
∑
ij

∑
LiLj

wxixjLiLjdn̄Lidn̄Lj

[
bLibLj 〈δiδj〉 −

1

H
bLi〈δi ∂r(V · n)j〉 −

1

H
bLj 〈δj ∂r(V · n)i〉

+
1

H2
〈∂r(V · n)i∂r(V · n)j〉

]
= 0 , (13)

since wxixjLiLj is anti-symmetric under the exchange of Li and Lj whereas the bracket in (13) is symmetric (to show

this we use that 〈δj ∂r(V ·n)i〉 = 〈δi ∂r(V ·n)j〉). This argument applies also to all relativistic distortions in ∆rel
Li

that

6 Note that since we work here in the distant-observer approximation, the line-of-sight to the median, to the bright and to the faint galaxy
are all parallel.
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have no gradients of Φ and Ψ. On the other hand, the terms in eq. (8), which have only one gradient of the potential,
survive in the mean

〈
ξ̂
〉

=
〈
ξ̂rel
〉

= −

(
Ḣ
H2

+
2

rH

)∑
ij

∑
LiLj

wxixjLiLj
dn̄Li

dn̄Lj

[
bLi

〈
δi(V · n)j

〉
+ bLj

〈
δj(V · n)i

〉]

= −

(
Ḣ
H2

+
2

rH

)∑
ij

∑
LiLj

wxixjLiLjdn̄Lidn̄Lj

(
bLi − bLj

)〈
δi(V · n)j

〉
, (14)

where we have used that

〈δi(V · n)j
〉

= − H
H0

f

2π2

∫
dkkH0P (k, z̄)j1(kdij) · cos(βij) (15)

=
H
H0

f

2π2

∫
dkkH0P (k, z̄)j1(kdji) cos(βji) = −

〈
δj(V · n)i

〉
.

Since dn̄Li
dn̄Lj

(
bLi
− bLj

)
is clearly anti-symmetric under the exchange of Li and Lj , eq. (14) does not vanish under

the summation over Li and Lj . The generic kernel defined by eqs. (11) and (12) therefore allows us to isolate the
relativistic terms from the dominant density and redshift-space distortions.

A simple example for the kernel w is

wxixjLiLj
=

3

8π

[
θ(Li − Lj)− θ(Lj − Li)

]
cosβijδK(dij − d) , (16)

where θ is the Heaviside function. In the case of two populations of galaxies (bright and faint), inserting kernel (16)
into eq. (14) we obtain

〈ξ̂〉 = cNdn̄Bdn̄F

(
bB − bF

)( Ḣ
H2

+
2

rH

)
H
H0

f

2π2

∫
dkkH0P (k, z̄)j1(kd) , (17)

where cN is a normalisation factor.
We now want to find the kernel which maximises the signal-to-noise of the dipole in a generic survey with multiple

populations of galaxies.

III. VARIANCE

We start by calculating the variance of our estimator (3):

var(ξ̂) = 〈ξ̂2〉 − 〈ξ̂〉2 =
∑
ijLiLj

∑
abLaLb

wxixjLiLj
wxaxbLaLb

×
(〈
δnLi(xi)δnLj (xj)δnLa(xa)δnLb

(xb)
〉
−
〈
δnLi(xi)δnLj (xj)

〉〈
δnLa(xa)δnLb

(xb)
〉)

=2
∑
ijLiLj

∑
abLaLb

wxixjLiLj
wxaxbLaLb

〈
δnLi

(xi)δnLa
(xa)

〉〈
δnLj

(xj)δnLb
(xb)

〉
, (18)

where we have used Gauss theorem to expand the four-point correlation function in products of two-point functions
and we have used the symmetry property of the kernel eq. (4).

A. Poisson noise

The first contribution to eq. (18) comes from Poisson noise. We have〈
δnLi(xi)δnLa(xa)

〉
=
〈(
nLi(xi)− dn̄Li

)(
nLa(xa)− dn̄La

)〉
=
〈
nLi

(xi)nLa
(xa)

〉
− dn̄Li

dn̄La
. (19)

We have different cases:
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• i 6= a:
〈
nLi(xi)nLa(xa)

〉
=
〈
nLi(xi)

〉〈
nLa(xa)

〉
= dn̄Lidn̄La , so that

〈
δnLi(xi)δnLa(xa)

〉
= 0.

• i = a and Li = La:
〈
n2
Li

(xi)
〉

= dn̄Li
+ dn̄2

Li
, so that

〈
δn2

Li
(xi)

〉
= dn̄Li

.

• i = a and Li 6= La = L′i, i.e. in the same pixel i we look at different populations. The Poisson fluctuations of
these different populations are uncorrelated so that〈

nLi
(xi)nL′i(xi)

〉
=
〈
nLi

(xi)
〉〈
nL′i(xi)

〉
〉 = dn̄Li

dn̄L′i and
〈
δnLi

(xi)δnL′i(xi)
〉

= 0 . (20)

The Poisson noise can therefore generally be written as〈
δnLi(xi)δnLa(xa)

〉
= dn̄LiδiaδLiLa . (21)

Inserting this in the variance we obtain

varP(ξ̂) = 2
∑
ijLiLj

(wxixjLiLj
)2dn̄Li

dn̄Lj
. (22)

Even if the kernel is anti-symmetric in Li ↔ Lj , the Poisson term does not vanish because according to eq. (21) it
is non-zero only when i = a and Li = La. As a consequence, only the square of the kernel (which is symmetric in
Li ↔ Lj) enters into eq. (22). Note that to derive (22) we have assumed that galaxies follow Poisson statistics. This
is a simplifying assumption. Simulations have indeed shown that exclusion and non-linear clustering effects generate
non-diagonal shot-noise contributions through correlations between galaxies of different luminosities and correlations
between close pixels [33].

