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Abstract—Programmable logic controllers (PLCs) are em-
bedded computers widely used in industrial control systems.
Ensuring that a PLC software complies with its specification is a
challenging task. Formal verification has become a recommended
practice to ensure the correctness of safety-critical software but
is still underused in industry due to the complexity of building
and managing formal models of real applications. In this paper,
we propose a general methodology to perform automated model
checking of complex properties expressed in temporal logics (e.g.,
CTL, LTL) on PLC programs. This methodology is based on
an intermediate model (IM), meant to transform PLC programs
written in various standard languages (ST, SFC, etc.) to different
modeling languages of verification tools. We present the syntax
and semantics of the IM and the transformation rules of the ST
and SFC languages to the nuXmv model checker passing through
the intermediate model. Finally, two real cases studies of CERN
PLC programs, written mainly in the ST language, are presented
to illustrate and validate the proposed approach.

Index Terms—PLC, IEC 61131, modeling, automata, verifica-
tion, model checking, nuXmv.

I. INTRODUCTION

DEVELOPING safe and robust PLC (Programmable Logic
Controller) based control systems is a challenging task

for control system engineers. One of the biggest difficul-
ties is to ensure that the PLC program fulfills the system
specification. Some standards, such as IEC 61508 [1] give
some guidelines and good practices, but this task remains
challenging. Many different techniques are widely applied in
industry meant to check PLC programs, e.g., manual and
automated testing or simulation facilities. However, they still
present some significant problems, like the difficulty to check
safety or liveness properties, e.g., ensuring that a forbidden
output value combination never occurs. Formal verification
techniques can handle these problems, but bring other chal-
lenges to the control engineers such as the construction of the
formal models and the state space explosion when applied to
real-life software applications.
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A. Contribution

Our motivation is to find software faults (bugs) by ap-
plying automated formal verification of complex properties—
expressed in temporal logic—to real-life PLC control systems
developed at CERN, the European Organization for Nuclear
Research. We provide a general methodology for automatic
creation and verification of formal models from code written
in different PLC languages, which also handles the state space
explosion problem. Although the main focus of this paper is
on the transformation of PLC programs into formal models,
we provide a description of the full methodology and illustrate
it on two real-life examples. The specific contributions of this
paper are the following:

1) We present the formal transformation rules from
ST (Structured Text) and SFC (Sequential Function
Chart)—the two most used languages in CERN PLC
control systems—to IM (Intermediate Model) and give
an overview of the transformation from IM to one of
the selected model checker modeling languages: nuXmv.
This is presented in Section IV.

2) The methods proposed in our previous work are ex-
tended to be applicable to large, industrial-size PLC
programs. The methodology has been applied to real-
life systems at CERN. The experimental results are
discussed in Section V.

This paper presents an extension of a previous work meant
to bring formal verification to the industrial automation com-
munity. A first method [2] was proposed to model various
software components of PLC programs developed at CERN,
using the BIP framework exclusively. A first version of the
transformation rules from ST code to the NuSMV modeling
language is described in [3]. Compared to this previous work,
the present paper (a) extends and refines the rules presented
previously, (b) encompasses other languages than ST, and (c)
presents an application of the approach to a real-life case
study. The model reduction techniques and the representation
of time-related behavior is not in the main scope of this paper,
but the methods used in [4], [5] can be applied here as well.

B. Related Work

Although application of formal methods to PLC software
has been extensively studied in the existing literature [6]–[25],
none of the described methods achieves the goals stated above.

In [6], one can find a fairly complete survey and classifica-
tion of PLC verification methods. Using this classification our
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method is in the “M-A-M” group, meaning that it is a model-
based approach, relies on automata and model checking.
A recent survey [26] introduces different classifications for
model checking methods applied to the PLC domain. Our
method covers many different classes, e.g., it covers multiple
PLC languages and multiple system sizes. Furthermore, it aims
to be fully automated. The application area is also broad, as
PLCs are used for many purposes at CERN.

Some commercial tools, e.g., SCADE from Esterel Tech-
nologies1 provide solutions for the generation of safe PLC
programs, where certified PLC code is automatically generated
from a formal specification. This approach does not fit the
practical industrial requirements, as often already existing PLC
programs have to be verified.

In the academic literature, some of the work only targets
the modeling of PLCs without providing a verification solution
[7]. Other authors apply formal verification, but only for small
examples, without discussing the reduction of the models that
is inevitable for verifying industrial-sized programs [8]–[16].
Many papers do not address the generation of the model from
the PLC program or limit themselves to explaining the high-
level principles [10]–[20]. Finally, most of the work targets
a single PLC language, with just a few approaches handling
multiple ones (e.g., [21], [22]).

In [18], CEGAR (counterexample-guided abstraction refine-
ment) is applied to models of PLC programs, but only ACTL
(Computation Tree Logic with only universal path quantifiers)
formalism is supported for property specifications. The work
in [24] uses CEGAR too, but only for reachability analysis. In
[23], the authors introduce powerful reduction methods applied
to IL (Instruction List) code. Although this approach could be
extended to other languages, reliance on SMT (Satisfiability
Modulo Theories) solvers restricts its applicability to safety
requirements.

Some work targets specifically the verification of ST pro-
grams [21], [22]. However, the methods described in [21]
restrict the requirements to assertions, which have smaller
expressiveness than LTL (Linear Temporal Logic) or CTL
(Computation Tree Logic). Although powerful reduction tech-
niques are proposed in [22], they also have strong limitations.
For instance, programs can only contain non-Boolean variables
and no loops. Applicability of this method for industrial-
sized applications at CERN is questionable, since these would
contain highly complex Boolean expressions.

The approach based on intermediate model, proposed in
this paper is new in the PLC domain, however approaches
using similar verification techniques have been applied in other
domains [27], [28].

The rest of the paper is structured as follows: Section II
presents a general description of PLCs. Section III is ded-
icated to an overview of the methodology and the applied
intermediate model. Section IV discusses the transformation
from the ST and SFC languages to IM and gives a high-level
overview of the transformations from IM to nuXmv and of
the reduction techniques applied to IM. Section V presents
experimental results obtained by applying our methodology to

1http://www.esterel-technologies.com/products/scade-suite/

CERN control systems. Finally, in Section VI, we discuss the
presented results and possible directions for future work.

