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Abstract

The cross-section for the production of a single top quark in association with a W boson
in proton–proton collisions at

√
s = 8 TeV is measured. The dataset corresponds to an

integrated luminosity of 20.3 fb−1, collected by the ATLAS detector in 2012 at the Large
Hadron Collider at CERN. Events containing two leptons and one central b-jet are selected.
The Wt signal is separated from the backgrounds using boosted decision trees, each of which
combines a number of discriminating variables into one classifier. Production of Wt events
is observed with a significance of 7.7σ. The cross-section is extracted in a profile likelihood
fit to the classifier output distributions. The Wt cross-section, inclusive of decay modes, is
measured to be 23.0±1.3(stat.)+3.2

−3.5(syst.)±1.1(lumi.) pb. The measured cross-section is used
to extract a value for the CKM matrix element |Vtb| of 1.01 ± 0.10 and a lower limit of 0.80
at the 95% confidence level. The cross-section for the production of a top quark and a W
boson is also measured in a fiducial acceptance requiring two leptons with pT > 25 GeV
and |η| < 2.5, one jet with pT > 20 GeV and |η| < 2.5, and Emiss

T > 20 GeV, including both
Wt and top-quark pair events as signal. The measured value of the fiducial cross-section is
0.85 ± 0.01(stat.)+0.06

−0.07(syst.)±0.03(lumi.) pb.

© 2016 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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1 Introduction

The production of a single top quark at the Large Hadron Collider (LHC) proceeds via the weak interac-
tion in the Standard Model (SM). The three main modes of single top-quark production are: t-channel,
the exchange of a W boson between a light quark and a heavy quark; s-channel, via a virtual W boson;
and Wt, the production of a top quark in association with a W boson. Single top-quark production de-
pends on the top-quark coupling to the W boson, which is parameterised by the form factor fLV and the
Cabibbo–Kobayashi–Maskawa (CKM) matrix element Vtb [1–3]. The cross-section for each of the three
production modes is proportional to the square of | fLVVtb| [4, 5]. Physics beyond the SM can contribute
to the single top-quark final state and modify the production cross-sections [6, 7] as well as the kinematic
distributions, for example through a resonance that decays to Wt [8, 9].

The production of single top quarks has been observed at the Tevatron proton–antiproton collider in the t-
channel [10, 11] and s-channel [12–14], as well as their combination [15–17]. The Wt process has a small
expected cross-section at the Tevatron and was not observed. The t-channel mode has been observed by
both the ATLAS [18, 19] and CMS [20, 21] collaborations at the LHC. The s-channel mode has not yet
been measured at the LHC because of its small production cross-section [22]. Evidence for Wt production
was reported by ATLAS [23] and CMS [24] in proton–proton (pp) collisions at 7 TeV. The observation
of Wt production in pp collisions at 8 TeV has been reported by CMS [25].

Production of Wt events proceeds via b-quark-induced partonic channels such as gb→ Wt → W−W+b. A
leading-order (LO) Feynman diagram in the 5-flavour-number scheme (5FNS, considering the quarks u, d,
s, c, and b in the initial state) is shown in Figure 1. The presence of only a single b-quark in the final state
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represents a distinctive feature with respect to the W+W−bb̄ final state of top-quark pair (tt̄) production.
The Wt final state contains an additional b-quark in higher-order Quantum Chromodynamics (QCD)
correction diagrams in the 5FNS, as well as in the leading-order process in the 4-flavour-number scheme
(4FNS, considering only the quarks u, d, s, c in the initial state), making it challenging to experimentally
separate Wt production from tt̄ production.

g

b

t

b

ℓ−

ℓ+

ν̄

ν

W+

W−

Figure 1: Representative leading-order Feynman diagram for the production and decay of a single top quark in
association with a W boson.

The theoretical prediction for the Wt production cross-section at next-to-leading order (NLO) with next-
to-next-to-leading logarithmic (NNLL) soft gluon corrections is 22.37 ± 1.52 pb [26] at a centre-of-mass
energy of

√
s =8 TeV for a top-quark mass of mt = 172.5 GeV [27]. In this calculation, the uncertainty

on the theoretical cross-section accounts for the variation of the renormalisation and factorisation scale
between mt/2 and 2mt and for the parton distribution function (PDF) uncertainties (using the 90% con-
fidence level errors of the MSTW2008 NNLO PDF set [28]). This cross-section represents about 20% of
the total cross-section for all single top-quark production modes at the LHC. A second theoretical pre-
diction for the Wt production cross-section is 18.8 ± 0.8 (scale) ±1.7 (PDF) pb, computed at NLO with
Hathor v2.1 [29, 30]. The PDF uncertainties are calculated using the PDF4LHC prescription [31] with
three different PDF sets (CT10, MSTW2008nlo68cl [28] and NNPDF2.3 [32]). The renormalisation and
factorisation scales are set to 65 GeV and the b-quark from initial-state radiation is required to have a
transverse momentum of less than 60 GeV.