B. Cosmic variance

The second contribution to eq. (18) comes from the cosmic variance of the density and redshift distortions contri-
butions (6) (which dominate over the cosmic variance of the relativistic terms)

varC(ξ̂) =2
∑
ijab

∑
LiLjLaLb

dn̄Lidn̄Ljdn̄Ladn̄Lb
wxixjLiLjwxaxbLaLb

(23)

×
[
bLi

bLa
〈δiδa〉 −

1

H
bLi
〈δi ∂r(V · n)a〉 −

1

H
bLa
〈δa ∂r(V · n)i〉+

1

H2
〈∂r(V · n)i∂r(V · n)a〉

]
×
[
bLj

bLb
〈δjδb〉 −

1

H
bLj
〈δj ∂r(V · n)b〉 −

1

H
bLb
〈δb ∂r(V · n)j〉+

1

H2
〈∂r(V · n)j∂r(V · n)b〉

]
.

Many of the products in the brackets vanish since they are symmetric under the exchange Li ↔ Lj or La ↔ Lb,
whereas the kernels wxixjLiLj and wxaxbLaLb

are anti-symmetric. The remaining terms read

varC(ξ̂) =
∑
ijab

∑
LiLjLaLb

dn̄Lidn̄Ljdn̄Ladn̄Lb
wxixjLiLjwxaxbLaLb

(bLi − bLj )(bLa − bLb
) (24)

× 1

H2

[
〈δiδa〉〈∂r(V · n)j∂r(V · n)b〉 − 〈δi∂r(V · n)a〉〈δj∂r(V · n)b〉

]
.

As shown in appendix B 2, going to the continuous limit and using a change of variables we can show that the second
line of eq. (24) is proportional to

1

45
+

2

63
P2(n · k̂) +

2

35
P4(n · k̂)− 1

9
P 2

2 (n · k̂) = 0 , (25)

where P` denotes the Legendre polynomial of degree `. This shows that the properties of the kernel allow us to get
rid of the standard dominant terms (density and redshift-space distortions) not only in the signal but also in the
variance. This cancellation greatly enhances the detectability of the relativistic dipole. Note that the cancellation of
the cosmic variance for multiple populations of galaxies has already been discussed in detail in the case of the power
spectrum [34, 35].
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C. Mixed term

The variance (18) also contains mixed contributions, where the cosmic variance contributes to one of the correlation
and the Poisson noise to the other. These terms read

varCP(ξ̂) =4
∑
ija

∑
LiLjLa

wxixjLiLj
wxaxjLaLj

dn̄Li
dn̄Lj

dn̄La
(26)

×
[
bLibLa〈δiδa〉 −

1

H
bLi〈δi ∂r(V · n)a〉 −

1

H
bLa〈δa ∂r(V · n)i〉+

1

H2
〈∂r(V · n)i∂r(V · n)a〉

]
.

Note that if galaxies do not follow Poisson statistics, this contribution will also be modified.
The total variance is then simply the sum of eqs. (22) and (26).

IV. OPTIMISING THE KERNEL

We want to find the kernel wxixjLiLj which minimises the variance under the constraint that our estimator is

unbiased i.e.
〈
ξ̂
〉

= ξtrue. This kernel must be symmetric in i and j (see eq. (4)), since we have used this property to
derive the variance. We construct the Lagrangian

L = var(ξ̂) + λ0

[
〈ξ̂〉 − ξtrue

]
+
∑
ijLiLj

λijLiLj

(
wxixjLiLj

− wxjxiLjLi

)
, (27)

where λ0 and λijLiLj are Lagrange multipliers.

Minimising (27) with respect to λ0 gives 〈ξ̂〉 = ξtrue. Minimising with respect to λcdL∗cL∗d , where L∗c and L∗d denote
two specific values of the luminosity in pixels c and d, gives wxcxdL∗cL

∗
d

= wxdxcL∗dL
∗
c
. Minimising with respect to

wxcxdL∗cL
∗
d

gives

∂var(ξ̂)

∂wxcxdL∗cL
∗
d

+ λ0
∂〈ξ̂〉

∂wxcxdL∗cL
∗
d

+ λcdL∗cL∗d − λdcL∗dL∗c = 0 , (28)

and minimising with respect to wxdxcL∗dL
∗
c

gives

∂var(ξ̂)

∂wxdxcL∗dL
∗
c

+ λ0
∂〈ξ̂〉

∂wxdxcL∗dL
∗
c

+ λdcL∗dL∗c − λcdL∗cL∗d = 0 . (29)

Taking the sum of eqs. (28) and (29) we obtain

∂var(ξ̂)

∂wxcxdL∗cL
∗
d

+
∂var(ξ̂)

∂wxdxcL∗dL
∗
c

+ λ0

(
∂〈ξ̂〉

∂wxcxdL∗cL
∗
d

+
∂〈ξ̂〉

∂wxdxcL∗dL
∗
c

)
= 0 . (30)

Inserting the expressions for the mean and the variance into eq. (30) and dividing by 8dn̄L∗cdn̄L∗d , we can rewrite
eq. (30) in matrix notation as

w + wN +NTw = B , (31)

where

wij ≡ wxixjLiLj
, Bij ≡

λ0

4

(
Ḣ
H2

+
2

rH

)
(bLi − bLj )

〈
δi (V · n)j

〉
and (32)

Nij ≡ dn̄Li

[
bLi

bLj
〈δiδj〉 −

1

H
bLi
〈δi ∂r(V · n)j〉 −

1

H
bLj
〈δj ∂r(V · n)i〉+

1

H2
〈∂r(V · n)i∂r(V · n)j〉

]
. (33)

To solve eq. (31), we first add the term NTwN . Using the same steps as in appendix B 2 we can indeed show that
this term is zero. With this term eq. (31) becomes

(11 +NT )w(11 +N) = B , (34)
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and the solution is

w = (11 +NT )−1B(11 +N)−1 . (35)

Eq. (35) is the kernel which maximises the signal-to-noise for the dipole. This kernel is relatively sophisticated since
for each pair of pixels it involves a sum over all other pairs of pixels in the survey. Its role is to maximise the signal,
while simultaneously minimising the noise due to both Poisson sampling and the product of Poisson sampling with
cosmic variance. In [36], it has been shown that the measurement of the standard power spectrum can be improved
by using bias-dependent weights. In addition [37] showed that Poisson noise can be significantly reduced by using an
appropriate weighting. Our optimal kernel incorporates these effects in configuration space, for the measurement of
the relativistic dipole.