II. PROGRAMMABLE LOGIC CONTROLLERS

This section presents the PLC concepts necessary to jus-
tify the proposed modeling strategy. PLC is a widely-used
programmable electronic device designed for controlling in-
dustrial processes. It mainly consists of a processing unit
and input/output modules to acquire and act with sensors and
actuators of the process. Even though the architecture and pro-
gramming of PLCs is defined in the IEC 61131 standard [29],
there are minor differences in the implementation of different
manufacturers. In this work, we focus on Siemens PLCs, since
these are among the most widely used in the industry and,
in particular, at CERN. However, the proposed methodology
can be applied to PLCs produced by other manufacturers with
only minor adaptation of the transformation rules, necessary to
accommodate the variations of PLC programming languages.

a) Execution scheme: The main particularity of the PLC
is its cyclic execution scheme. It consists of three main steps:
(1) reading the input from periphery to the memory, (2) exe-
cuting the user program that reads and modifies the memory
contents, (3) writing the values to the output periphery. The
cyclic execution can be interrupted if an event (e.g., timer,
hardware event, hardware error) triggers the execution of an
interrupt handler. Interrupts are preemptive; they are assigned
to priority classes at compilation time.

b) Program blocks: In Siemens PLCs, several kinds of
program blocks are defined for various purposes [30].
• A function (FC) is a piece of executable code with

input, output, and temporary variables. The variables are
dynamically stored on a stack and they are not retained
after the execution of the function.

• An organization block (OB) is a special function called
by the system. OBs are the entry points of the user
code. The main program and the interrupt handlers are
implemented as OBs.

• A data block (DB) is a group of static variables that can
be accessed globally in the program. These variables are
stored permanently. A data block does not contain any
executable code.

• A function block (FB) is a piece of executable code with
input, output, static, and temporary variables. An FB can
have several instances and each instance has a separate
instance data block that stores its non-temporary vari-
ables. Thus, these variables can be accessed globally, even
before or after the execution of the FB. The temporary
variables are stored on a stack, as the variables of an FC.
c) Programming: PLCs provide several standard pro-

gramming languages. Five languages are defined in the
IEC 61131-3 standard [29]: ST (Structured Text), SFC (Se-
quential Function Chart), Ladder, FBD (Function Block Di-
agram), and IL (Instruction List). A PLC programmer can
chose one or several of these languages, depending on the
characteristics of the application, to build the PLC code.

The prevalent language at CERN is ST. However, SFC and
IL are also used. IL is a low-level language, syntactically

http://www.esterel-technologies.com/products/scade-suite/
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similar to assembly. SFC is a graphical programing language
based on finite-state machines (FSMs), described using steps
(states) and transitions. Two different kinds of branches are de-
fined: alternative branches (where at most one of the branches
can contain active steps) and simultaneous branches (where
each branch contains an active step, or none of them). This
formalism is similar to the safe Petri nets, but the semantics
is different: the enabled transitions are evaluated once per
call and then only these transitions can fire. If a transition
becomes enabled due to a firing, it can fire only on the next
call of the SFC. Also, steps can have associated actions, such
as variable assignments. This language is useful when part
of the PLC program can be represented conveniently as a
finite-state machine (FSM). ST is a high-level language that
is syntactically similar to Pascal.

In this paper we target ST and SFC as source languages,
more precisely the languages corresponding to them in the
Siemens implementations: SCL (Structured Control Language)
and S7-GRAPH/SFC. The Siemens implementation follows
the IEC 61131 standard as stated by the PLCOpen organi-
zation2 and [31], but there are small syntactic differences
between the standard languages and their implementation. SCL
language can be used to describe all kinds of program blocks
mentioned previously, while SFC can only represent an FB.

Programs written in any of the above languages are com-
piled into a common byte-code representation, called MC7,
which is then transferred to the PLC. Based on our experience,
we assume that the MC7 instructions are atomic and they
cannot be interrupted. A single ST or SFC statement may
correspond to several MC7 instructions, thus it is possible to
interrupt an ST or SFC statement.

III. MODELING AND VERIFICATION APPROACH

A. Methodology Overview

We propose a general methodology for applying automated
formal verification to any PLC program written in one of the
PLC languages. To support multiple PLC languages, a valid
solution could be to first translate them to IL or to machine
code, and then only this single, low-level language has to be
targeted by verification. While this method can be general,
it can cause some information loss. For example, evaluation
of an arithmetic expression that could be represented both
in the high-level PLC language and in the model checker
input language, will be split into several instructions in IL,
making the reductions more difficult and the model checkers
less efficient.

Instead, the methodology presented here is based on the
intermediate model (IM) formalism designed for verification
purposes (not for machine execution as IL). Each language is
translated individually to IM. In this way we can benefit from
the higher level inputs (ST vs. IL), that generally provide more
information and can be reduced more efficiently. The method-
ology contains a set of rules which can transform automatically
PLC code in different modeling languages passing through IM.

2http://www.plcopen.org/pages/tc3 certification/certified products/

Furthermore, this intermediate step allows us to compare the
different model-checking tools in terms of verification perfor-
mance, simulation facilities and properties specification. More
importantly, as each verification tool has different strengths
and purposes, we can use the appropriate tool based on our
current needs. Currently, translations to the NuSMV/nuXmv,
UPPAAL, and BIP verification tools are included in our
methodology. IM is based on automata and allows us to extend
our methodology with any verification tool which has a similar
modeling language (e.g., SAL, Cadence SMV, LTSmin).

The proposed approach consists of the following steps (see
Fig. 1):

1) The starting point is the source code of the PLC
program and the formalized requirements coming from
an informal specification. Using the knowledge of the
PLC execution scheme, the PLC code is automatically
transformed to IM. This transformation is defined by a
set of formal rules presented in Section IV.

2) Several automatic reduction and abstraction techniques
are then applied to the generated model, depending on
the requirement to be verified.

3) The reduced model is automatically translated to exter-
nal modeling languages, used by the verification tools.

4) The resulting external models can be formally verified
using such tools as nuXmv or UPPAAL. Other tools
(e.g., BIP) provide simulation and code generation fa-
cilities, which can be useful for PLC developers.

5) Counterexamples produced by model checkers allow
PLC developers to analyze the results in order to confirm
the presence of bugs in the system or refine the models.

"PLCgworld" Internalgmodel Verification

Counterexample

demonstrator
UPPAALgmodel

...

Externalgmodels

reductions
abstractions /

SFC code

SCL code

IL code

Requirement

intermediate
model

nuXmvgmodel

Analysis

PLCgknowledge

Model checking

Figure 1. Overview of our approach

B. Intermediate Model

This section describes briefly the syntax and semantics
of IM—our automata-based formalism used to represent the
PLC programs. We define a simple automata network model
consisting of synchronized automata.

A network of automata is a tuple N = (A, I), where A is
a finite set of automata, I is a finite set of synchronizations.

