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We suggest a quantum black hole model that is based on an analogue to hydrogen atoms. A self-regular Schwarzschild-AdS black
hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of
hydrogen atoms and the mass densities of nonextreme black holes are given by the probability densities of excited states with no
angular momenta. Such an analogue is inclined to adopt quantization of black hole horizons. In this way, the total mass of black
holes is quantized. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.

1. Introduction

It has been desirable that a nonperturbative quantum gravity
theory should have no ultraviolet (UV) divergences [1–4].
To be consistent with this feature, the self-complete gravity
theory [5, 6] has been put forward to give a short distance
cutoff that naturally avoids the UV divergence. Normally,
the probe energy must be higher and higher when the
exploration of microscope gets deeper and deeper. However,
the production of micro black holes provides a possible
way to circumvent such an endless procedure. The UV self-
completeness renders an intriguing property thatmicro black
holes would be produced if elementary particle collisions
with the Planckian energy scale could satisfy the so-called
quantum hoop conjecture [7]. When the energy goes higher,
one cannot probe shorter distances but produce greater black
holes with bigger horizons, where such objects are called
classicalons [5, 6, 8–10].This means that the horizon of micro
black holes gives a threshold or a natural minimal length that
might be probed experimentally. On the other hand, if the
minimal length implies the Planck length, the corresponding
energy scale is far from being reached by the present and even

foreseeing colliders. Nonetheless, if the effect of large extra
dimensions could be considered, the micro black holes with
the TeV scale would probably be produced at the LHC or its
next generation in a nonfar future. In the recent decade or so,
there has been much progress on this issue, both in theory
[11–27] and in experiment [28–32].

The idea of the self-completeness mentioned above has
been realized by Nicolini et al. [33] when the noncommuta-
tive geometry [34] is introduced into the ordinary Schwar-
zschild black hole. It is assumed that the noncommutativity of
spacetime would be an intrinsic rather than a super-imposed
property of manifold, so that one shouldmodify the distribu-
tion of matter and consequently the modified distribution of
matter naturally reflects the basic characteristic of noncom-
mutativity inmanifold [35].That is to say, energy-momentum
tensors aremodified in terms of smearedmatter distributions
in the right hand side of Einstein’s field equations, while no
changes aremade in the left hand side. By inserting the condi-
tion of energy conservation,∇𝜇𝑇

𝜇]
= 0, into a Schwarzschild-

like solution, 𝑔00𝑔𝑟𝑟 = −1, a mass-smeared spherically sym-
metric black hole solution of the modified Einstein equa-
tions with a Gaussian mass density [33] can be obtained.
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The self-regular solution has no singularity at the origin and
it naturally contains a minimal length that originates from
the horizon of an extreme black hole. If the point-like mass
distribution with the Dirac 𝛿-function density is taken, one
obtains the ordinary Schwarzschild-AdS solution by solving
the modified Einstein equations. For more details about this
self-regular model of black holes, see [36–39].

Based on such a modification of mass distribution men-
tioned above, a new self-regular quantum black hole proposal
[40] has been put forward by making an analogy between
a self-regular black hole and a harmonic oscillator. As the
Gaussian mass density is proportional to the probability
density of the ground state of a harmonic oscillator, the self-
regular Schwarzschild black hole is regarded as a quantum
harmonic oscillator. As a result, the total mass of the extreme
self-regular Schwarzschild black hole is associated with the
zero-point energy of a harmonic oscillator. In addition, the
specific mass densities (Such mass densities are not set to be
the probability densities of the excited states of a harmonic
oscillator in order to avoid the appearance of multihorizon
geometries for the nonextreme black holes, which leads to the
proposal being Bohr-like quantization, as explained in [40].)
with no multihorizon geometries are chosen for nonextreme
black holes. As it is assumed that the nonextreme black holes
correspond to the excited states of a harmonic oscillator, the
total masses of nonextreme black holes are thus associated
with the energy eigenvalues of the excited states of a har-
monic oscillator. Moreover, the quantum hoop conjecture
and Correspondence Principle related to the analogy with a
harmonic oscillator are found to be satisfied. The proposal
briefly summarized above is named [40] as the Bohr-like
quantization of the Schwarzschild black hole.