This paper presents a measurement of the cross-section for Wt production in pp collisions at
√

s =8 TeV,
based on the analysis of 20.3 fb−1 of data collected by the ATLAS detector in 2012. The measurement is
carried out in the dilepton final state shown in Figure 1 where each W boson decays to an electron or a
muon and a neutrino (eν or µν). This analysis requires two opposite-sign high-transverse-momentum (pT)
leptons (ee, eµ, µµ), missing transverse momentum (Emiss

T ), and one high-pT central jet, which is required
to contain a b-hadron (b-jet). The main background to this signature is from tt̄ production, with smaller
backgrounds coming from dibosons (WW, WZ, ZZ), Z+jets, and events where one or both leptons are
misidentified (fake-lepton events) or non-prompt. Control regions enriched in tt̄ and other background
events are also defined. Events in the tt̄-enriched regions fulfil the same lepton and missing transverse
momentum requirements, and have exactly two jets, with one or both of the jets required to be identified
as a b-jet. Events in the other background-enriched regions have one or two jets which are required to not
be identified as b-jets. The backgrounds are estimated with simulation, except the non-prompt or fake-
lepton background, which is estimated from data. Boosted decision trees (BDT) are used to optimise
the discrimination between signal and background [33]. The cross-section is extracted using a profile
likelihood fit of the BDT response. The background normalisation and the systematic uncertainties are
constrained by simultaneously analysing phase-space regions with substantial Wt signal contributions
and regions where the Wt contributions are negligible. The ratio of the measured cross-section to the
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theoretical prediction (which assumes Vtb = 1) is used to extract a value of | fLVVtb|.

In the 5FNS, the Wt single top-quark process overlaps and interferes with tt̄ production at NLO where
diagrams involving two top quarks are part of the real emission corrections to Wt production [34, 35].
A calculation in the 4FNS scheme includes Wt and tt̄ as well as non-top-quark diagrams [36] and the
interference between Wt and tt̄ enters already at tree level. A measurement of the cross-section inside a
fiducial acceptance, designed to reduce the dependence on the theory assumptions, is also presented. The
fiducial acceptance is defined using physics objects constructed of stable particles to approximate the Wt
detector acceptance. The cross-section for the sum of Wt and tt̄ production is measured in this fiducial
acceptance.

This paper is organised as follows: Section 2 provides a brief overview of the ATLAS detector and
the definition of physics objects. Section 3 describes the data and Monte Carlo samples used for the
analysis. Section 4 describes the event selection and background estimation. Section 5 presents the
procedure defined to discriminate the signal from the backgrounds using BDTs. The dominant systematic
uncertainties are discussed in Section 6. Section 7 presents the results for the inclusive cross-section
measurement and for |Vtb| and discusses the impact of systematic uncertainties. Section 8 defines the
fiducial acceptance and presents the fiducial cross-section measurement. Finally, a summary is presented
in Section 9.

2 The ATLAS detector and object reconstruction

The ATLAS detector [37] is a multi-purpose particle detector with a forward-backward symmetric cyl-
indrical geometry and a near 4π coverage in solid angle.1 ATLAS comprises an inner detector (ID)
surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, a calorimeter system
and a muon spectrometer in a toroidal magnetic field. The ID tracking system covers the pseudorapidity
range |η| < 2.5 and consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
The ID provides precise position and momentum measurements for charged particles and allows efficient
identification of jets containing b-hadrons. Lead/liquid-argon (LAr) sampling calorimeters provide elec-
tromagnetic (EM) energy measurements with high granularity up to |η| = 2.5. A hadron (steel/scintillator-
tile) calorimeter covers the central pseudorapidity range (|η| < 1.7). The end-cap and forward regions are
instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to |η| = 4.9.
The muon spectrometer surrounds the calorimeters. It consists of three large air-core toroid superconduct-
ing magnet systems, separate trigger detectors and high-precision tracking chambers providing accurate
muon tracking for |η| < 2.7 and muon triggering for |η| < 2.4.

A three-level trigger system [38] is used to select events. The first-level trigger is implemented in hard-
ware and uses a subset of the detector information to reduce the event rate to less than 75 kHz. Two
software-based trigger levels, Level-2 and the Event Filter, reduce the rate of Level-1 accepts to about
400 Hz on average.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular separation is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2.
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Candidate events are characterised by exactly two leptons (ee, µµ, eµ), missing transverse momentum
Emiss

T due to the neutrinos from the leptonic decays of the two W bosons, and a b-jet originating from
the top-quark decay. Electron candidates are reconstructed from energy clusters in the calorimeter which
are matched to ID tracks [39]. Selected electrons must have ET > 25 GeV and |η| < 2.47, excluding the
barrel/end-cap transition region of 1.37 < |η| < 1.52. A hit in the innermost layer of the ID is required,
to reject photon conversions. Electron candidates are required to fulfil calorimeter-based and track-based
isolation requirements in order to suppress backgrounds from hadron decays. The calorimeter transverse
energy within a cone of size ∆R = 0.2 and the scalar sum of track pT within ∆R of 0.3 around the electron,
in each case excluding the contribution from the electron itself, are each required to be smaller than ET-
and η-dependent thresholds calibrated to give nominal selection efficiencies of 90% for prompt electrons
from Z → ee decays.

Muon candidates are reconstructed by combining matching tracks reconstructed in both the ID and the
muon spectrometer [40]. Selected muons have a pT > 25 GeV and |η| < 2.5. An isolation criterion [41]
is applied in order to reduce background contamination from events in which a muon candidate is ac-
companied by hadrons. The ratio of the sum of pT of additional tracks in a variable-size cone around the
muon, to the pT of the muon [41], is required to be less than 0.05, yielding a selection efficiency of 97%
for prompt muons from Z → µµ decays.

Jets are reconstructed using the anti-kt jet clustering algorithm [42] with a radius parameter of R = 0.4,
using locally calibrated topological clusters as inputs [43]. Jet energies are calibrated using energy- and
η-dependent correction factors derived from simulation and with residual corrections from in-situ meas-
urements [44]. Jets are required to be reconstructed in the range |η| < 2.5 and to have pT > 20 GeV. To
reduce the contamination due to jets from additional pp interactions in the same or neighbouring bunch
crossings (pileup), tracks originating from the primary vertex must contribute a large fraction to the scalar
sum of the pT of all tracks in the jet. This jet vertex fraction (JVF) [45] is required to be at least 50% for
jets with pT < 50 GeV and |η| < 2.4.