An automaton is a structure a = (L, T, l0, Va,Val0) ∈ A,
where L = {l0, l1, . . . } is a finite set of locations, T is a finite
set of guarded transitions, l0 ∈ L is the initial location of the
automaton, Va = {v1, . . . , vm} is a finite set of variables, and
Val0 = (Val1,0, . . . ,Valm,0) is the initial value of the variables.

Let V̂ be the set of all variables in the network of automata
N , i.e., V̂ =

⋃
a∈A Va. (∀a, b ∈ A : Va ∩ Vb = ∅ if a 6= b)

A transition is a tuple t = (l, g, amt , i, l′), where l ∈ L
is the source location, g is a logical expression on variables

http://www.plcopen.org/pages/tc3_certification/certified_products/
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of V̂ that is the guard, amt is the memory change (variable
assignment, i.e., a function that defines the new values of the
variables in V̂ ), i ∈ I∪{NONE} is a synchronization attached
to the transition, and l′ ∈ L is the target location.

A synchronization is a pair i = (t, t′), where t ∈ T
and t′ ∈ T ′ are two synchronized transitions in different
automata. The variable assignments attached to the transitions
t and t′ should not use the same variables. This composition
operation is restrictive, but sufficient to model PLC programs,
as synchronizations will only represent function calls.

The operational semantics of this automata-based formalism
can be informally explained as follows: a transition t =
(l, g, amt , i, l′) from the current location l of an automaton
is enabled if g is satisfied and either t has no synchronization
attached, i.e., i = NONE, or i = (t, t′) and the transition t′ is
also enabled. In the former case, t can fire alone; in the latter
case, both t and t′ have to fire simultaneously. Each execution
step consists in firing one transition or simultaneous firing of
two synchronized ones. Upon firing of a transition t as above,
l′ becomes the new current location of the corresponding
automaton and the new values of variables V̂ are set using
the previous values and the variable assignment amt .

IV. MODEL TRANSFORMATIONS

This section describes in detail the most relevant transforma-
tion rules from SCL and SFC to IM3. Some of these rules are
generic and apply to all PLC languages, the rest are specific to
SCL or SFC. In addition, a high-level description of the reduc-
tion techniques applied to IM models and the transformation
from IM to nuXmv are presented. Also, the main ideas of the
tool implementing the methodology and some examples are
discussed. This section extends and generalizes the previous
work [3].

A. General PLC to IM Transformation

The transformation rules are presented hierarchically from
high-level to low-level rules.

Rule PLC1 (Multiple concurrent code blocks) PLC
programs are composed by the main program (i.e., OB1
in Siemens PLCs), which is executed cyclically, and the
interrupt handlers.

Assumption 1. Interrupting blocks and the interrupted
blocks should use disjoint set of variables. This is a
reasonable assumption, and it can be validated by existing
static analysis techniques. According to our experience,
different OBs usually use different variables. Furthermore,
a high level of concurrency is rare in PLC programs.

Having this assumption, instead of modeling the interrupts in
a preemptive manner, we model them with non-preemptive
semantics: the model of the PLC scheduler consists in the

3In the case of SCL, we have focused on the representation of the key
constructions, and we have omitted the description of e.g., CASE blocks,
REPEAT loops, and FOR loops. The handling of expressions, structure and
array initializations, and some Siemens-specific constructs (e.g., shared data
blocks) are also not discussed, but we have implemented them following the
same principles. In the case of SFC, only the action representations are omitted
here.

main program being executed at every cycle, whereas one or
several interrupts can be executed non-deterministically at the
end of the PLC cycle.

Rule PLC2 (FC) This rule translates functions into IM. An
OB can be considered as a special FC that is invoked by the
operating system, thus this rule also applies to OBs.

Assumption 2. Recursion is not allowed, i.e., no FC or FB
can directly or indirectly generate a call to itself. This
assumption is consistent with the IEC 61131 standard [29].
However, Siemens PLCs allows the use of recursion with
some restrictions even if it is not recommended. Recursion
can be statically detected by building the call graph of a
program and checking whether it contains cycles. Thus we
can assume that variables of a function are stored at most
once on the stack.

For each function Func, we create an automaton AFunc . The
locations, transitions and initial location of this automaton are
generated using the rules presented below. For each variable
defined in Func we create a corresponding variable in AFunc .
If the return type of the function is different from void, a
special output variable called RET VAL is also added to the
automaton. AFunc contains at least the initial location init, the
final location end and the transition tend from end to init.

Rule PLC3 (FB instance) This rule translates FB instances
into IM. Assumption 2 also applies here.

For each instance inst of each function block FBlock, we
create an automaton AFBlock,inst. The locations, transitions and
initial location of this automaton are generated using the
rules presented below. For each variable in FBlock we create
a corresponding variable in all the corresponding AFBlock,inst

automata. Each automaton contains at least the initial location
init, the final location end and the transition tend from end to
init without any guard.

Rule PLC4 (Variables) This rule maps program variables to
variables in the IM model.

Assumption 3. All variables, except system inputs, that
do not have uniquely defined initial values on the PLC
platform (e.g., temporary variables, output variables of
FCs) are written before they are read. This means that we
do not have to model such variables as non-deterministic
variables in the IM model, which allows us to limit the
state space growth of the generated model.

For each variable v in the program block, there is exactly one
corresponding variable FV (v) in the corresponding automa-
ton. If the variable represents a system input (i.e., variables
representing signals coming from the field), it is assigned non-
deterministically at the beginning of each PLC cycle.

B. SCL to IM Transformation

This section presents the rules specific to the SCL to IM
transformation.

Rule SCL1 (SCL statement) A statement is the smallest
standalone element of an SCL program. It can contain other
components (e.g., expressions). There are different kinds of
statements such as conditional branches, loops and variable
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assignments. In this section we define the representation of a
single code block consisting of these statements in our IM.

For each statement stmt , let n(stmt) be the next statement
after stmt . Furthermore, for a statement list sl, let first(sl)
be the first statement of the list. Assumption 1 also applies
here. For each SCL statement stmt in the program block,
we generate a corresponding location marked as FL(stmt)
in the corresponding automaton. If stmt is the last statement
in the program block, FL(n(stmt)) is the location end of the
corresponding automaton. This general rule is applied to any
statement, then more specific rules presented in the following
are applied too.

Rule SCL2 (Variable assignment) This rule translates SCL
variable assignments to IM.

Assumption 4. For each “variable access” the variable to
be accessed can be determined at transformation time.
In particular, this means that pointers are not supported.
However, we do support compound variables (arrays and
user defined structures). Typically, this is not a restriction
as the usage of pointers is not recommended in PLC
programs.

For each variable assignment stmt = 〈v := Expr〉,
we add to the corresponding automaton a transition t =(
FL(stmt),TRUE , 〈FV (v) := Expr〉,NONE , FL(n(stmt))

)
,

going from FL(stmt) to FL(n(stmt)) with no guard and no
synchronization. The assignment associated to the transition
updates only the variable FV (v).