Inspired by the interesting Bohr-like quantization [40],
we propose in the present paper the so-called Schrödinger-
like quantization for the self-regular Schwarzschild-AdS
black hole. The meaning relies on our choice of black hole
mass densities that depends on solutions of the Schrödinger
equation not only for an extreme black hole but also for a
nonextreme one. Although such a choice for a nonextreme
black hole leads normally to the appearance of multihorizon
geometries, it is well known that an extreme black hole,
sometimes also named as a remnant of black holes at the
final stage of the Hawking radiation, is quite different from
a nonextreme one and therefore it seems to be far-fetched
to require both of them monohorizontally. The merit of our
choice is that we provide a unified source of black hole mass
densities for both the extreme and nonextreme cases, which
makes our proposal succincter. Besides the formulations of
mass densities, the other indispensable ingredient in the
Bohr-like or our proposal is a special model of quantum
mechanics that will be used to make an analogy with the
black hole we are trying to quantize. Instead of a harmonic
oscillator associated with the Bohr-like quantization [40], we
take a hydrogen atom as our specificmodel.The reason of our
choice comes from the recent works by Corda [41–44] and
Bekenstein [45], where the radiation spectrum of black holes
is interpreted (We would like to point out that these works
just established the analogy between the Hawking radiation
spectra and the energy levels of a hydrogen atom, i.e., the

quantization of the radiation spectra, in a semiclassical
approach. However, the quantization of the black hole itself
was not touched, which leaves the task to the present paper.)
to be similar to that of a hydrogen atom. That is, these works
imply that there is a deep internal relationship between black
holes and hydrogen atoms. Consequently, based on the Bohr-
like quantization and the recent works by Corda and Beken-
stein, we propose our scenario for quantization of the self-
regular Schwarzschild-AdS black hole: the first step is tomake
the analogy between this black hole and the hydrogen atom,
and then the second step is to choose the probability densities
of states of hydrogen atoms to be the mass densities not only
for an extreme black hole but also for a nonextreme one.

The arrangement of this paper is as follows. In Section 2,
we start from the metric of the self-regular Schwarzschild-
AdS black hole, where the original total mass of a black
hole has been replaced by a mass distribution. In this way,
the noncommutativity of spacetime is introduced [33] into
the Schwarzschild-AdS black hole and thus the curvature
singularity at the origin is canceled. Further, the probability
densities of the ground state and excited states of hydrogen
atoms are chosen to be the mass densities of the extreme
and nonextreme self-regular Schwarzschild-AdS black holes,
where the ground state of hydrogen atoms corresponds to
the extreme black hole and the excited states correspond to
the nonextreme ones, which realizes the analogy between the
self-regular Schwarzschild-AdS black hole and the hydrogen
atom. Then, we analyze the mass quantization of the self-
regular Schwarzschild-AdS black hole in Section 3 through
quantization of horizons. Such an analysis depends on the
mean radius of hydrogen atoms, which is consistent with our
specific analogy.Moreover, the quantumhoop conjecture and
the Correspondence Principle related to such an analogy are
discussed. Finally, Section 4 is devoted to a brief conclusion.

2. Analogy between Self-Regular Black Holes
and Hydrogen Atoms

Themetric of the static and spherically symmetric self-regular
Schwarzschild-AdS black hole, where the noncommutativity
of spacetime has been considered, takes the form

𝑑𝑠
2
= −(1 −

2M (𝑟)

𝑟
+
𝑟
2

𝑏2
)𝑑𝑡
2

+ (1 −
2M (𝑟)

𝑟
+
𝑟
2

𝑏2
)

−1

𝑑𝑟
2

+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) ,

(1)

where the parameter 𝑏 is the radius of the AdS back-
ground spacetime. This metric is the so-called self-regular
or noncommutative geometry inspired formulation of the
Schwarzschild-AdS black hole with no metric and curvature
singularities at the origin [33, 36–39]. The characteristic of
this kind of black holes is that the mass distribution,

M (𝑟) = ∫

𝑟

0

𝜌 (𝑟) 4𝜋𝑟
2
𝑑𝑟, (2)
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replaces the total mass, 𝑀 = ∫
∞

0
𝜌(𝑟)4𝜋𝑟

2
𝑑𝑟, in the metric.