To avoid double-counting objects in an event and to suppress leptons from heavy-flavour decays, overlaps
between reconstructed objects are resolved in the following order: (1) jets overlapping with a selected
electron within ∆R of 0.2 are removed; (2) electrons that are within ∆R of 0.4 of a jet are removed; (3)
events are rejected if a selected electron shares an ID track with a selected muon; and (4) muons that are
within ∆R of 0.4 of a jet are removed.

The identification of b-jets relies of the long lifetime of b-hadrons and the topological properties of sec-
ondary and tertiary decay vertices reconstructed within the jet. A combination of multivariate algorithms
is used to identify b-jets (b-tag) [46]. The b-tag algorithm has an average efficiency of 70% for b-jets from
tt̄ decays and an average mis-tag rate of 0.8% [47, 48] for light-quark jets.

The missing transverse momentum (Emiss
T ) is calculated as the magnitude of the vector sum over the

energies of all clusters in the calorimeters, and is refined by applying object-level corrections to the
contributions arising from identified electrons, muons, and jets [49].

3 Data and simulated samples

The dataset used for this analysis was collected at
√

s = 8 TeVin 2012 by the ATLAS detector at the
LHC, and corresponds, after data quality requirements, to an integrated luminosity of 20.3 fb−1. Events
are required to have fired either a single-electron or single-muon trigger. The electron and muon triggers
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impose a pT threshold of 24 GeV, along with isolation requirements on the lepton. To recover efficiency
for higher pT leptons, the isolated lepton triggers are complemented by triggers without isolation require-
ments, but with pT thresholds of 60 GeV and 36 GeV for electrons and muons respectively.

Samples of signal and background events are simulated using various Monte Carlo (MC) generators,
as summarised in Table 1. The generators used for the estimation of the modelling uncertainties are
listed together with the reference simulation for the Wt signal and the tt̄ background. In addition, PDFs
used by each generator and the perturbative order in QCD of the respective calculations are provided.
All simulation samples are normalised to theoretical cross-section predictions. A top-quark mass of
172.5 GeV is used [27].

Table 1: Monte Carlo generators used to model the Wt signal and the background processes at
√

s = 8 TeV. The
samples marked with a † are used as alternatives for Wt or tt̄ to evaluate modelling uncertainties. DR refers to the
diagram-removal scheme and DS to the diagram-subtraction scheme to handle the overlap and interference between
Wt and tt̄, as discussed in the text.

Process Generator PDF Normalisation

Wt
Powheg-Box v1.0 CT10

+ Pythia v6.426, DR CTEQ6L1

Wt †
Powheg-Box v1.0 CT10

+ Pythia v6.426, DS CTEQ6L1 22.37 pb

Wt †
Powheg-Box v1.0 CT10 (NLO+NNLL)

+ Herwig v6.520.2, DR CT10

Wt †
MC@NLO v4.06 CT10

+ Herwig v6.520.2, DR CT10

tt̄
Powheg-Box v1.0 CT10
+ Pythia v6.426 CTEQ6L1

tt̄ †
Powheg-Box v1.0 CT10 253 pb
+ Herwig v6.520.2 CT10 (NNLO+NNLL)

tt̄ †
MC@NLO v4.06 CT10

+ Herwig v6.520.2 CT10

WW, WZ, ZZ
Alpgen v2.1.4 CTEQ6L1 88 pb

+ Herwig v6.520.2 CT10 (NLO)

Z(→ ee, µµ, ττ) + jets
Alpgen v2.1.4 CTEQ6L1 3450 pb

+ Pythia v6.426 CTEQ6L1 (NNLO)

The Wt events are simulated using the NLO generator Powheg-Box [50, 51], interfaced to Pythia [52] for
parton showering with the Perugia 2011C set of tuned parameters [53]. In the Powheg-Box event gener-
ator, the CT10 [54] PDFs are used, while the CTEQ6L1 [55] PDFs are used for Pythia. The generation of
Wt events is performed in the 5FNS. The overlap and interference between Wt and tt̄ is handled using the
diagram-removal scheme (DR), where all doubly resonant NLO Wt diagrams are removed [56]. An addi-
tional sample, generated with the diagram-subtraction scheme (DS), where the cross-section contribution
from Feynman diagrams containing two top quarks is subtracted, is used to evaluate the uncertainty as-
sociated with the modelling of the overlap between Wt and tt̄ [56]. Two alternative samples are used to
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determine theory modelling uncertainties: one using MC@NLO [57] and the other using Powheg-Box,
both interfaced to Herwig [58], with Jimmy for underlying-event modelling [59].

The dominant and largely irreducible tt̄ background is simulated with Powheg-Box, using the CT10 NLO
PDF set, with parton showering and hadronisation performed with Pythia. The tt̄ production cross-section
is σtt̄ = 253+13

−15 pb, computed at NNLO in QCD, including resummation of NNLL soft gluon terms [60–
66].

Smaller backgrounds arise from diboson and Z+jets production. The Alpgen LO generator [67], inter-
faced to Herwig, is used to generate diboson events, with the CTEQ6L1 PDF set. Diboson events are
normalised to the NLO prediction [68]. The Z+jets background is generated with Alpgen, interfaced to
Pythia, with the CTEQ6L1 PDF set. The diboson estimate also accounts for lower cross-section diboson
processes, including H → WW. The Z+jets events are normalised to the NNLO prediction [69].

The non-prompt or fake-lepton background arises from non-prompt electrons or muons from the weak
decay of mesons events, or from events where one or both leptons are mis-identified. This background
contribution includes the t-channel and s-channel single top-quark production modes. The normalisation
and shape of the non-prompt or fake-lepton background is determined directly from data, using the matrix
method [70]. In addition to events from the signal data sample (labelled as “tight” events), a second
(“loose”) set enriched with fake leptons is defined by removing the lepton isolation requirement. Given
the probabilities for real and fake leptons that already passed the loose selection to also pass the tight
selection, the number of tight events with a fake lepton is determined from a linear system of equations.