Rule SCL3 (Conditional statement) For each conditional
statement stmt = 〈IF c THEN sl1 ELSE sl2 END IF 〉,
we add two transitions to the corresponding automaton:
• t1 = (FL(stmt), c, 〈 〉,NONE , FL(first(sl1))) goes

from FL(stmt) to FL(first(sl1)), it has no assignments
and no synchronizations, and it has a guard c.

• t2 = (FL(stmt),¬c, 〈 〉,NONE , FL(first(sl2))) goes
from FL(stmt) to FL(first(sl2)), it has no assignments,
no synchronizations and the guard ¬c.

Rule SCL4 (While loop) For each while loop stmt =
〈WHILE c DO sl END WHILE 〉, we add two transitions
to the corresponding automaton:
• t1 = (FL(stmt), c, 〈 〉,NONE , FL(first(sl))) goes from
FL(stmt) to FL(first(sl)), it has no assignments and no
synchronizations, and it has a guard c.

• t2 = (FL(stmt),¬c, 〈 〉,NONE , FL(n(stmt))) goes
from FL(stmt) to FL(n(stmt))), it has no assignments,
no synchronizations and the guard ¬c. This transition
corresponds to exiting the loop.

Note that if stmt is a while loop, n(stmt) will denote the
next statement after the loop. If the last statement of the loop
body is stmt ′, then n(stmt ′) = stmt , as after executing the
last statement of the loop body, the next step is to check the
condition again.

The for and repeat loops can be expressed based on the
rules for conditional branches and while loops.

Rule SCL5 (FC or FB call)
Assumption 5. All the input variables are assigned in the
caller, and all the output variables are assigned in the callee

in order to avoid the accessing of uninitialized variables
that could contain unpredictable values. Therefore they are
not modeled as non-deterministic variables, which allows
us to limit the state space growth of the generated model.

For every function (block) call stmt = 〈[r :=]Func(p1 :=
Expr1, p2 := Expr2, . . . )〉 in a code block represented by an
automaton Acaller , we add the following elements. (Func can
be a function or an instance of a function block, represented
by an automaton Acallee . If Func is a function block or a void
function, the “r :=” part is omitted.)
• A new location lwait is added to Acaller . It represents the

state when the caller block is waiting for the end of the
function call. (For every function call, we add a separate
lwait location.)

• A transition t1 is added to Acaller , which has no guard
and goes from FL(stmt) to lwait . It assigns the function
call parameters to the corresponding variables in Acallee .
(It assigns Expr1 to FV (p1), etc.)

• A transition t2 is added to Acaller , which has no guard
and goes from lwait to FL(n(stmt)). It assigns RET VAL
of the callee to the corresponding variable (variable
FV (r)) in Acaller , if RET VAL exists. It also assigns the
corresponding values to the output variables.

• A synchronization i1 is added to the automata network,
connecting transition t1 with the first transition of Acallee .

• A synchronization i2 is added to the automata network,
connecting transition tend of Acallee with transition t2.

C. SFC to IM Transformation

This section presents a high-level overview of the rules
specific to the SFC to IM transformation.

In the following discussion we do not target the actions that
can be assigned to the SFC steps. However, based on the SCL
and SFC transformation rules, they can be incorporated easily.

The main idea of the following transformation is that
for each SFC step s we create two variables: the step flag
variable—a variable that indicates if the current step is active,
denoted as s.x in the standard and in the Siemens implemen-
tation; and another variable that will store a copy of the s.x
variables at the beginning of the SFC’s call (denoted by s.x′ in
the following example). The conditions of the transitions will
be evaluated on this copy, thus firing of a transition cannot
make new transitions enabled.

Rule SFC1 (SFC step) For each step 〈STEP stepName:
END STEP〉 we create a Boolean variable FV (stepName)
(representing the variable referenced as stepName.x in the
PLC programs or in the standard [29]) and a variable
F ′V (stepName) for internal purposes, both initialized to
FALSE .

Rule SFC2 (SFC initial step) For the initial step
〈INITIAL STEP initStep: END STEP〉, variables are created
according to the previous rule. We also add a location
l0, and a transition tIM = (l0, g, amt ,NONE , end),
where g = (¬FV (stepName1) ∧ ¬FV (stepName2) ∧ . . . ),
amt = 〈FV (initStep) := TRUE 〉. It means that if no steps
are active, then the initial step should become active.
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Before discussing the representation of transitions we de-
fine a set W = {w1, w2, . . . }. Each item of W is a pair
wi = (Si, Ti) where Si is a possible “transition input” (step
or set of steps occurring in one of the transition’s FROM part)
and Ti is the set of SFC transitions outgoing from Si. The
union of Ti sets in W should contain all the transitions of the
SFC. A transition input (Si) is typically one single SFC step,
but for the transitions closing simultaneous branches it can be
composed by multiple SFC steps. These latter transitions have
multiple “from” steps and one “to” step. (In the following, let
l|W |+1 = end.)

Rule SFC3 (SFC transitions)
Assumption 6. Based on our experiments with the SFC
editor of Siemens we assume that transitions are defined
in ascending order of priority in the textual representation4

that is our input. Also, if there is a transition that is leaving
multiple steps at the same time (thus closing a simulta-
neous branch), there should not be any other transition
leaving any of these steps. If this is not respected, the SFC
is regarded as syntactically incorrect in the Siemens tools.

For each wi = (Si, Ti) = ({s1, s2, . . . }, {t1, t2, . . . }) in W
we create the following IM representation:

We create a location li. For each tj = 〈TRANSITION
tName FROM s1, s2, . . . TO s′j1, s

′
j2, . . . CONDITION :=

C END TRANSITION〉, we create a transition tIM =
(li, gIM, amt ,NONE, li+1). The guard gIM of tIM is a Boolean
expression that is only true if (1) C is true, and (2)
F ′V (s1), F

′
V (s2), . . . are true, and (3) all the guards of transi-

tions t1, . . . , tj−1 are false. In other words, (1) the condition of
the SFC transition should be satisfied, (2) the input SFC step(s)
should be active, and (3) no higher priority event leaving
the same SFC step(s) can fire. The assignment is amt =
〈FV (s1) := FALSE;FV (s2) := FALSE; . . . ;FV (s

′
j1) :=

TRUE;FV (s
′
j2) := TRUE; . . . 〉. (We assume that t1, t2, . . .

are indexed in descending order of priority.)
Also, for each wi we add a transition t′IM =

(li, g
′, 〈 〉,NONE, li+1) where g′ is true iff no other li → li+1

IM transitions are enabled. If no SFC transitions are allowed
from Si (or Si is not active), this transition allows to proceed
to other transitions.