We will see that the mass density 𝜌(𝑟) of black holes is related
to a noncommutative parameter or a minimal length.

We emphasize that the metric solution (1), as was shown
in [33], is associated with the following modified energy-
momentum tensor:

𝑇
𝜇

] = 𝑝⊥𝛿
𝜇

] + (𝑝⊥ + 𝜌) (𝑢
𝜇
𝑢] − 𝑙
𝜇
𝑙]) , (3)

where 𝑢𝜇 = √𝑔𝑟𝑟𝛿
𝜇

0
, 𝑙𝜇 = (1/√𝑔𝑟𝑟)𝛿

𝜇

𝑟
, and 𝑝⊥ = −𝜌 −

(𝑟/2)(𝑑𝜌/𝑑𝑟). Note that the appearance of the extra term
𝑙
𝜇
𝑙] implies that the modified energy-momentum tensor

describes a kind of anisotropic fluid rather than the perfect
fluid. As a special case, when the point-like matter is taken,
that is, 𝜌(𝑟) = (𝑀/2𝜋𝑟

2
)𝛿(𝑟), one can retrieve the ordinary

Schwarzschild-AdS solution by solving the modified Einstein
equations rather than the Einstein equations.

2.1. Analogy between the Extreme Black Hole and the Ground
State. According to our proposal, we take the probability
density of the ground state of a hydrogen atom, |Ψ100|

2
=

(1/𝜋𝑎
3

0
) exp(−2𝑟/𝑎0), where 𝑎0 is the Bohr radius, as the mass

density for the extreme black hole

𝜌1 (𝑟) =
𝑀1

𝜋𝑎3
exp(−2𝑟

𝑎
) , (4)

where𝑀1 is the total mass of the extreme black hole and 𝑎 is a
parameter that will be seen to be associated with the horizon
radius of the extreme black hole, that is, the minimal length
in our model. We notice that the specific analogy between
|Ψ100|
2 and 𝜌1(𝑟) is 𝑎0 ∼ 𝑎.

Substituting (4) into (2), we obtain the mass distribution
of the extreme black hole

M1 (𝑟) = 𝑀1 [1 − (1 +
2𝑟

𝑎
+
2𝑟
2

𝑎2
) exp(−2𝑟

𝑎
)] . (5)

One can see from (1) and (5) that the metric singularity at
𝑟 = 0 has been canceled, which is consistent with the nonlocal
gravity [46]. In addition, from 𝑔00 = 0we deduce the relation
between the total mass 𝑀1 and the horizon radius 𝑟𝐻 as
follows:

𝑀1 =
𝑟𝐻

2
(1 +

𝑟
2

𝐻

𝑏2
)

⋅ [1 − (1 +
2𝑟𝐻

𝑎
+
2𝑟
2

𝐻

𝑎2
) exp(−2𝑟𝐻

𝑎
)]

−1

,

(6)

which is plotted in Figure 1.
We can observe in Figure 1 that there are two horizon

radii in general but, for the extreme case where the mass
takes the minimal value 𝑀min

1
, there is only one horizon

radius, the extremal horizon radius 𝑟𝐻
1

. As 𝑟𝐻
1

implies the
minimal length, no horizon radius can approach zero.This is
the characteristic of the self-regular black hole.
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Figure 1: The blue curve corresponds to the relation equation (6)
that gives the relation between the mass and the horizon of the
extreme self-regular Schwarzschild-AdS black hole, and the red
curve corresponds to the usual relation associated with the ordinary
Schwarzschild-AdS black hole. When the horizon radius grows up,
the two curves gradually approach, which means that the effect of
noncommutativity mainly exists in the near extremal horizon. Here
we set 𝑏 = 5𝑎, which satisfies the hoop conjecture; see the analysis
under (9) for the details.