Kernel (35) can be simplified in the case where the Poisson noise dominates over the mixed term (this is usually the
case at small separations, see appendix A). In this case, 11 dominates over N and we can expand eq. (35) in powers
of N around 11. We obtain at lowest order

wxixjLiLj
' λ0

4

(
Ḣ
H2

+
2

rH

)
(bLi
− bLj

)〈δi (V · n)j〉 . (36)

This kernel is quite intuitive: it shows that the measurement of the dipole can be improved by weighting more
the cross-correlations between galaxies with very different biases, for which the signal is larger. It is however not
optimal at large separation, where the mixed term dominates over the Poisson noise. In the following, we will use the
simplified kernel (36) to explicitly calculate the signal-to-noise. As we will see using this kernel already improves the
signal-to-noise significantly. We defer to a forthcoming paper the study of the whole kernel (35), which will lead to
further improvement, especially at large scales.

V. SIGNAL-TO-NOISE

We calculate the signal-to-noise for the dipole, using the kernel in eq. (16) (kernel 1) and the optimised kernel in
eq. (36) (kernel 2). This kernel is defined up to a constant of normalisation which we choose similarly to eq. (16). We
can write

wxixjLiLj =
3

8π
g(dij)h(Li, Lj) cosβijδK(dij − d) , (37)

where

g(dij) =

{
1 for kernel 1
α(dij) for kernel 2

and h(Li, Lj) =

{
θ(Li − Lj)− θ(Lj − Li) for kernel 1
bLi
− bLj

for kernel 2
(38)

with

α(dij) =
1

2π2

(
Ḣ
H2

+
2

rH

)
H
H0

f

∫
dk kH0P (k, z̄)j1(kdij) . (39)

The mean of the estimator is

〈ξ̂〉 =
3

8π

∑
ijLiLj

dn̄Li
dn̄Lj

(bLi
− bLj

)g(dij)h(Li, Lj)α(dij) cos2βijδK(dij − d) . (40)

As shown in appendix B, in the continuous limit this expression reduces to

〈ξ̂〉 =
1

2
Ntot`pd

2N̄g(d)α(d)
∑
LL′

n̄Ln̄L′h(L,L′)(bL − bL′) , (41)

where `p denotes the length of the cubic pixels, Ntot is the total number of galaxies in the survey, N̄ is the mean
number density:

N̄ =
1

`3p

∑
L

dn̄L , (42)
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and n̄L is the fractional number of galaxies with luminosity L:

n̄L =
dn̄L∑
L′ dn̄L′

. (43)

In the case of two populations of galaxies we obtain for the kernel 1 and 2

〈ξ̂〉K1 = Ntot`pd
2N̄α(d)n̄Bn̄F (bB − bF ) , (44)

〈ξ̂〉K2 = Ntot`pd
2N̄α2(d)n̄Bn̄F (bB − bF )2 . (45)

The Poisson contribution to the variance is given by (see appendix B for more detail)

varP(ξ̂) = 2

(
3

8π

)2 ∑
ijLiLj

dn̄Lidn̄Ljh
2(Li, Lj)g

2(dij) cos2 βijδK(dij − d)δK(d− d′)

=
3

8π
Ntot`pd

2N̄g2(d)
∑
LL′

n̄Ln̄L′h
2(L,L′)δD(d− d′) . (46)

The mixed term in the variance is more complicated to calculate since it contains a sum over three pixels. The
derivation is presented in appendix B, where we show that in the continuous limit this term can be written as

varCP(ξ̂) =
9

8π
NtotN̄

2`2pd
2d′2g(d)g(d′)

[
D0σ0(d, d′) +D2σ2(d, d′) +D4σ4(d, d′)

]
. (47)

Here

σ`(d, d
′) = − 1

2π2

∫ 1

−1

dµµ

∫ 1

−1

dν ν

∫ 2π

0

dϕ

∫
dkk2P (k, z̄)j`(ks)P`

(
dµ+ d′ν

s

)
, ` = 0, 2, 4 , (48)

and

s =

√
d2 + d′2 + 2dd′

(
µν +

√
(1− µ2)(1− ν2) sinϕ

)
. (49)

The coefficients D` are defined as

D0 =
∑
LL′L′′

h(L,L′)h(L′′, L′)n̄Ln̄L′ n̄L′′
[
bLbL′′ + (bL + bL′′)

f

3
+
f2

5

]
, (50)

D2 = −
∑
LL′L′′

h(L,L′)h(L′′, L′)n̄Ln̄L′ n̄L′′
[
(bL + bL′′)

2f

3
+

4f2

7

]
, (51)

D4 =
∑
LL′L′′

h(L,L′)h(L′′, L′)n̄Ln̄L′ n̄L′′
8f2

35
. (52)

Note that contrary to the Poisson contribution, the mixed term does not vanish for d 6= d′. It introduces therefore
correlations of the dipole at different separations.

Combining eqs. (41), (46) and (47), the signal-to-noise at fixed separation d becomes

S

N
(d) =

〈ξ̂〉(d)√
var(ξ̂)(d)

=

√
2πNtot

3

Aα(d)[
B
(
N̄d2`p

)−1
+ 3
(
D0σ0(d, d) +D2σ2(d, d) +D4σ4(d, d)

)]1/2 , (53)

where

A =
∑
LL′

n̄Ln̄L′h(L,L′)(bL − bL′) , (54)

B =
∑
LL′

n̄Ln̄L′h
2(L,L′) . (55)

These coefficients as well as the D` defined in eqs. (50) to (52) depend on the biases and number densities of the
different populations of galaxies that we are cross-correlating. In the case where we have only two populations of
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galaxies, the two kernels give exactly the same signal-to-noise since the function h(L,L′) can be factorised out of
eqs. (50)-(52), (54) and (55).