Rule SFC4 (SFC block) This rule adds the needed extra
information for SFC blocks to the IM.

We add a transition tIM from init to l0 that will do a
F ′V (s) := FV (s) assignment for all SFC step s. The guard
of transition tIM is true iff any of the steps is active.

D. Reductions on the Intermediate Model

The transformation described above allows us to create an
IM representation of a PLC program. However, verification
of the models produced from real-life programs is still not
feasible with the available tools. In order to address this issue,
we apply property-preserving reductions to the IM model. This
emphasizes the advantage of using an intermediate model: the
reductions are only performed once and propagate automati-
cally to the models generated for the various verification tools.

4The first transition in the textual representation has the lowest priority.

• The Cone of Influence (COI) reduction eliminates all the
variables that do not influence those that contribute to the
requirement under analysis.

• General rule-based reductions simplify the model by
merging states or variables, eliminate unnecessary con-
ditional branches, simplify the Boolean expressions, etc.

• Using the mode selection, certain inputs (representing
parameters) of the modeled system can be fixed. By
introducing these constraints in the IM model instead
of in the requirement, the other reduction methods can
benefit from this knowledge.

These reductions are presented in more detail in [4].
In addition to the reductions above, we have developed

a new method called variable abstraction. This technique
is an iterative method focused on the verification of simple
safety requirements, e.g., “if α is true, then β shall be true”
(AG(α → β) in CTL), where α and β denote Boolean
expressions on variables. This technique builds the abstract
models automatically using the variable dependency graph of
β. These models are built by replacing the selected variables
with non-deterministic values (similarly to the input variables).
Since these variables do not depend on any others, the COI
algorithm can eliminate more variables from the model.

Fig. 2 shows a simple variable dependency graph for the
requirement AG(a → b) (so α = {a}, β = {b} in this
example). In this graph, nodes represent variables. The gray
variables are part of the requirement (a and b) and the edges
represent dependencies (e.g., an assignment or a conditional
statement). We defined a distance metric δ for each variable
of the graph. Its value is the smallest distance from a variable
in β. In the ith iteration, the variables with δ = i are replaced
by non-deterministic values and the variables with δ > i are
deleted. If for any a ∈ α, δ(a) > i, then a is replaced by a
non-deterministic value instead of deleting it.

In the first iteration of the example the variables to be
replaced by non-deterministic values are: a, y and x. If the
verification result is true, then the safety requirement is satis-
fied on the original model, as the abstract model is an over-
approximation of the original one. If the verification result is
false and it cannot be determined if the counterexample is real
or spurious, a new iteration is needed.

a
z

b
y

x

w

I0.0

I0.1

Figure 2. Variable dependency graph of an example PLC program

More precisely, in order to abstract a set of variables V , we
perform the following steps on the Abstract Syntax Tree of
the PLC code, for each v ∈ V :

• All assignments of the variable v are removed.
• An assignment v := undefined is added at the beginning

of the scan cycle, meaning that the value of v will be
undefined and it will take any value from its domain.



B. FERNÁNDEZ et al.: APPLYING MODEL CHECKING TO INDUSTRIAL-SIZED PLC PROGRAMS 7

This technique is sound, i.e., if a safety property holds after
variable abstraction, it holds in the original system. However,
it is not complete, meaning that spurious safety violations
can be detected, since variable abstraction generates behaviors
not present in the original system. Such spurious violations
can be detected by analyzing the counterexamples. Variable
abstraction is illustrated in Section V and its implications on
the verification process are discussed in Section VI.

E. IM–nuXmv Transformation

The IM model representing the PLC code has to be trans-
formed into the concrete syntax of one or more model check-
ing tools to verify the given requirements. Our methodology
is general and can be applied for any model checker with an
input language based on automata or transition systems. Here,
we briefly introduce the transformation from IM to the input
language of nuXmv [32] as an example.

For each automaton A in the IM model, we create a module
MA in the nuXmv model with exactly one instance. Each
variable in A is represented by a variable in the module MA.
Furthermore, a variable loc is added to each module MA that
represents the current location of the automaton A.

A module main is also created in the nuXmv model contain-
ing a variable synch enumerating all possible synchronizations
and the value NONE. At each cycle, this variable encodes the
synchronization to be performed.

F. Transformation Examples

The following shows two examples of the transformations
described in this section.

Fig. 3 shows an example transformation from SCL code
(1) through IM model (2) to nuXmv model (3). The SCL
code contains a conditional statement, a while loop and three
variable assignments to Boolean and integer variables. In Part
2 of Fig. 3, one can observe the true and false branches of
the conditional statement (l1− l2− . . . and l1− l3− . . . ) and
the representation of the while loop (l3 − l4). The key ideas
of the transformation to nuXmv can be seen in the Part 3.
The variable loc defined in line 3 represents the locations
of the automaton. The transitions and guards are defined by
the case statement in lines 9–21 (e.g., line 13 represents the
transition l1 → l2 with guard [ia > 0]). The variable updates
are given separately in lines 23–38 (e.g., “loc = l4 : (IB
+ 0sd16_1)” in line 30 for the variable update ib := ib +1
of transition l4 → l5). The global structure (e.g., main module,
instances, random value handling) of the generated nuXmv
model can also be observed.

Part 1 of Fig. 4 shows an example SFC program5. The steps
are represented by gray boxes (S1, S2, etc.), the transitions
are represented by black rectangles. The transition T1 opens
a simultaneous branch (denoted by double line), thus after
firing T1, S2 and S3 will be both active. On the contrary, S3
is followed by an alternative branch: either T2 or T3 can fire.
If T2 fires, S4 will be active, if T3 fires, S5 can be active. T6
will only fire if S2 and S6 are both active.