By requiring 𝜕𝑀1/𝜕𝑟𝐻 = 0, we find that the extremal
horizon radius 𝑟𝐻

1

that corresponds to 𝑀
min
1

satisfies the
following equation:
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1
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= 0,

(7)

where 𝑟𝐻
1

can be regarded as the minimal length in our
model. As (7) is a transcendental equation, one cannot solve
it analytically.Therefore, wemake a numerical fitting in terms
of the rational fractional function
𝑟𝐻
1

𝑎

=
1.692 (𝑏/𝑎)

3
+ 2.766 (𝑏/𝑎)

2
+ 20.03 (𝑏/𝑎) − 7.562

(𝑏/𝑎)
3
+ 1.635 (𝑏/𝑎)

2
+ 15.94 (𝑏/𝑎) + 3.198

.

(8)

We plot (7) and its numerical fitting equation (8) for different
ratios 𝑏/𝑎 in Figure 2 from which we can see that the relative
error is very small.

We now analyze the 𝑏-parameter dependence of the
horizon radius of the extreme black hole.

(i) If 𝑏 ≫ 𝑎, which means an asymptotic Minkowski
background, we compute from (7) and (6) the extre-
mal horizon radius 𝑟𝐻

1

≈ 1.69182𝑎 and its correspon-
ding minimal mass𝑀min

1
≈ 1.28735𝑎.

(ii) In order to ensure the formation of a black hole, the
hoop conjecture should be considered; that is, the
mean radius of a black hole related to some mass
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Figure 2: The numerical points of (7) are plotted in blue color, and
the fitting curve of (8) is plotted in red color.The relative error is less
than 4 × 10−5%.

distribution should not be larger than the horizon
radius of the relevant extreme black hole. The mean
radius for the mass density equation (4) reads

𝑟 = ∫

∞

0

𝑟𝜌1 (𝑟) 4𝜋𝑟
2
𝑑𝑟 =

3

2
𝑎. (9)

Thus, the hoop conjecture requires 𝑟𝐻
1

≥ (3/2)𝑎, whose lower
bound gives the corresponding minimal mass 𝑀

min
1

≈

1.41728𝑎. When we consider (7) or (8), the loop conjecture
also implies the inequality of the ratio 𝑏/𝑎; that is, 𝑏/𝑎 ≥

4.99822.
As a result, when the 𝑏-parameter of the AdS background

spacetimemeets the hoop conjecture, that is, 4.99822 ≤ 𝑏/𝑎 <
∞, the horizon radius of the extreme black hole takes the
following range:

3

2
≤
𝑟𝐻
1

𝑎
< 1.69182, (10)

and then the corresponding mass of the extreme black hole
is constrained in the range 1.28735𝑎 < 𝑀

min
1

≤ 1.41728𝑎.
(We notice that for the extreme black hole a small radius
corresponds to a large mass, and vice versa.The reason is that
a small radius corresponds to a small 𝑏-parameterwhich gives
rise to the large pressure 𝑃, 𝑃 ∝ 1/𝑏

2, and thus an extreme
black hole with a small horizon radius has a highmass density
and naturally it is heavier than an extreme black hole with a
large horizon radius.)This implies that the AdS radius cannot
be too small or the curvature of the background spacetime
cannot be too large. Moreover, although 𝑏 has a wide range,
𝑟𝐻
1

/𝑎 has a narrow one. That is, 𝑟𝐻
1

/𝑎 correlates weakly with
𝑏. As mentioned above, we may take 𝑙0 = (3/2)𝑎 as the
minimal length which appears naturally from the horizon
radius of the extreme black hole.

2.2. Analogy between Nonextreme Black Holes and Excited
States. In accordance with our proposal mentioned in Sec-
tion 2.1, we take the probability densities of excited states
of hydrogen atoms as the mass densities of nonextreme
black holes. As our black hole is nonrotational, we choose

the probability densities of excited states with no angular
momenta |Ψ𝑛00|

2 to be the desired mass densities 𝜌𝑛(𝑟)

𝜌𝑛 (𝑟)

=
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𝜋𝑛5𝑎3
(
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𝑘=0
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(−

2𝑟

𝑛𝑎
)

𝑘

)

2

⋅ exp (− 2𝑟
𝑛𝑎
) ,

(11)

where 𝑛 is a positive integer and 𝑀𝑛 is the total mass of
the nonextreme black hole related to the 𝑛th energy level
of excited states with no angular momenta. This formula
includes the ground state to be the special case of 𝑛 = 1.
Although such a choice of the mass densities for nonextreme
black holes will lead to multihorizon solutions, there is no
evidence that both the extreme and nonextreme black holes
would be monohorizontal, and this choice provides a unified
source of black hole mass distributions for both the extreme
and the nonextreme cases.