Generated events are passed through a simulation [71] of the ATLAS detector based on Geant4 [72] and
reconstructed using the same procedure as for collision data. The alternative tt̄ samples used to evaluate
theory modelling uncertainties are instead processed with the ATLFAST-II [71] simulation, which em-
ploys a parameterisation of the response of the electromagnetic and hadronic calorimeters, and Geant4
for the other detector components. The simulations also include the effect of multiple pp collisions per
bunch crossing (pileup).

4 Event selection

The dilepton selection requires that each event has a high-quality reconstructed primary vertex, which
must be formed from at least five tracks with pT > 0.4 GeV. Each selected event must contain exactly two
isolated opposite-sign leptons (e, µ) that originate from the primary vertex, at least one of which must be
associated with a lepton that triggered the event. In addition, since the Wt signature contains a high-pT
quark from the top-quark decay, events are required to have either one jet or two jets.

Events from Z-boson decays (including Z → ee, Z → µµ, and Z → ττ with τ → e or µ) are sup-
pressed through requirements on the invariant mass of the dilepton system as well as on Emiss

T and the
pseudorapidity of the leptons+jet(s) system. Events containing same-flavour leptons (ee or µµ) are re-
jected if the invariant mass of the lepton pair is between 81 GeV and 101 GeV. Events are also required
to have Emiss

T > 40 GeV, with the threshold raised to 70 GeV if the invariant mass of the lepton pair is
below 120 GeV. Events containing one electron and one muon are required to have Emiss

T > 20 GeV,
with the threshold raised to 50 GeV if the invariant mass of the lepton pair is below 80 GeV. Since Wt
events are more central than Z+jets events, the pseudorapidity of the system of both leptons and all jets,
reconstructed from the vectorial sum of lepton and jet momenta, is required to be |ηsys| < 2.5.
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Events are categorised into five regions depending on the jet and b-tag multiplicities. The largest number
of expected signal events is in the 1-jet region with one b-tagged jet, while events in the two-jet regions
with one or two b-tags are dominated by tt̄. These three regions are included in the cross-section fit. Two
additional regions are used to validate the modelling of the other backgrounds but are not included in
the fit. One-jet and two-jet events that have zero b-tagged jets compose the 0-tag control regions, which
are enhanced in the other backgrounds. Observed yields and kinematic distributions in the 0-tag control
regions are studied while choosing the selection cuts; the three regions included in the cross-section fit
are not part of this optimisation procedure.

The predicted event yields for signal and backgrounds, and their uncertainties, are summarised in Table 2.
Uncertainties from different sources are added in quadrature, not taking into account possible correlations.
Many of the sources of systematic uncertainty are common to the Wt signal and tt̄ background processes,
and correlated between regions (see Section 6). The numbers of events observed in data and the total pre-
dicted yields are compatible within the uncertainties. The Wt signal comprises 21% of the total expected
event yield in the 1-jet 1-tag region. The main background originates from the production of top-quark
pair events, which accounts for almost 80% of the total event yield in the 1-jet 1-tag region. For the other
regions included in the fit, the expected fraction of signal events is smaller, 9% in the 2-jet 1-tag region
and 3% in the 2-jet 2-tag region, which is the most enriched in tt̄. The other backgrounds are small in the
1-jet 1-tag and 2-jet regions where they account for 2% of the total event yield. The 0-tag control regions
are enriched in other backgrounds (diboson, Z+jets and non-prompt or fake lepton), which contribute
40–60% of the total event yield.

The Emiss
T distributions of events in the 0-tag regions are shown in Figure 2 to demonstrate the good

modelling of the other backgrounds. The behaviour of this distribution at low Emiss
T values is a result

of the different requirements for same-flavour and opposite-flavour leptons. Figures 3 and 4 show the
distributions of kinematic variables of reconstructed objects for the three b-tagged regions. The data
distributions are well modelled by the background and signal expectations in all regions.

Table 2: Numbers of expected events for the Wt signal and the various background processes and observed events
in data in the five regions, with their predicted uncertainties. Uncertainties shown include all sources of statistical
and systematic uncertainty, summed in quadrature.

Process 1-jet 1-tag 2-jet 1-tag 2-jet 2-tag 1-jet 0-tag 2-jet 0-tag
Wt 1 000 ± 140 610 ± 70 160 ± 50 660 ± 100 290 ± 30
tt̄ 4 500 ± 700 7 600 ± 900 5 000 ± 900 2 600 ± 400 2 660 ± 330
Diboson 40 ± 30 35 ± 15 1 ± 1 1 600 ± 500 670 ± 270
Z + jets 70 ± 40 60 ± 40 7 ± 4 2 600 ± 1 400 900 ± 500
Non-prompt or fake lepton 24 ± 15 27 ± 15 13 ± 7 130 ± 70 80 ± 50
Total background 4 600 ± 700 7 700 ± 900 5 000 ± 900 6 900 ± 1 400 4 300 ± 600
Signal+Background 5 600 ± 800 8 300 ± 900 5 200 ± 900 7 600 ± 1 500 4 600 ± 600
Observed 5 585 8 371 5 273 7 530 4 475
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The simulated signal and background contributions are scaled to their expectations. The hatched area represents
the sum in quadrature of the statistical and systematic uncertainties. The last bin includes the overflow.
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Figure 3: Distributions, in the 1-jet 1-tag region, of (a) pT of the leading lepton (`1), (b) pT of the second-leading
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Figure 4: Distributions of the pT of the leading jet ( j1) and the second-leading jet ( j2) in the (a,b) 2-jet 1-tag and
(c,d) 2-jet 2-tag regions. The simulated signal and background contributions are scaled to their expectations. The
hatched area represents the sum in quadrature of the statistical and systematic uncertainties. The last bin includes
the overflow.
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5 Analysis