5Note that it is a directed graph, but in Siemens notation the arrows are
only shown if direction is not top to bottom.

initialization

xa := F

[¬(ia < 0)]

xa := T

init

l1

l3

l4

end

of inputs

[(ib < 3)]

ib := ib+ 1

[¬(ib < 3)]

[ia > 0]

l5

l2

 1RRMODULERmodule_INSTANCE5synchwRmain}
 2RRVAR
 3RRRRRRlocR!R{_initwRendwRlBwRlXwRlbwRlGwRl=}<
 4RRRRRRIAR!RunsignedRword[Bx]<
 5RRRRRRIBR!RsignedRword[Bx]<
 6RRRRRRXAR!Rboolean<
 7
 8RRASSIGN
 9RRRRRRinit5loc}R!+R_init<
10RRRRRRnext5loc}R!+Rcase
11RRRRRRRRRRlocR+RendR!R_init<R
12RRRRRRRRRRlocR+R_initR!RlB<R
13RRRRRRRRRRlocR+RlBR3R55IARFR]udBx_]}}R!RlX<R
14RRRRRRRRRRlocR+RlBR3R5:55IARFR]udBx_]}}}R!Rlb<
15RRRRRRRRRRlocR+RlXR!Rend<R
16RRRRRRRRRRlocR+RlbR3R55IBR.R]sdBx_b}}R!RlG<R
17RRRRRRRRRRlocR+RlbR3R5:55IBR.R]sdBx_b}}}R!Rl=<
18RRRRRRRRRRlocR+RlGR!Rlb<R
19RRRRRRRRRRlocR+Rl=R!Rend<R
20RRRRRRRRRRTRUE!Rloc<
21RRRRRResac<
22    
23RRRRRRinit5IA}R!+R]udBx_]<R
24RRRRRRnext5IA}R!+Rcase
25RRRRRRRRRRlocR+R_initR!Rmain[random_rB<
26RRRRRRRRRRTRUER!RIA<
27RRRRRResac<
28RRRRRRinit5IB}R!+R]sdBx_]<R
29RRRRRRnext5IB}R!+Rcase
30RRRRRRRRRRlocR+RlGR!R5IBRgR]sdBx_B}<
31RRRRRRRRRRTRUER!RIB<
32RRRRRResac<
33RRRRRRinit5XA}R!+RFALSE<R
34RRRRRRnext5XA}R!+Rcase
35RRRRRRRRRRlocR+RlXR!RTRUE<RR
36RRRRRRRRRRlocR+Rl=R!RFALSE<R
37RRRRRRRRRRTRUER!RXA<
38RRRRRResac<
39
40RRMODULERmain
41RRVAR
42RRRRRRsynchR!R{NONE}<
43RRRRRRINSTANCER!Rmodule_INSTANCE5synchwRself}<
44RRRRRRrandom_rBR!RunsignedRword[Bx]<
45  
46RRDEFINER
47RRRRRREoCR!+R5INSTANCE[locR+Rend}<
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Figure 3. Example SCL–IM–nuXmv translation

Each transition can only fire if its condition is evaluated to
true. The conditions are not shown on the figure but for each
Ti the corresponding condition (guard) is the Boolean variable
Ci. The corresponding IM model is shown in Part 2 of Fig. 4.
For each step Si the corresponding FV (Si) variable is denoted
by si.x, the corresponding F ′V (Si) variable is denoted by si.x′.
The reason for using both x and x′ is to avoid transition
chaining, i.e., when the firing of the transition enables another
transition that fires too. For example, firing T6 can enable T7
(providing that C7 is true), but according to the semantics of
Siemens SFCs this firing can only performed when the SFC
is called for the next time. The parallel activation of S2 and
S3 can be observed in the variable updates of the l1 → l2 IM
transition. The alternative activation of S4 and S5 is visible in
the l2 → l3 IM transitions.

The set W defined for the transformation (cf.
Rule SFC3) is the following in this example:
W = {({S1}, {T1}), ({S2,S6}, {T6}), ({S3}, {T2,T3}),
({S4}, {T4}), ({S5}, {T5}), ({S7}, {T7})}.

The first and the last transition of the IM model contain the
synchronizations with other automata. These synchronizations
represent the FB call of the SFC block.

G. Implementation of the Methodology

The methods presented above are implemented in a proof-
of-concept tool called PLCverif. The PLC input parser is
implemented using Xtext6. The provided abstract syntax tree
is the input of the transformation and reduction algorithms
implemented in Java. The whole procedure is implemented in
an Eclipse-based tool that allows the user to import the PLC
code and define the requirement to be verified. It also performs
the model transformations, the automated model reductions
and calls the model checker tools. The feedback provided to
the user is a verification report containing the result of the
verification and the eventual counterexample. The definition
of the code and requirement to be verified is the only task of
the user, all the rest is automated and hidden.

6http://eclipse.org/Xtext/

http://eclipse.org/Xtext/
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s2.x′ := s2.x

[s1.x ∨ s2.x ∨ s3.x ∨ s4.x∨

init

l0

end

l1

s3.x′ := s3.x[¬(s1.x ∨ s2.x
∨s3.x ∨ s4.x

l2

[s1.x′ ∧ C1] [¬(s1.x′ ∧ C1)]
s1.x := F
s2.x := T
s3.x := T

l3

[s3.x′ ∧ C2]

[¬(s3.x′) ∨ ¬(C2 ∨ C3)]

s3.x := F
s4.x := T

[s3.x′ ∧ ¬C2 ∧ C3]
s3.x := F
s5.x := T

l4

[s4.x′ ∧ C4] [¬(s4.x′ ∧ C4)]
s4.x := F
s6.x := T

l5

[s5.x′ ∧ C5] [¬(s5.x′ ∧ C5)]
s5.x := F
s6.x := T

l6

[s2.x′ ∧ s6.x′ ∧ C6] [¬(s2.x′ ∧ s6.x′ ∧ C6)]
s2.x := F

s7.x := T
s6.x := F

[s7.x′ ∧ C7] [¬(s7.x′ ∧ C7)]
s7.x := F
s1.x := T

s4.x′ := s4.x
s5.x′ := s5.x

s1.x′ := s1.x

s6.x′ := s6.x
s7.x′ := s7.x

∨s5.x ∨ s6.x
∨s7.x)]

i1?

i2!

s5.x ∨ s6.x ∨ s7.x]

Figure 4. Example SFC–IM translation

PLCverif is not available yet, but our plan is to make it
production-ready and downloadable from our website7.

V. EXPERIMENTAL RESULTS

This section provides experimental verification results on
CERN PLC programs and real requirements. Most of the
control systems used at CERN are developed using the UNI-
COS (Unified Industrial Control System) framework. This
framework provides a common development process and a
library of reusable base objects representing frequently-used
industrial control instrumentation (e.g., sensors, actuators). We
present two typical formal verification use cases. In the first
example, we check requirements on the model of a single
base object from the UNICOS library consisting mainly of
a single function block with some function calls. The second
example shows the verification of a requirement on a complete
UNICOS application controlling a cryogenics subsystem. This
application consists of hundreds of base object instances and
a large application-specific logic.

A. Verification of a UNICOS Base Object

In this section, we present the verification of the UNICOS
base object OnOff, which represents an actuator driven by
digital signals (e.g., valve, heater, motor). This object can run
in different configurations with different parameters and in
various modes; it can handle various errors.