If the noise is dominated by Poisson sampling, the signal-to-noise (53) becomes

S

N
=
Aα(d)√

6B

√
Npair , (56)

where Npair(d) = 4πNtotN̄`pd
2 is the total number of pairs at fixed separation d. This number depends on the size

of the pixel `p.
On the other hand, if the noise is dominated by the mixed term, the signal-to-noise is

S

N
=
√

2πNtot
Aα(d)

3
[(
D0σ0(d, d) +D2σ2(d, d) +D4σ4(d, d)

)]1/2 . (57)

In this case, the signal-to-noise depends only on the total number of galaxies Ntot and is independent on the pixeli-
sation.

Eq. (53) represents the signal-to-noise at fixed separation d. To calculate the cumulative signal-to-noise over a
range of separation, we need to account for the covariances between separations. We have(

S

N

)2

cum

=
∑
ij

〈ξ̂〉(di)var(ξ̂)−1(di, dj)〈ξ̂〉(dj) , (58)

where var(ξ̂) is given by the sum of eqs. (46) and (47).

VI. FORECASTS

We apply now our method to concrete examples. We start by validating the calculation of the errors using mea-
surements from the BOSS survey. In [32] we present a measurement of the dipole for two populations of galaxies in
the LOWz and CMASS samples, data release DR10 [38], using kernel 1. Here we use this measurement to compare
the observed errors (obtained by Jackknife) with our predictions using eqs. (46) and (47). Since the number density
of galaxies as well as the fractional number of bright and faint galaxies are evolving through the sample, we split
them into thin redshift slices of ∆z ∼ 0.01 and we calculate the errors in each bin. The total error in the samples is
then obtained by averaging the errors over the redshift slices 7. The mean bias of the bright and faint populations
have been measured using the monopole of the total sample and the monopole of the cross-correlation between the
bright and faint populations [32]. In LOWz we found a mean bias for the bright population of bB = 2.30 and for
the faint population of bF = 1.31. In the CMASS sample we found bB = 2.36 and bF = 1.46. In both samples we
use cubic pixels with size `p = 4 Mpc/h for separations 16 ≤ d ≤ 120 Mpc/h. The errors are shown in figure 2. Our
prediction under-estimates the Jackknife errors by up to 30 percent both in the LOWz and in the CMASS sample.
We have checked that the Jackknife errors for the monopole and the quadrupole agree well with the errors from the
BOSS collaboration [38], obtained from simulations. This gives us confidence that the Jackknife errors on the dipole
are reliable. The 30 percent difference between the Jackknife errors and our theoretical predictions could be due to
inhomogeneous sampling in the BOSS data. These inhomogeneities are accounted for by weighting the data appropri-
ately and are consequently captured by the Jackknife errors but they are not encoded in the theoretical predictions.
We will investigate this in more detail in a future work.

A. Multi-population of halos in the millennium simulation

We now calculate the signal-to-noise for multiple populations of galaxies in three concrete examples. First we use
the millennium-XXL simulation [39]. The millennium simulation does not contain relativistic distortions and it is

7 Note that to compare the theoretical signal to the measurement, we must divide eq. (44) by Ntot`pd2N̄n̄B n̄F . We therefore apply the
same normalisation to eqs. (46) and (47).
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Figure 2: Errors in the measurements of the dipole (black dots) in the LOWz and CMASS samples. The red solid line
represents the theoretical prediction from eqs. (46) and (47), calculated with pixel size `p = 4 Mpc/h.

therefore not expected to contain a dipole 8. This simulation is however useful since it contains various populations
of halos with different masses (and consequently biases) that we can use as a model to predict how the optimal kernel
increases the signal-to-noise.

We use measurements from [40], where halos in the millennium simulation have been separated into 6 mass bins.
For each bin, the bias and number density have been measured. These measurements are summarised in table I. They
were performed at z = 0. Here we use them to calculate the signal-to-noise for the dipole between z = 0 and z = 0.2,
assuming that they are valid over this redshift range. We split the volume into two redshift bins of width ∆z = 0.1
and we calculate the signal-to-noise in each bin. Since the redshift bins are to a good approximation uncorrelated
we obtain the total signal-to-noise by adding in quadrature the signal-to-noise from each bin. The volume of the
box is (4.11 Gpc/h)3. In this box we count the number of halos we would see on our past light-cone in each of the
redshift bins. The number density in the simulation is N̄ = 2.7 × 10−3 (h/Mpc)3 leading to a total number of halos
Ntot = 2.9× 105 in the lowest redshift bin and Ntot = 1.86× 106 in the highest redshift bin.

Halo mass [M�h
−1] bL n̄L

1 − 3 × 1012 0.8 0.842

7 − 8 × 1012 1 0.045

1 − 3 × 1013 1.1 0.092

5 − 7 × 1013 1.5 0.009

9 × 1013 − 3 × 1014 2 0.01

3 − 6 × 1014 2.9 0.002

Table I: Biases and fractional number densities for six populations of halos with different masses, measured in the millennium
simulation at z = 0 [40].

We calculate the signal-to-noise in three different cases: the six populations of table I with kernel 1; the six
populations of table I with kernel 2; and two populations, the first one (faint) corresponding to the first mass bin in
table I, and the second one (bright) combining bins 2 to 6. The mean bias for the bright population is bB = 1.17 and
the mean fractional number of galaxies is n̄B = 0.158. The signal-to-noise for the three cases is plotted in figure 3.
Going from two populations of galaxies to six populations of galaxies increases the signal-to-noise by 7 percent. This
is simply due to the fact that for six populations the number of possible cross-correlations is larger than for two
populations and the noise is consequently smaller. Then using the optimal kernel provides a further improvement of
28 percent, leading to a total improvement of 35 percent.