The separation of the Wt signal from the dominant background from top-quark pairs is accomplished
through the use of a BDT algorithm [33] in the TMVA framework [73]. The BDTs are trained separ-
ately in three regions, 1-jet 1-tag, 2-jet 1-tag and 2-jet 2-tag, using simulated Wt events as signal and
simulated tt̄ events as background. Three equal-size Wt samples are combined to reduce sensitivity to
the modelling uncertainties and to maximise the number of events available for training: the Powheg-
Box+Pythia sample with the DR scheme, the Powheg-Box+Pythia sample with the DS scheme, and the
Powheg-Box+Herwig sample with the DR scheme. The AdaBoost boosting algorithm is used [74]. This
algorithm increases the event weight for mis-classified events for consecutive trees in the training. The
final BDT is then the weighted average over all trees. The list of variables entering the BDT algorithm
is chosen based on the power to discriminate the Wt signal from the tt̄ background and is derived from a
large set of kinematic variables that show good agreement between data and MC simulation. The number
of input variables is a compromise between the achievable discrimination power and possible overtrain-
ing. As a result of this optimisation procedure, 13, 16, and 16 variables are selected for the 1-jet 1-tag,
2-jet 1-tag, and 2-jet 2-tag regions, respectively.

The BDT input variables used in the three regions are explained below and are listed in Table 3 together
with their importance ranking. The objects (denoted o1, . . . , on) used to define these kinematic variables
are the leading- and second-leading lepton (`1 and `2) and jet ( j1 and j2) as well as Emiss

T . The kinematic
variables are defined as follows.

• psys
T (o1, . . . , on), magnitude of the vector sum of the transverse momenta of the objects.

•
∑

ET, the scalar sum of transverse energy of calorimeter cells. For cells associated with electrons
and jets, the corresponding corrections are applied.

• σ (psys
T (o1, . . . , on)), the ratio of psys

T to (HT +
∑

ET), where HT is the scalar sum of the transverse
momenta of the objects.

• ∆pT(o1, o2), the difference in pT between the two objects.

• ∆R(o1, o2), the separation of the two objects in φ–η space.

• mT(o1, o2), the transverse mass, given by
√

2pT(o1)pT(o2)(1 − cos ∆φ).

• Centrality(o1, o2), the ratio of the scalar sum of the pT of the two objects to the sum of their energies.

• m(o1, o2), the invariant mass of the system of the two objects.

• mT2, which contains information about the presence of the two neutrinos from the two W-boson
decays [75–77]. The mT2 algorithm creates candidates for the transverse momenta of the two neut-
rinos, which must sum to give the missing transverse momentum. These are combined with the
momenta of the two leptons to form the transverse mass of two candidate W bosons, with each also
fulfilling a W-boson mass constraint. For each such candidate pair, the larger of the two transverse
masses is kept. Then mT2 is given by the smallest transverse mass in all possible candidate pairs.

• E/m(o1, o2, o3), the ratio of the energy of the system of the three objects to the invariant mass of
this system.

12



Table 3: Discriminating variables used in the training of the BDT for each region. The number indicates the relative
importance of this variable, with 1 referring to the most important variable. An empty field means that this variable
is not used in this region.

Variable 1-jet, 1-tag 2-jet 1-tag 2-jet 2-tag

psys
T (`1, `2, Emiss

T , j1) 1
psys

T (`1, `2, j1) 7
psys

T (`1, `2) 13
psys

T ( j1, j2) 10 1
psys

T (`1, `2, Emiss
T ) 12 2

psys
T (`1, `2, Emiss

T , j1, j2) 13
psys

T (`1, j1) 13
σ(psys

T ) (`1, `2, Emiss
T , j1) 4 5

pT ( j2) 8
∆pT (`1, `2) 8
∆pT ((`1, `2, j1),(Emiss

T )) 9
∆pT (Emiss

T , j1) 9
∆pT (`1, `2, Emiss

T , j1) 16
∆pT (`2, j2) 14
∆R (`1, j1) 2 5
∆R (`2, j1) 4 10
∆R (`2, j2) 6
∆R (`2, j1) 11
∆R (`1,`2) 14
∆R ((`1, `2), j2) 9
m (`2, j1) 10 3 3
m (`1, j2) 1 4
m ( j1, j2) 2
m (`2, j2) 7 7
m (`1, j1) 8 6
m (`1, `2) 15
m (`2, j1, j2) 11
m (`1, `2, j1, j2) 15
mT ( j1, Emiss

T ) 5
mT2 11
E/m (`1, `2, j2) 16∑

ET 3
Centrality(`1, `2) 6
Centrality(`1, j1) 12
Centrality(`2, j2) 12
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Figure 5 compares the shapes of the most important variables in the 1-jet 1-tag region for Wt and tt̄
events and shows a comparison of the data and the SM predictions. The most important variable is
psys

T (`1, `2, Emiss
T , j1), which is sensitive to the unidentified b-quark in tt̄ events. This variable peaks at

lower values for Wt and has a longer tail for tt̄. The second most important variable is the separation
of the leading lepton and the jet, in φ-η space. These two objects originate from the same top quark in
Wt events, leading to a sharper peak than in tt̄ events. Figure 6 shows the most important discriminating
variables in the 2-jet regions. Here, the psys

T distribution also peaks at lower values for Wt than for tt̄, but
the distribution is also broader for Wt, resulting in a long tail. The invariant mass variables are important
for 2-jet events, where half of the possible lepton–jet pairings correspond to the objects from the decay of
one of the top quarks in tt̄ events leading to a peak at lower invariant mass. For Wt, only one quarter of
the possible pairings of jets and leptons correspond to the objects from the top-quark decay.
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Figure 5: Distributions of the two most important BDT input variables for the 1-jet 1-tag region. The distributions
are shown for (a, b) the pT of the system of the leptons, jet and Emiss

T and (c, d) the ∆R between the leading lepton
and the jet. Each contribution is normalised to unit area in (a, c) and to its expectation in (b, d). The hatched area
represents the sum in quadrature of the statistical and systematic uncertainties. The last bin includes the overflow.