In the PLC code, the OnOff object is implemented by a
function block written in SCL. This function block has 600
lines of code, 60 input variables and 62 output variables. The
data types used in this block are Booleans, integers, arrays,
floats and structures, e.g., an array composed of these data
types. The function block has several function calls to 3
different functions.

7http://cern.ch/plcverif/

Table I
METRICS OF THE MODELS OF ONOFF

Metric Non-reduced Reduced
model model

PSS 1.6 · 10218 4.3 · 1026
Model generation 0.2 s 0.6 s
Verification — 19.4 s

(6.1 s without c.ex.)

The following is a real requirement expressed informally by
the UNICOS developers: if the object is controlled locally (is
in the so-called “Hardware” mode) and there is no interlock,
nor explicit output change request valid in this mode, the
output keeps its value.

To help developers to express real requirements and to
facilitate the cooperation between developers and formal ver-
ification experts, we defined a set of easy-to-use requirement
patterns (for details see [33]). Using this patterns, a devel-
oper was able to formalize the requirement using variables
and Boolean expressions as follows: “If OutOnOV=false &
TStopI=false & FuStopI=false & StartI=false is true at the
end of cycle N and HLD=true & HOnR=false & HOffR=false
& TStopI=false & FuStopI=false & StartI=false is true at the
end of cycle N + 1, then OutOnOV=false is always true at
the end of cycle N + 1.” Requirements expressed using our
patterns can be automatically formalized in LTL:

G
((

EoC ∧ ¬OutOnOV ∧ ¬TStopI ∧ ¬FuStopI ∧ ¬StartI ∧
HLD ∧ X(¬EoCU(EoC ∧ HLD ∧ ¬HOnR ∧ ¬HOffR ∧
¬TStopI ∧ ¬FuStopI ∧ ¬StartI))

)
→

X
(
¬EoCU(EoC ∧ ¬OutOnOV)

))
In this formula, EoC is a Boolean symbol, which evaluates
to true at the end of each PLC cycle and only then.

Table I summarizes the performance metrics of the ap-
proach8. Before the reductions, the size of the potential state
space (PSS) is 1.6 · 10218. After the general and requirement-
dependent reductions the PSS has 4.3 · 1026 states, whereof
4.9 · 1014 are reachable. Evaluation of the requirement takes
6.1 s using nuXmv without counterexample generation. This
showed that the requirement is not satisfied. If the counterex-
ample is generated too, the run time is 19.4 s. The generation
of the model including all the reductions takes 0.6 s.

We used the counterexample generated by nuXmv to prove
that the bug detected in our model is, indeed, a real bug. To this
end, we have analyzed the counterexample and automatically
generated a PLC program, exhibiting the bug on real hardware
using the real code of the base object. This generated PLC
code drives the module under verification to a state where
the requirement is violated by feeding it with appropriate
input values extracted from the counterexample. Thus, the
discovered bug was not a result of our model generation
technique, but was also confirmed in the real PLC code.

This methodology has been found very useful for the
controls engineer. We have verified 52 different requirements

8The measurements were performed on a PC with Intel R© CoreTM i7-3770
3.4 GHz CPU, 8 GB RAM, on Windows 7 x64.

http://cern.ch/plcverif/
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Figure 5. QSDN process

provided by UNICOS developers for the OnOff object. Our
experiments identified 11 cases when the requirement was
not satisfied on this well-tested object used in numerous
CERN applications. In 4 cases, the PLC program had to be
modified. In 7 cases, the problem was due to incomplete or
bad specification.

B. Verification of a Full UNICOS PLC Application

We have chosen the so-called QSDN application9 as a
second case study. This application controls a subsystem of the
Large Hadron Collider cryogenics control system. The size of
QSDN is representative of medium size UNICOS applications.
It contains 110 functions and function blocks, and consists
of approximately 17,500 lines of code. Before reductions,
this results in a huge generated model: the IM contains 302
automata, and the PSS size is 1031985 (see M1 in Table II).

Verification of a full UNICOS application may rely on
specifications of base objects of the UNICOS library, instead
of their implementation. The correctness of these objects is
addressed separately (cf. Section V-A). Thus, we speed-up the
verification process and focus the analysis on the potential
integration errors without compromising its soundness. This
is in contrast with testing, where a faulty base object could
potentially hide integration errors.

Thus the goal is to check the application-specific logic
implemented in SCL and SFC. This logic is described in the
UNICOS functional analysis document, which is a semiformal
textual specification. Application-specific functional require-
ments are also extracted from this specification.

Table II presents metrics relevant to the generated models.
The original state space is huge and the original model
obviously cannot be verified (see M1 in Table II). Based on the
requirement to be verified, both the general and requirement-
specific reductions can be used to reduce the model. Although
these techniques have shown their efficiency and lead to a
considerable state space reduction, the reduced model is still
huge and impossible to verify.

The requirements extracted from the functional analysis are
typically simple safety requirements, e.g., “if α is true, then β
is true” (in CTL, AG(α→ β)), where α and β denote Boolean
expressions on variables.

9QSDN stands for Cryogenics Surface Liquid Nitrogen Storage System.

(∗ Position Management∗)
QSDN_4_1EH4001Ok.AuOnR :=

QSDN_4_DN1CT_SEQ_DB.OkSignalOn.x OR
QSDN_4_DN1CT_SEQ_DB.ValvesOn.x OR
QSDN_4_DN1CT_SEQ_DB.Run.x;

QSDN_4_1EH4001Ok.AuOffR :=
NOT QSDN_4_1EH4001Ok.AuOnR;

Figure 6. Excerpt of QSDN code relevant to the case study

Table II
METRICS OF THE MODELS OF QSDN

Metric Non-reduced Reduced Abstract, reduced
model (M1) model (M2) model (M3)

PSS 1031985 105048 2 · 1048
(RSS: 3 · 1042)

Variables 31,402 3757 32
Model generation 4.2 s 15.3 s 50.2 s
Verification — — 4.5 s

The example requirement to be checked is the following: “If
QSDN_4_DN1CT_SEQ_DB.Stop.x is true (at the end of a
scan cycle), QSDN_4_1EH4001Ok.AuOffR should be true
also.” Fig. 6 shows the relevant part of the QSDN PLC code.
Satisfaction of the requirement cannot be shown by inspection
of this code part and requires additional information from the
rest of the application. After the COI reduction 3757 variables
are kept in the reduced model (see model M2 in Table II).
Formal verification is still not possible.

In this example, 4 iterations of the variables abstraction were
needed to prove that the requirement is satisfied on the formal
model. Using this technique, less than a minute was necessary
to check this requirement (see M3 in Table II). As can be seen,
our verification method can be used for isolated verification
of modules or for verification of complete PLC applications.
Approximately 30 different requirements were extracted from
the QSDN functional analysis document, all of which were
proven to be satisfied using the above method.