8 Note that some simulations, like for example the MICE simulation [41], do provide the distribution of galaxies on the light-cone. As a
consequence, those simulations contain part of the relativistic dipole, namely all the terms proportional to the velocity in eq. (7).
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Figure 3: Predicted signal-to-noise for the dipole between z = 0 and z = 0.2 in a survey with the same characteristics as the
millennium simulation, plotted as a function of separation between galaxies. We use pixels of size 8 Mpc/h. The green dotted
line corresponds to two populations with kernel 1 (same with kernel 2). The black dashed line corresponds to six populations
with kernel 1 and the red solid line to six populations with kernel 2.

The cumulative signal-to-noise from 8 to 120 Mpc/h can be calculated from eq. (58). For two populations of galaxies
we find a cumulative signal-to-noise of 3.3. With six populations and kernel 1 the signal-to-noise becomes 3.5, whereas
the optimal kernel allows us to reach a cumulative signal-to-noise of 4.4. This indicates that with the optimal kernel a
detection of the dipole in a survey with characteristics similar to those of the millennium simulation should be possible.
Note that the naive cumulative signal-to-noise obtained by simply summing over separations without accounting for
the covariance between bins is of 7.8 instead of 4.4 for the optimal kernel. This shows that the bins in separation are
significantly correlated.

B. Multi-populations of galaxies in the main sample of SDSS DR5

As a second example we apply our method to the main sample of galaxies in the data release DR5 of SDSS. This
sample has two advantages with respect to the BOSS LOWz and CMASS samples. First it is at lower redshift, where
the dipole is larger. And second it contains a more diverse population of galaxies for which the biases are significantly
different. In [42], Percival et al. split the main galaxy sample into nine bins of luminosity and measured the bias for
each population. For our calculation of the signal-to-noise we group these nine populations into six populations. The
mean number density of galaxies is N̄ = 4.3 × 10−3 (h/Mpc)3. As before we split the survey into two redshift bins
of width ∆z = 0.1 and we calculate the signal-to-noise in each of the bins. In total we have 465’789 galaxies: 62’705
in the lowest redshift bin and 403’083 in the highest redshift bin. The values of the biases and fractional number
densities for the different populations are extracted from [42, 43] and are summarised in table II.

Mean magnitude bL n̄L

-22.5 2.16 0.046

-21.75 1.68 0.017

-21.25 1.44 0.017

-20.25 1.32 0.328

-19.25 1.08 0.164

-18.5 0.96 0.428

Table II: Biases and fractional number densities for six populations of galaxies with different magnitude, measured in the data
release DR5 of SDSS [42, 43].

We calculate the signal-to-noise in three different cases: the six populations of table II with kernel 1; the six
populations of table II with kernel 2; and two populations, the first one (bright) combining the bins 1 to 4 in table I,



13

10 1005020 3015 70

0.6

0.8

1.0

1.2

1.4

d @Mpc�hD

S�N

Figure 4: Predicted signal-to-noise for the dipole in the data release DR5 of SDSS z ≤ 0.2, plotted as a function of separation
between galaxies. We use pixels of size 8 Mpc/h. The green dotted line corresponds to two populations with kernel 1 (same
with kernel 2). The black dashed line corresponds to six populations with kernel 1 and the red solid line to six populations
with kernel 2.

and the second one (faint) combining the bins 5 and 6. The mean bias for the bright population is bB = 1.43 and the
mean fractional number of galaxies is n̄B = 0.408. The mean bias for the faint population is bF = 0.99 and the mean
fractional number of galaxies is n̄F = 0.592. The signal-to-noise for the three cases is plotted in figure 4. The optimal
kernel with six populations increases the signal-to-noise by 28 percent with respect to the case of two populations:
we gain 14 percent by going from two populations to six populations with kernel 1, and using kernel 2 gives a further
increase of 14 percent. The cumulative signal-to-noise from 8 to 120 Mpc/h is of 1.8 in the case of two populations,
2.1 with six populations and kernel 1 and 2.4 with six populations and the optimal kernel.

C. The Dark Energy Spectroscopic Instrument

Finally we forecast the signal-to-noise for the future Dark Energy Spectroscopic Instrument (DESI) [44]. The Bright
Galaxy DESI survey [45] will observe 10 million galaxies at low redshift z ≤ 0.3 over 14’000 square degrees. We split
this sample into three redshift bins of size ∆z = 0.1 and calculate the signal-to-noise in each bin using table II, i.e.
assuming that the DESI Bright Galaxy sample can be split in luminosity in a similar way as the SDSS sample. The
signal-to-noise in shown in figure 5. With 6 populations and the optimal kernel we reach a signal-to-noise of 4.3 per
bin between 15 and 30 Mpc/h. The improvement of the signal-to-noise with respect to SDSS is mainly due to the
fact that DESI will observe a significantly larger number of galaxies, thanks to the fact that both the volume and the
galaxy number density are larger in DESI than in SDSS. As shown in eq. (53) the signal-to-noise is indeed proportional
to
√
Ntot. This increases the signal-to-noise by a factor 2.6 in the redshift bins 0 < z < 0.1 and 0.1 < z < 0.2. In

addition DESI will observe 6.8 million galaxies at redshift 0.2 < z < 0.3 leading to a total improvement of a factor 3.1
with respect to SDSS. The cumulative signal-noise from 8 to 120 Mpc/h is of 5.8 in the case of two populations, 6.6
with six populations and kernel 1 and 7.4 with six populations and the optimal kernel. The optimal kernel increases
therefore the signal-to-noise by 28 percent with respect to the two populations case. Note that these numbers may
be reduced by ∼ 30 percent, if the errors in DESI are affected by inhomogeneous weights as is the case for BOSS (see
figure 2). These forecasts seem consistent with the results of [29], who calculated the detectability of relativistic effects
using the power spectrum of multiple populations of galaxies. For a full-sky survey at low redshift 0.1 < z < 0.3 they
predict a 5-sigma detection of the imaginary part of the power spectrum if all halos down to bias of order 1 are used
(corresponding to a minimum halo mass of 3× 1011M�h−1).