The BDT response for the three regions is shown in Figure 7. The Wt signal is larger at positive BDT
response values, while the tt̄ background dominates for negative BDT response values. The BDT range in
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Figure 6: Distributions of the most important BDT input variables in the (a, b) 2-jet 1-tag and (c, d) 2-jet 2-tag
regions. The distributions are shown for (a, b) the invariant mass of the system of the leading lepton and the
second-leading jet and (c, d) the pT of the system of the two jets. Each contribution is normalised to unit area in (a,
c) and to its expectation in (b, d). The hatched area represents the sum in quadrature of the statistical and systematic
uncertainties. The last bin includes the overflow.
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each region is chosen to ensure sufficient simulation statistics in each bin. The BDT separates the signal
from the background in all three regions, although even for high BDT response values in the 1-jet 1-tag
region, there remains a large expected background from tt̄ events. The BDT responses from Figure 7 are
used in the profile likelihood fit swith this binning.
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Figure 7: BDT response for (a, b) 1-jet 1-tag, (c, d) 2-jet 1-tag and (e, f) 2-jet 2-tag events. Each contribution
is normalised to unit area in (a, c, e) and to its expectation in (b, d, f). The hatched area represents the sum in
quadrature of the statistical and systematic uncertainties. The first bin includes the underflow and the last bin the
overflow.
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6 Systematic uncertainties

Systematic uncertainties affect the acceptance estimates for the signal and background processes. Some
of the systematic uncertainties also affect the shape of the BDT response. Experimental sources of uncer-
tainty arise from the modelling of jets, leptons and Emiss

T .

The impact of the uncertainty in the jet energy scale (JES) on the acceptance and shape of the BDT
response for Wt and tt̄ is evaluated in 22 uncorrelated components, each of which can have a pT and η de-
pendence [44, 78]. The largest components are related to the modelling and the heavy-flavour correction,
with an acceptance uncertainty for Wt and tt̄ events of 1–2%. The shape uncertainty is taken into ac-
count for the JES component with the largest impact on the fit result (JES modelling component 1). The
jet energy resolution uncertainty is evaluated by smearing the energy of each jet in the simulation and
symmetrising the resulting change in acceptance and BDT response shape [79]. The resulting acceptance
uncertainty for Wt and tt̄ events is 1–3%, and the shape uncertainty is taken into account.

The uncertainties in the modelling of the jet reconstruction and the jet vertex fraction requirement are
evaluated by randomly discarding jets according to the difference in jet reconstruction efficiency between
the data and MC simulation and by varying the the jet vertex fraction requirement, respectively. These
uncertainties have an impact on the acceptance for Wt and tt̄ events of less than 1%. They do not change
the shape of the BDT response.

Further uncertainties arise from the modelling of the trigger, reconstruction, and identification efficiencies
for electrons [80] and muons [40], as well as from the modelling of the electron and muon energy scale
and resolution [40, 81]. These have an effect on the acceptance for Wt and tt̄ events of less than 1%,
except for the electron identification uncertainty, which has an acceptance uncertainty for Wt and tt̄ of
2%. These uncertainties do not change the shape of the BDT response.

Uncertainties in the modelling of the b-tagging efficiency and mis-tag rates are estimated from data [47,
48]. These uncertainties depend on the jet flavour and pT, and for mis-tag rates also on jet η. The un-
certainty for b-jets is evaluated in six components, with the largest component having an acceptance
uncertainty for Wt and tt̄ events of 1–4%, depending on the analysis region [48]. The b-tag modelling
uncertainties do not change the shape of the BDT response.

The variations in lepton and jet energies are propagated to the Emiss
T value. This uncertainty has additional

contributions from the modelling of the energy deposits which are not associated with any reconstructed
object [49]. Both an energy scale and an energy resolution component are considered. The corresponding
acceptance uncertainty for Wt and tt̄ events is less than 0.3%. The Emiss

T scale component also alters the
shape of the BDT response.

Theoretical uncertainties are evaluated for the signal as well as the tt̄ predictions. Figure 8 shows the
relative shift of the BDT response associated with four of the theory modelling uncertainties. The uncer-
tainty on the Wt signal and the tt̄ background associated with initial- and final-state radiation (ISR/FSR) is
evaluated using Powheg-Box interfaced to Pythia. The renormalisation scale associated with the strong
coupling αS is varied up and down by a factor of two in the matrix-element calculation and a Pythia
Perugia 2012 tune is used to create samples with increased and decreased levels of radiation that are com-
patible with 7 TeV ATLAS data [82]. For tt̄, the hdamp parameter of Powheg-Box [51], which affects the
amount of QCD radiation, is varied together with ISR/FSR. This uncertainty is treated as uncorrelated
between Wt and tt̄ events. Figure 8 shows that this uncertainty has a large effect on the acceptance and
also alters the shape of the BDT response.

18



The uncertainty associated with the NLO matching method is evaluated by comparing Powheg-Box with
MC@NLO, both interfaced to Herwig. Figure 8 shows that this uncertainty has a dependence on the
shape of the BDT response. For Wt production, the largest impact of this uncertainty is to shift events
between the 1-jet 1-tag and 2-jet 2-tag regions. For tt̄ events, the impact of this uncertainty is on the
acceptance, where it is 11–12%. This uncertainty is treated as correlated between Wt and tt̄ events.