Substituting (11) into (2), we compute the mass distribu-
tions of nonextreme black holes with 𝑛 ≥ 2

M2 (𝑟) = 𝑀2 [1 − (1 +
𝑟
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(12)

Setting the largest real root 𝑟𝐻
𝑛

of 𝑔00 = 0 being the horizon
radius of the 𝑛th nonextreme black hole, we express the total
mass𝑀𝑛 in terms of the corresponding horizon radius 𝑟𝐻

𝑛
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We are now ready to quantize𝑀𝑛 by means of quantization
of 𝑟𝐻

𝑛

.

3. Quantization of Extreme and
Nonextreme Black Holes

In [40] the mass of black holes is quantized directly because
the self-regular Schwarzschild black hole is regarded as the
quantum harmonic oscillator. Here the situation is differ-
ent. Our proposal, based on the works by Corda [41–44]
and Bekenstein [45], is the analogue of the self-regular
Schwarzschild-AdS black hole and the hydrogen atom with
no angular momenta. Thus, we are inclined to adopt quanti-
zation of horizons. Specifically, for the hydrogen atom with
no angular momenta, its quantum mean radius reads ⟨𝑟⟩ =
(3𝑎0/2)𝑛

2
∝ 𝑛
2. Because the mean radius of hydrogen atoms

corresponds to the horizon radius of black holes, the quantum
horizon radius of the self-regular Schwarzschild-AdS black
hole is naturally assumed to be

𝑟𝐻
𝑛

= 𝑛
2
𝑟𝐻
1

, (14)

where 𝑟𝐻
1

is, like 𝑎0 in hydrogen atoms, the horizon radius
of the extreme black hole. Substituting (14) into (6) and
(13), we obtain the quantized masses of the extreme and
nonextreme black holes that are expressed in terms of the
extremal horizon radius or the minimal length 𝑟𝐻
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Figure 3: Plots of the relations between black hole masses and their
horizon radii.The blue, red, orange, and green curves correspond to
the cases of 𝑛 = 1, 2, 3, 4, respectively, where we set 𝑏/𝑎 = 5 which
has been verified to satisfy the hoop conjecture; see (9).
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We plot (6) and (13) in Figure 3, where the four
black round points denote the quantized masses of the
extreme black hole (𝑀min

1
) and the nonextreme black holes

(𝑀quan
𝑛

, 𝑛 = 2, 3, 4), respectively.
Now we turn to the discussion of the quantum hoop

conjecture which has the following form [40]:

⟨𝑛 |𝑟| 𝑛⟩ ≤ ⟨𝑛
󵄨󵄨󵄨󵄨󵄨
𝑟𝐻
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑛⟩ . (16)

Considering (11) and (14), we calculate
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(17)

As a result, the quantum hoop conjecture in our proposal
reads

3

2
𝑎 ≤ 𝑛
2
𝑟𝐻
1

. (18)
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For the extreme black hole, that is, the case 𝑛 = 1, the
quantum hoop conjecture is satisfied because it reduces
to (10). For the nonextreme black holes, that is, the case
𝑛 ≥ 2, the quantum hoop conjecture is obviously satisfied.
This means that our assumption of quantization, see (14),
coincides with the quantum hoop conjecture. That is to say,
the black holes can be formed at the quantum level in our
proposal.