In addition to the Bright sample, DESI will observe emission line galaxies (ELG) and bright luminous red galaxies
(LRG) over a wide range of redshift. We use the specifications of [44] (see table 3) to forecast the signal-to-noise from
the two lowest redshift bins, i.e. from z = 0 to z = 0.4. We use the ELG’s as faint sample with bias bF = 0.84, and
the LRG’s as bright sample with bias bB = 1.7. The cumulative signal-to-noise is of 4.6. Since ELG’s and LRG’s have
very different biases, we can expect to split the sample into more populations following table I. According to figure 3
this could increase the signal-to-noise by up to 35 percent giving a cumulative signal-to-noise of 6.2. These forecasts
show that a robust detection of the relativistic dipole should be possible in the near future.
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Figure 5: Predicted signal-to-noise for the dipole in the DESI Bright Galaxy sample z ≤ 0.3, plotted as a function of separation
between galaxies. We use pixels of size 8 Mpc/h. The green dotted line corresponds to two populations with kernel 1 (same
with kernel 2). The black dashed line corresponds to six populations with kernel 1 and the red solid line to six populations
with kernel 2.

VII. CONCLUSIONS

Relativistic distortions are an intrinsic part of our observations. They are rich in information since they are sensitive
not only to the galaxies’ peculiar velocities, but also to the geometry of the universe through the metric potentials Φ
and Ψ. Measuring relativistic distortions would therefore open the way to new tests of the theory of gravity. These
effects are however challenging to detect since they are suppressed by powers of H/k with respect to the standard
contributions. To observe the impact of relativistic distortions on the monopole, quadrupole and hexadecapole, we
need therefore to look at correlation functions at horizon scales k ∼ H.

In this paper we propose instead to isolate the relativistic distortions by fitting for a dipole in the cross-correlation
function between multiple populations of galaxies. The advantage of using the dipole to measure relativistic distortions
is twofolds. First, this allows us to remove the contribution from the standard terms, which in the distant-observer
approximation affect only the even multipoles. Second, the kernel to isolate the dipole is anti-symmetric in the
exchange of the galaxies’ luminosity, which automatically suppresses the cosmic variance contribution to the error.

Combining multiple populations of galaxies, we construct an optimal estimator to maximise the signal-to-noise of
the dipole. This estimator has a complicated form, which involves multiple summations over all pixels in the survey,
as shown in eq. (35). In a forthcoming paper we will study how to implement efficiently this estimator in large-scale
structure surveys. Here instead we restrict ourself to the case where Poisson sampling dominates the error. In this
case, the estimator takes a simple and intuitive form, which can readily be used. We find that with this simple
estimator we increase the signal-to-noise of the dipole by up to 35 percent. This allows us to reach a detectable level
for the dipole in the main SDSS sample of galaxies and in surveys with number densities and halos similar to the one
in the millennium simulation. In a forthcoming paper we will apply this method to the data release DR5 of SDSS and
to the MICE simulation. This will require to split the galaxies into multiple populations with different luminosities
and to combine these populations according to eq. (40). In the future we will also try and measure the dipole in the
upcoming DESI survey for which we predict a cumulative signal-to-noise of 7.4.

A detection of the relativistic dipole with this method would be very interesting since it would allow us to test
the validity of Euler equation in a model independent way. According to eq. (7) the dipole is indeed sensitive to a
combination of the gravitational potential Ψ and the peculiar velocity of galaxies. Combining a measurement of the
dipole with a measurement of the quadrupole would therefore allow us to test the relation between Ψ and V , i.e. to
test if the velocity of galaxies is governed only by the gravitational potential as predicted in General Relativity, or if
a fifth force acts on the galaxies.
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Appendix A: Comparison of N and 11 in eq. (35)

In eq. (35) we have to compare the two terms wij and
∑
a wiaNaj . For simplicity we fix the position of the pixels

i and j on the z axis and we look at a bright galaxy in pixel i and a faint galaxy in pixel j. Neglecting the effect of
redshift-space distortions, we need to compare 3

8π cosβij = 3
8π with

Iij ≡
∑
a

wiaNaj =
3

8π
dn̄Fb

2
F

∑
a

cosβiaC0(daj) . (A1)

In the continuous limit we obtain

Iij =
3

4
n̄Fb

2
FN̄

∫ 1

−1

dµµ

∫ ∞
0

dss2C0

(
d2
ij + s2 − 2dijsµ

)
. (A2)

Iij can be calculated numerically for fixed values of dij . Choosing N̄ = 2.8×10−4, which is the number density in the
LOWz survey, we find that at small separation dij = 1 Mpc/h, Iij = 0.033 and at large separation, dij = 50 Mpc/h,
Iij = 0.74. Comparing this with 3

8π = 0.12, we see that at small separation wij dominates over
∑
a wiaBaj , whereas

at large separation it is the opposite. For surveys with larger number density, like the main galaxy sample of DR5,∑
a wiaBaj starts dominating over wij at small separation already.

Appendix B: Explicit calculation of the mean and variance in the continuous limit

1. Mean

Inserting the kernel (37) into eq. (14) we find for the mean of the estimator

〈ξ̂〉 =
3

8π

∑
ijLiLj

dn̄Li
dn̄Lj

(bLi
− bLj

)g(dij)h(Li, Lj)α(dij) cos2βijδK(dij − d) .