The uncertainty associated with the modelling of the hadronisation and parton shower is evaluated by
comparing samples where Powheg-Box is interfaced with Pythia to those where it is interfaced with
Herwig. This uncertainty alters the shape of the BDT response.

For the Wt signal, the uncertainty associated with the scheme used to remove overlap with tt̄ is evaluated
by comparing the two different schemes: the nominal sample, generated with the DR scheme, is compared
to a sample generated with the DS scheme. The relative shift of the BDT response is shown in Figure 8.
The relative shift of this uncertainty is about 5% in the signal region for 1-jet 1-tag events, and grows
to large values in the background-dominated region for 2-jet events, where its evaluation is limited by
simulation statistics and the predicted event yield is very small. This uncertainty alters the shape of the
BDT response.

The evaluation of the PDF uncertainty follows the PDF4LHC prescription [31] using three different PDF
sets (CT10, MSTW2008nlo68cl [28] and NNPDF2.3 [32]). The uncertainty on the acceptance for Wt and
tt̄ events is evaluated in each of the three analysis regions. The PDF uncertainty is considered correlated
between Wt and tt̄ events, except for tt̄ 1-jet events, for which it is considered to be uncorrelated. The PDF
uncertainty components that affect the tt̄ acceptance in this region differ from the uncertainty components
that affect the tt̄ acceptance in the other regions [83].

The normalisation of the tt̄ background has an uncertainty of 6% [65, 66]. The diboson background
process has an uncertainty of 30% for 1-jet events and 40% for 2-jet events [84], which is treated as
uncorrelated between different regions. The Z+jets and non-prompt or fake-lepton backgrounds have
normalisation uncertainties of 60% to account for possible mismodelling of the jet multiplicity and the
acceptance of these small backgrounds [85, 86]. The Z+jets and non-prompt or fake-lepton normalisation
uncertainties are treated as uncorrelated between background sources and regions.

The uncertainty on the integrated luminosity is 2.8%. It is derived, following the same methodology
as that detailed in Ref. [87], from a preliminary calibration of the luminosity scale derived from beam-
separation scans performed in November 2012. The luminosity uncertainty enters in the extraction of the
cross-section as well as in the normalisation of the background processes that are normalised to theory
predictions. The statistical uncertainty due to the finite size of the simulation samples is also taken into
account.

7 Results

7.1 Measurement of the inclusive cross-section

A profile likelihood fit to the BDT classifier distributions is performed, using the RooStats software [88,
89], in order to determine the inclusive Wt cross-section, utilising the 1-jet 1-tag, 2-jet 1-tag, and 2-jet
2-tag regions. The inclusion of the 2-jet regions provides additional signal sensitivity and also helps to
constrain the tt̄ background normalisation and systematic uncertainties.
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Figure 8: Relative shift of the BDT response associated with systematic variations of ISR/FSR, NLO matching
method, DR/DS and hadronisation for (a) 1-jet 1-tag, (b) 2-jet 1-tag, and (c) 2-jet 2-tag events. DR refers to the
diagram-removal scheme, DS to the diagram-subtraction scheme.
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The binned likelihood function is constructed as the product of Poisson probability terms over all bins
considered in the analysis. This likelihood depends on the signal-strength parameter µ, which is a mul-
tiplicative factor on the unconstrained Wt yield prediction. Nuisance parameters (denoted θ) are used to
encode the effects of the various sources of systematic uncertainty on the signal and background expecta-
tions. These nuisance parameters are implemented in the likelihood function with multiplicative Gaussian
or log-normal constraints with mean θ0 and standard deviation ∆θ. The likelihood is then maximised with
respect to the full set of µ and θ parameters. The values of these parameters after maximisation are
referred to as µ̂, θ̂, and ∆θ̂.

The expected cross-section is obtained from a fit to the so-called Asimov dataset [90], with the signal
and all backgrounds scaled to their predicted sizes [26]. The expected measurement is µ̂exp = 1.00+0.17

−0.18.
The observed result for the signal strength is µ̂obs = 1.03+0.16

−0.17, which corresponds to a measured cross-
section of 23.0 ± 1.3 (stat.)+3.2

−3.5 (syst.) ± 1.1 (lumi.) pb. Including systematic uncertainties, the observed
(expected) significance of the signal compared to the background-only hypothesis is 7.7 (6.9) standard
deviations, obtained using an asymptotic approximation [90].

The post-fit (pre-fit) effect of each individual systematic uncertainty on µ̂ is calculated by fixing the
corresponding nuisance parameter at θ̂ + ∆θ̂ (θ̂ + ∆θ), and performing the fit again. The difference
between the default and the modified µ̂, ∆µ̂, represents the effect on µ̂ of this particular uncertainty. The
pull ((θ̂ − θ0)/∆θ), and the pre-fit and post-fit impacts for the nuisance parameters with the largest impact
on µ̂ are shown in Figure 9. Since the total number of observed events in the 2-jet regions is about 14000,
with a Wt signal fraction of about 6%, the nuisance parameters that have a tt̄ acceptance uncertainty
of more than about 2% can be constrained in the fit. This applies to the jet energy resolution and tt̄
normalisation uncertainties, amongst others. The Emiss

T scale uncertainty has a shape dependence in the
1-jet 1-tag region for Wt and tt̄, which results in the corresponding nuisance parameter being shifted but
not much constrained. The theory modelling uncertainties due to ISR/FSR, DR/DS, and NLO matching
method have large pre-fit and post-fit impacts. The nuisance parameter for ISR/FSR Wt is shifted and
constrained in the fit due to its BDT response shape dependence, shown in Figure 8. This uncertainty
has the largest impact on µ̂, both pre-fit and post-fit. The ISR/FSR tt̄ uncertainty has a smaller post-fit
impact on µ̂ and is constrained due its acceptance and shape dependence. In a test where the ISR/FSR
uncertainty is considered to be correlated between Wt and tt̄ events, the expected uncertainty on µ̂ is
reduced to ±0.16. The nuisance parameter for the NLO matching method uncertainty is constrained by
the tt̄ background because of the large acceptance component and shape dependence of the NLO matching
method uncertainty.