As to the Correspondence Principle, it usually indicates
a transition from quantum theory to classical theory. In
quantummechanics, there are two alternatives to realize such
a transition. One is the limit of a large quantum number,
and the other is the limit of ℏ → 0. The latter alternative
corresponds to the limit of 𝑎 → 0 in our proposal, which
implies the fact that the minimal length (𝑙0 = (3/2)𝑎) can be
neglected for a black hole with a large scale. We can check
that when 𝑎 → 0, the mass densities (11) turn back to the
𝛿(𝑟)-function density that describes, from the point of view of
themodified Einstein equations, the ordinary Schwarzschild-
AdS black hole without the effect of the minimal length.
Consequently, the Correspondence Principle is satisfied in
our proposal of black hole quantization.

4. Summary

Based on the recent works by Corda [41–44] and Bekenstein
[45], the analogue of a self-regular Schwarzschild-AdS black
hole and a hydrogen atom is assumed. Correspondingly,
the quantization of horizons is utilized. In this way, the
total mass of a self-regular Schwarzschild-AdS black hole is
quantized. Moreover, the quantum hoop conjecture and the
Correspondence Principle are verified in our proposal.
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“Black hole formation and classicalization in ultra-Planckian
2 → 𝑁 scattering,”Nuclear Physics B, vol. 893, pp. 187–235, 2015.

[11] T. G. Rizzo, “Black hole production at the LHC: effects of
Voloshin suppression,” Journal of High Energy Physics, vol. 6, no.
2, pp. 243–252, 2002.

[12] A. Chamblin and G. C. Nayak, “Black hole production at the
CERN LHC: string balls and black holes from pp and lead-lead
collisions,” Physical Review D, vol. 66, no. 9, Article ID 091901,
2002.

[13] I. Mocioiu, Y. Nara, and I. Sarcevic, “Hadrons as signature of
black hole production at the LHC,” Physics Letters B, vol. 557,
no. 1-2, pp. 87–93, 2003.

[14] L. Lonnblad,M. Sjodahl, and T. Akesson, “QCD-suppression by
black hole production at the LHC,” JHEP, vol. 9, p. 19, 2005.

[15] T. G. Rizzo, “Black hole production at the LHC by Standard
Model bulk fields in the Randall-Sundrum model,” Physics
Letters, Section B, vol. 647, no. 1, pp. 43–48, 2007.

[16] M. M. Najafabadi and S. P. Mehdiabadi, “Top production from
black holes at the LHC,” Journal of High Energy Physics, vol.
2008, no. 7, article 11, 2008.

[17] A. Chamblin, F. Cooper, and G. C. Nayak, “Top quark produc-
tion from black holes at the CERN LHC,” Physics Letters B, vol.
672, no. 2, pp. 147–151, 2009.

[18] A. E. Erkoca, G. C. Nayak, and I. Sarcevic, “Higgs production
and decay from TeV scale black holes at the LHC,” Physical
Review D, vol. 79, no. 9, Article ID 094011, 2009.

[19] D. M. Gingrich, “Noncommutative geometry inspired black
holes in higher dimensions at the LHC,” Journal of High Energy
Physics, vol. 2010, no. 5, article 022, 21 pages, 2010.

[20] E. Kiritsis andA. Taliotis, “Mini-black-hole production at RHIC
and LHC,” http://arxiv.org/abs/1110.5642.

[21] E. Spallucci and S. Ansoldi, “Regular black holes in UV self-
complete quantum gravity,” Physics Letters B, vol. 701, no. 4, pp.
471–474, 2011.

[22] J. Mureika, P. Nicolini, and E. Spallucci, “Could any black holes
be produced at the LHC?” Physical Review D, vol. 85, no. 10,
Article ID 106007, 2012.

[23] E. Spallucci and A. Smailagic, “Black holes production in self-
complete quantum gravity,” Physics Letters B, vol. 709, no. 3, pp.
266–269, 2012.

[24] P. Nicolini, A. Orlandi, and E. Spallucci, “The final stage of
gravitationally collapsed thick matter layers,” Advances in High
Energy Physics, vol. 2013, Article ID 812084, 8 pages, 2013.



Advances in High Energy Physics 7

[25] A. Aurilia and E. Spallucci, “Why the length of a quantum string
cannot be Lorentz contracted,”Advances inHigh Energy Physics,
vol. 2013, Article ID 531696, 7 pages, 2013.