The functions dn̄Li
, bLi

and α depend on the redshift zi. However we neglect here the evolution of these functions
with redshift, meaning that we evaluate them at the mean redshift of the survey z̄ (or the mean of the redshift slice).
Since these functions evolve slowly with redshift and since in the distant-observer approximation we have |zi−zj | � z̄,
this is a good approximation. In this case, the sum over luminosities Li and Lj is independent of the pixels and can
be written as ∑

LiLj

dn̄Li
dn̄Lj

h(Li, Lj)(bLi
− bLj

) =
∑
LL′

dn̄Ldn̄L′h(L,L′)(bL − bL′) . (B1)

In the continuous limit, the sum over pixels becomes∑
i

=
1

`3p

∫
d3x and δK(dij − d) = `pδD(|x− y| − d) , (B2)

where `p denotes the size of the cubic pixels. With this we obtain

〈ξ̂〉 =
3

8π

`p
`6p

∑
LL′

dn̄Ldn̄L′h(L,L′)(bL − bL′)
∫
d3x

∫
d3y g(|x− y|)α(|x− y|) cos2β(x,y)δD(|x− y| − d) . (B3)

We can fix the position of x and integrate over all y. Since the integrand does not depend on the position of x but
only on the relative separation |x − y| and on the orientation of the pair with respect to the observer β(x,y), the
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integral over x simply gives the volume of the survey V (or the volume of the redshift bin over which we average).
We obtain

〈ξ̂〉 =
3

8π

`pV

`6p

∑
LL′

dn̄Ldn̄L′h(L,L′)(bL − bL′)
∫ 2π

0

dϕ

∫ π

0

dβ sinβ cos2 β

∫ ∞
0

ds s2g(s)α(s)δD(s− d)

=
1

2
Ntot`pd

2N̄g(d)α(d)
∑
LL′

n̄Ln̄L′h(L,L′)(bL − bL′) , (B4)

where

N̄ =
1

`3p

∑
L

dn̄L (B5)

is the mean number density in the survey,

n̄L =
dn̄L∑
L′ dn̄L′

(B6)

is the fractional number of galaxies with luminosity L, and Ntot = N̄V is the total number of galaxies in the survey.

2. Variance

Poisson term

The Poisson contribution to the variance is

varP(ξ̂) = 2

(
3

8π

)2 ∑
ijLiLj

dn̄Li
dn̄Lj

h2(Li, Lj)g
2(dij) cos2 βijδK(dij − d)δK(d− d′) . (B7)

In the continuous limit we obtain

varP(ξ̂) = 2

(
3

8π

)2
`p
`6p

∑
LL′

dn̄Ldn̄L′h
2(L,L′)

∫
d3x

∫
d3y g2(|x− y|) cos2β(x,y)δD(|x− y| − d)δD(d− d′)

=
3

8π
Ntot`pd

2N̄g2(d)
∑
LL′

n̄Ln̄L′h
2(L,L′)δD(d− d′) . (B8)

Cosmic variance

The cosmic variance contribution is given by

varC(ξ̂) =2
∑
ijab

∑
LiLjLaLb

dn̄Lidn̄Ljdn̄Ladn̄Lb
wxixjLiLjwxaxbLaLb

(B9)

×
[
bLi

bLa
〈δiδa〉 −

1

H
bLi
〈δi ∂r(V · n)a〉 −

1

H
bLa
〈δa ∂r(V · n)i〉+

1

H2
〈∂r(V · n)i∂r(V · n)a〉

]
×
[
bLj

bLb
〈δjδb〉 −

1

H
bLj
〈δj ∂r(V · n)b〉 −

1

H
bLb
〈δb ∂r(V · n)j〉+

1

H2
〈∂r(V · n)j∂r(V · n)b〉

]
.
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We can easily show that many of the products in the brackets vanish since they are symmetric under the exchange
Li ↔ Lj or La ↔ Lb, whereas the kernels wxixjLiLj and wxaxbLaLb

are anti-symmetric. The remaining terms read

varC(ξ̂) =
∑
ijab

∑
LiLjLaLb

dn̄Li
dn̄Lj

dn̄La
dn̄Lb

wxixjLiLj
wxaxbLaLb

(bLi
− bLj

)(bLa
− bLb

) (B10)

× 1

H2

[
〈δiδa〉〈∂r(V · n)j∂r(V · n)b〉 − 〈δi∂r(V · n)a〉〈δj∂r(V · n)b〉

]
.

Using that

〈δiδj〉 =
1

(2π)3

∫
d3k eik(xj−xi)P (k) , (B11)

− 1

H
〈δi∂r(V · n)j〉 =

f

(2π)3

∫
d3k eik(xj−xi)P (k)

[
1

3
+

2

3
P2(n · k̂)

]
, (B12)

1

H2
〈∂r(V · n)i∂r(V · n)j〉 =

f2

(2π)3

∫
d3k eik(xj−xi)P (k)

[
1

5
+

4

7
P2(n · k̂) +

8

35
P4(n · k̂)

]
, (B13)

where P` denotes the Legendre polynomial of degree `, and going to the continuous limit we find

varC(ξ̂) =
4f2

(2π)6

1

`12
p

∑
LL′L′′L′′′

dn̄Ldn̄L′dn̄L′′dn̄L′′′(bL − bL′)(bL′′ − bL′′′) (B14)

×
∫
d3xi

∫
d3xj

∫
d3xa

∫
d3xb wxixjLL′wxaxbL′′L′′′

∫
d3k

∫
d3k′ eik(xa−xi)eik

′(xb−xj)

× P (k)P (k′)

[
1

45
+

2

63
P2(n · k̂′) +

2

35
P4(n · k̂′)− 1

9
P2(n · k̂′)P2(n · k̂)

]
.

We then do the following change of variables xi → yi = xj −xi and xa → ya = xb−xa. The exponentials become

eik(xa−xi)eik
′(xb−xj) = eik(yi−ya)ei(k+k′)(xb−xj) . (B15)

The kernel wxixjLiLj
is a function of the separation between the pixels |xj − xi| = yi and the orientation of the pair

with respect to the line-of-sight cosβij = cosβyi , and similarly for wxaxbLaLb
. The integral over xj and xb become

then trivial ∫
d3xj e

−i(k+k′)xj = (2π)3δD(k + k′) and

∫
d3xb = V , (B16)

where V is the volume of the survey. The Dirac-delta function enforces k′ = −k which implies that the square bracket
in eq. (B14) exactly vanishes

1

45
+

2

63
P2(n · k̂) +

2

35
P4(n · k̂)− 1

9
P 2

2 (n · k̂) = 0 . (B17)

This shows that the measurement of the relativistic dipole is not affected at all by the cosmic variance of the density
and redshift-space distortions. This cancellation of the cosmic variance for multiple populations of galaxies has already
been demonstrated for the case of the power spectrum [34, 35].