VI. ANALYSIS AND DISCUSSION

The proposed methodology allows the generation and
analysis of formal models for real-life systems. Using these
techniques, we have identified bugs in real-life systems de-
ployed at CERN.

Verification is made possible by the reduction techniques
applied to the Intermediate Model (IM) representation of such
systems. Among the techniques discussed in the paper, COI,
general rule-based reductions and mode selection preserve the
meaning of the model as relevant to a specific property: the
property is satisfied in the reduced model if and only if it is
satisfied in the original one.

The variable abstraction technique adds spurious system
behaviors by introducing non-determinism. If a safety property
holds in the reduced model, it holds in the original one.
However, spurious counterexamples may occur. If the property
does not hold in the abstract model and a counterexample is
produced, further analysis must be performed to determine
whether it represents a real bug. Such analysis requires the
expertise of a developer and knowledge of the application.
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If the counterexample represents a possible behavior of the
system, a real bug is identified and the verification process
terminates. If this analysis cannot prove that the counterex-
ample is spurious, the model needs to be refined to reduce
abstraction. In particular, application developers can refine a
model by providing invariants, i.e., properties that are known
to be satisfied in all reachable states of the model. For example,
the statement “Two steps of an SFC program cannot be both
active at the end of the same PLC cycle” is an invariant
satisfied by all SFC programs that do not contain parallel
branches. The above process is applied iteratively until the
requirement is shown to be satisfied or a bug is identified.

In the current state of the methodology, we cannot prove
mathematically the correctness of all our model transforma-
tions. However, when a discrepancy between the specification
and the formal model is detected, we can prove that this
bug exists in the real PLC program. A small piece of code
called “PLC demonstrator” can be automatically generated
out of the counterexample give by the model checker. This
code reproduces the combination of input variable values that
provoke the discrepancy and the monitor will check if the bug
is reproduced also in the real PLC program.

Correctness of Our Approach

Apart from the combinatorial explosion of the state space,
a fundamental limitation of all verification methodologies lies
in the fact that requirements to be satisfied by the system
are usually expressed informally. Moreover, they may be
inconsistent [34] or fail to reflect the precise behavior expected
by the designers [35]. To address this problem, we have
defined a set of easy-to-use requirement patterns [33]. Our
approach is similar to the one widely adopted in the industry,
where simplified formal languages are used by developers to
define requirements [36]–[38].

The second limitation comes from the correctness of the
model checking tools and of the result interpretation by
the developers. Although several model checkers are used
in a variety of projects, none of the well-established model
checkers have been formally verified themselves. Furthermore,
most practical verification methodologies involve abstraction,
leading to the possibility of spurious counterexamples. As with
compilation warnings, developers tend to dismiss counterex-
amples as spurious, whenever they cannot be easily confirmed.
Although the latter problem can be partially addressed by
making counterexample analysis part of the automated process
(e.g., [18]), the former is likely to persist. Thus, model
checking cannot be the sole basis for system certification.
However, we have shown that many bugs can be identified
by formal verification, which escape the usual testing proce-
dures, considerably increasing the confidence one can put into
industrial control applications.

A mathematically sound correctness proof requires the
establishment of formal semantics for all involved languages.
Using operational semantics for the model checker languages,
our intermediate representation (cf. [3]) and the languages
of the IEC 61131-3 standard (cf. [39] for IL and FBD), we
can establish a simulation relation between the original and

transformed models: states in the original model are related
with semantically equivalent states in the transformed model.
The simulation relation must preserve the properties to be
verified (the choice of the employed abstractions influences
the classes of properties that are preserved [27]). One such
complete proof of the correctness of abstraction rules that we
used can be found in [5].

VII. CONCLUSION AND FUTURE WORK

We have presented a general automated methodology for
formal verification of PLC programs. The methodology is
based on an intermediate model (IM), used as a pivot between
all the PLC and formal modeling languages that we use.
This approach potentially covers all PLC languages. Current
implementation supports SCL and SFC; the support for IL is
under development. The IM model is automatically reduced,
following which models for different verification tools are
automatically generated. This allows us to benefit from the
combined strengths of the different verification tools. Current
implementation allows the generation of nuXmv, UPPAAL
and BIP models. We have presented the most relevant trans-
formation rules from SCL and SFC to IM. The reduction
and abstraction techniques presented in the paper are applied
to the intermediate model. On one hand this makes them
independent from the source language, allowing verification
of heterogeneous PLC applications. On the other hand, this
approach decouples these techniques from the choice of the
model checker, allowing greater flexibility and coherence of
verification results. Finally, we have applied the presented
methodology to real-life PLC control systems developed at
CERN, demonstrating the feasibility of our approach. Formal
verification using the presented methodology has allowed us
to identify bugs in these systems, which have escaped the
standard testing procedures.

There are two main directions for the future work on this
project. First is the improvement of the specification methods
for control systems. Such a language must be formal, unam-
biguous and easy-to-understand. Second is the improvement
of the abstraction techniques with the goal of automatizing
the variable abstraction.
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[16] T. Bartha, A. Vörös, A. Jámbor, and D. Darvas, “Verification of an
industrial safety function using coloured Petri nets and model checking,”
in Proc. of the 14th Int. Conf. on MITIP 2012. Computer and
Automation Research Inst., 2012, pp. 472–485.

[17] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe,
and O. Stursberg, “Verification of PLC programs given as sequential
function charts,” in Integration of Software Specification Techniques for
Applications in Engineering, ser. LNCS. Springer, 2004, vol. 3147, pp.
517–540.

[18] S. Biallas, J. Brauer, and S. Kowalewski, “Counterexample-guided
abstraction refinement for PLCs,” in Proc. of the 5th Int. Conf. on
Systems Software Verification. USENIX Association, 2010.

[19] J. Yoo, S. Cha, and E. Jee, “A verification framework for FBD based
software in nuclear power plants,” in Proc. of 15th Asia-Pacific Software
Engineering Conference. IEEE, 2008, pp. 385–392.

[20] R. Glück and F. Krebs, “Towards interactive verification of pro-
grammable logic controllers using modal Kleene algebra and KIV,” in
Relational and Algebraic Methods in Computer Science, ser. LNCS.
Springer, 2015, vol. 9348, pp. 241–256.

[21] J. Sadolewski, “Conversion of ST control programs to ANSI C for
verification purposes,” e-Informatica, vol. 5, no. 1, pp. 65–76, 2011.

[22] V. Gourcuff, O. de Smet, and J.-M. Faure, “Improving large-sized PLC
programs verification using abstractions,” in Proc. of the 17th IFAC
World Congress. IFAC, 2008, pp. 5101–5106.
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