[26] P. Nicolini and E. Spallucci, “Holographic screens in ultravi-
olet self-complete quantum gravity,” Advances in High Energy
Physics, vol. 2014, Article ID 805684, 9 pages, 2014.

[27] P. Nicolini, J. Mureika, E. Spallucci, E. Winstanley, and M.
Bleicher, “Production and evaporation of Planck scale black
holes at the LHC,” https://arxiv.org/abs/1302.2640.

[28] V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., “Search for
microscopic black hole signatures at the Large Hadron Col-
lider,” Physics Letters B, vol. 697, no. 5, pp. 434–453, 2011.

[29] CMS Collaboration, “Search for microscopic black holes in pp
collisions at √𝑠 = 7TeV,” Journal of High Energy Physics, vol.
2012, p. 61, 2012.

[30] ATLAS Collaboration, “Search for microscopic black holes in a
like-sign dimuon final state using large track multiplicity with
the ATLAS detector,” Physical Review D, vol. 88, Article ID
072001, 2013.

[31] ATLAS Collaboration, “Search for quantum black hole pro-
duction in high-invariant-mass lepton+jet final states using pp
collisions at √𝑠 = 8TeV and the ATLAS detector,” Physical
Review Letters, vol. 112, no. 9, Article ID 091804, 2014.

[32] ATLAS Collaboration, “Search for microscopic black holes and
string balls in final states with leptons and jets with the ATLAS
detector at√𝑠 = 8TeV,” Journal ofHigh Energy Physics, vol. 2014,
p. 103, 2014.

[33] P. Nicolini, A. Smailagic, and E. Spallucci, “Noncommutative
geometry inspired Schwarzschild black hole,” Physics Letters B,
vol. 632, no. 4, pp. 547–551, 2006.

[34] A. Connes, Noncommutative Geometry, Academic Press, New
York, NY, USA, 1994.

[35] E. Spallucci andA. Smailagic, “Semi-classical approach to quan-
tum black holes,” https://arxiv.org/abs/1410.1706.

[36] T. G. Rizzo, “Noncommutative inspired black holes in extra
dimensions,” Journal of High Energy Physics, vol. 2006, no. 9,
article 021, 2006.

[37] S. Ansoldi, P. Nicolini, A. Smailagic, and E. Spallucci, “Non-
commutative geometry inspired charged black holes,” Physics
Letters B, vol. 645, no. 2-3, pp. 261–266, 2007.

[38] E. Spallucci, A. Smailagic, and P. Nicolini, “Non-commutative
geometry inspired higher-dimensional charged black holes,”
Physics Letters B, vol. 670, no. 4-5, pp. 449–454, 2009.

[39] P. Nicolini, “Noncommutative black holes, the final appeal to
quantum gravity: a review,” International Journal of Modern
Physics A, vol. 24, no. 7, pp. 1229–1308, 2009.

[40] E. Spallucci and A. Smailagic, “Dynamically self-regular quan-
tum harmonic black holes,” Physics Letters B, vol. 743, pp. 472–
477, 2015.

[41] C. Corda, “Black hole quantum spectrum,”The European Physi-
cal Journal C, vol. 73, article 2665, 2013.

[42] C. Corda, “Time dependent Schrödinger equation for black
hole evaporation: no information loss,” Annals of Physics, vol.
353, pp. 71–82, 2015.

[43] C. Corda, “Quasi-normalmodes: the ‘electrons’ of black holes as
‘gravitational atoms’? Implications for the black hole informa-
tion puzzle,” Advances in High Energy Physics, vol. 2015, Article
ID 867601, 16 pages, 2015.

[44] C. Corda, “Bohr-like black holes,” in AIP Conference Proceed-
ings, vol. 1648, Rhodes, Greece, 2015.

[45] J. D. Bekenstein, “Statistics of black hole radiance and the
horizon area spectrum,” Physical Review D, vol. 91, Article ID
124052, 2015.

[46] P. Nicolini, “Nonlocal and generalized uncertainty principle
black holes,” https://arxiv.org/abs/1202.2102.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