Mixed term

The variance due to the product of the Poisson contribution and of the cosmic variance contribution is

varCP(ξ̂) =4

(
3

8π

)2∑
ija

g(dij)g(daj) cosβij cosβajδK(dij − d)δK(daj − d′) (B18)

×
∑

LiLjLa

dn̄Lidn̄Ljdn̄Lah(Li, Lj)h(La, Lj)

{[
bLibLa + (bLi + bLa)

f

3
+
f2

5

]
C0(dia)

−
[
(bLi

+ bLa
)
2f

3
+

4f2

7

]
C2(dia)P2(cosβia) +

8f2

35
C4(dia)P4(cosβia)

}
,
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Figure 6: Configuration used to calculate the mixed term in the variance, eq. (B18). The direction of observation n is along
the x3 axis.

where

C`(dia) =
1

2π2

∫
dkk2P (k, z̄)j`(kdia) , ` = 0, 2, 4 . (B19)

Eq. (B18) contains a sum over three pixels, which becomes a triple integral in the continuous limit. To solve this triple
integral, we fix i at the origin and we fix j in the plane x2 − x3 as shown on figure 6. The direction of observation n
is along the x3 axis. Due to the symmetry of the problem we can then simply multiply the result by the volume of
the survey V (to account for the integral over i) and by 2π to account for the integral over j around the x3 axis. We
obtain

varCP(ξ̂) =− 9

8π
NtotN̄

2`2pd
2d′2g(d)g(d′)

∫ 1

−1

dµµ

∫ 1

−1

dν ν

∫ 2π

0

dϕ (B20)

×
∑
LL′L′′

h(L,L′)h(L′′, L′)n̄Ln̄L′ n̄L′′

{[
bLbL′′ + (bL + bL′′)

f

3
+
f2

5

]
C(dia)

−
[
(bL + bL′′)

2f

3
+

4f2

7

]
C2(dia)P2(cosβia) +

8f2

35
C4(dia)P4(cosβia)

}
,

where µ = cos ρ and ν = cos γ. The distance dia and the angle βia are functions of d, d′, µ, ν and ϕ. From figure 6 we
have

dia cosα = d′ cos γ + d cos ρ (B21)

d2
ia sin2 α = d′2 sin2 γ + d2 sin2 ρ− 2dd′ sin γ sin ρ cos(ϕ+ π/2) , (B22)

leading to

d2
ia = d2 + d′2 + 2dd′

(
µν +

√
(1− µ2)(1− ν2) sinϕ

)
, (B23)

cosβia = cosα =
dµ+ d′ν
dia

. (B24)
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[26] A. Raccanelli, D. Bertacca, O. Doré and R. Maartens, JCAP 08, 022 (2014).
[27] C. Bonvin., Class. Quant. Grav. 31, 234002 (2014).
[28] P. McDonald, JCAP 11, 026 (2009).
[29] J. Yoo, N. Hamaus, U. Seljak and M. Zaldarriaga, Phys. Rev. D86, 063514 (2012).
[30] R. Wojtak, S. H. Hansen and J. Hjorth, Nature 477, 567 (2011).
[31] I. Sadeh, L. L. Feng and O. Lahav, Phys. Rev. Lett. 114, 7 (2015).
[32] E. Gaztanaga, C. Bonvin and L. Hui, arXiv:1512.03918 (2015).
[33] N. Hamaus, U. Seljak, V. Desjacques, R. E. Smith and T. Baldauf, Phys. Rev. D82, 043515 (2010);

T. Baldauf, U. Seljak, R. E. Smith, N. Hamaus and V. Desjacques, Phys. Rev. D88, 083507 (2013).
[34] U. Seljak, Phys. Rev. Lett. 102, 021302 (2009).
[35] P. McDonald and U. Seljak, JCAP 10, 007 (2009).
[36] W. J. Percival, L. Verde and J. A. Peacock, MNRAS 347, 645 (2004);

R. E. Smith and L. Marian, MNRAS 457, 2968 (2016).
[37] U. Seljak, N. Hamaus and V. Desjacques, PRL 103, 091303 (2009);

N.Hamaus, U. Seljak and V. Desjacques, PRD 86, 103513 (2012).
[38] L. Anderson et al., MNRAS 441, 24 (2014).
[39] R. E. Angulo, V. Springel, S. D. M. White, A. Jenkins, C. M. Baugh and C. S. Frenk, MNRAS 426, 2046 (2012).
[40] E. Jennings, C. M. Baugh and D. Hatt, MNRAS 446, 793 (2015).
[41] P. Fosalba, M. Crocce, E. Gaztanaga and F. J. Castander, MNRAS 448, 2987 (2015);

M. Crocce, F. J. Castander, E. Gaztanaga, P. Fosalba and J. Carretero, arXiv:1312.2013 (2013).
[42] W. Percival et al., Astrophys. J. 657, 645 (2007).
[43] G. Cresswell and W. Percival, MNRAS 392, 682 (2009).
[44] M. Levi et al., arXiv:1308.0847 (2013).
[45] R. N. Cahn et al., American Astronomical Society, AAS Meeting #225, #336.10 (2015)

http://adsabs.harvard.edu/abs/2015AAS...22533610C

http://arxiv.org/abs/1312.4889
http://arxiv.org/abs/1512.03918
http://arxiv.org/abs/1312.2013
http://arxiv.org/abs/1308.0847
http://adsabs.harvard.edu/abs/2015AAS...22533610C

	I Introduction
	II The two-point correlation function for multiple populations of galaxies
	III Variance
	A Poisson noise
	B Cosmic variance
	C Mixed term

	IV Optimising the kernel
	V Signal-to-noise
	VI Forecasts
	A Multi-population of halos in the millennium simulation
	B Multi-populations of galaxies in the main sample of SDSS DR5
	C The Dark Energy Spectroscopic Instrument

	VII Conclusions
	A Comparison of N and 11 in eq. (35)
	B Explicit calculation of the mean and variance in the continuous limit
	1 Mean
	2 Variance

	 References