Table 4 summarises the contributions from the various sources of systematic uncertainty to the uncertain-
ties on the observed fit result. The total uncertainty in the table is the uncertainty obtained from the full
fit, and is therefore not identical to the sum in quadrature of the components, due to correlations that the
fit induces between the uncertainties. The largest contributions to the cross-section uncertainty are from
the modelling of ISR/FSR and from the jet energy resolution and scale.

The BDT response for each region is shown normalised to the fit result in Figure 10. The dependence of
the cross-section on the top-quark mass is evaluated using Wt and tt̄ simulation samples with various top-
quark masses. The cross-section depends linearly on the top-quark mass due to changes in acceptance,
with a slope of 1.11 pb/GeV.
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parameters, ordered by their impact on µ̂. The shaded and hashed areas refer to the top axis: the shaded bands
show the initial impact of that source of uncertainty on the precision of µ̂; the hatched areas show the impact on the
measurement of that source of uncertainty, after the profile likelihood fit, at the ±1σ level. The points and associated
error bars show the pull of the nuisance parameters and their uncertainties and refer to the bottom axis. A mean of
zero and a width of 1 would imply no constraint due to the profile likelihood fit. Only the 11 uncertainties with the
largest impact on µ̂ are shown.
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Figure 10: Distribution of the post-fit BDT response for (a) 1-jet 1-tag, (b) 2-jet 1-tag, and (c) 2-jet 2-tag events.
The signal, backgrounds and uncertainties are scaled to the fit result. The first bin includes the underflow and the
last bin the overflow.

23



Table 4: Summary of the relative uncertainties on the Wt cross-section measurement. Detector uncertainties are
grouped into categories. All sources of uncertainty within a category are added in quadrature to obtain the category
uncertainty.

Uncertainty Impact on µ̂ [%]

Statistical ±5.8

Luminosity ±4.7

Theory modelling

ISR/FSR +8.2
−9.4

Hadronisation ±1.7

NLO matching method ±2.5

PDF ±0.6

DR/DS +2.2
−4.8

Detector

Jet +9.0
−9.9

Lepton ±3.0

Emiss
T ±5.5

b-tag ±1.0

Background norm. +2.9
−2.6

Total +16
−17

7.2 Constraints on | fLVVtb| and |Vtb|

The inclusive cross-section measurement provides a direct determination of the magnitude of the CKM
matrix element Vtb. The ratio of the measured cross-section to the theoretical prediction is equal to
| fLVVtb|

2, where the form factor fLV could be modified by new physics or radiative corrections through
anomalous coupling contributions, for example those in Refs. [3, 91, 92]. The Wt production and top-
quark decays through |Vts| and |Vtd | are assumed to be small. A lower limit on |Vtb| is obtained for fLV = 1
as in the SM, without assuming CKM unitarity [5, 93]. An additional systematic uncertainty due to a
variation of the top-quark mass by 1 GeV is included in the Vtb extraction. The uncertainties on the
theoretical cross-section due to the variation of the renormalisation and factorisation scale (0.6 pb), the
PDF uncertainty (1.4 pb), and the beam-energy uncertainty [94] (0.38 pb) are also accounted for.

The value for | fLVVtb| is extracted from the | fLVVtb|
2 likelihood, which is assumed to be Gaussian. The

lower limit on |Vtb|
2 corresponds to 95% of the integral of this likelihood, setting fLV = 1 and starting

at 1. The measured value of | fLVVtb| is 1.01 ± 0.10, and the corresponding lower limit on |Vtb| at the 95%
confidence level is 0.80.
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8 Cross-section measurement inside a fiducial acceptance

The cross-section for the production of events containing a top quark and a W boson is measured in
a fiducial region to allow a more robust comparison to the theoretical prediction without extrapolating
to regions outside of the detector acceptance. The fiducial measurement reduces the sensitivity of the
cross-section to theory modelling uncertainties. The measurement can also be compared to particle-
level predictions for the inclusive WWb and WWbb processes at NLO, once those calculations become
available [36, 95]. The fiducial acceptance requires two leptons and exactly one b-jet at the particle level.
This encompasses not only Wt production but also tt̄ production where one of the b-quarks from the top-
quark decays is not in the particle-level acceptance. The fiducial cross-section is measured by fitting the
sum of the Wt and tt̄ contributions to data in the 1-jet 1-tag region. Control regions are not used in the
fit.

8.1 Fiducial selection

The definition of the fiducial acceptance is based on MC simulation and uses particle-level physics objects
constructed of stable particles with a mean lifetime τ > 0.3 × 10−10 s. Electrons and muons are required
to originate from W-boson decays, either directly or via leptonically decaying τ leptons. The pT of each
of the leptons is corrected by adding the energy and momentum of photons inside a cone of size ∆R = 0.1
around the lepton direction. Electrons and muons are required to have pT > 25 GeV and |η| < 2.5. Jets
are clustered from particles using the anti-kt algorithm with radius parameter R = 0.4. Neutrinos, elec-
trons and muons from W-boson decays as well as particles resulting from pileup are excluded from jet
clustering. Particles from the underlying event are included. The particle-level jets are required to have
pT > 20 GeV and |η| < 2.5 and are matched with nearby b-hadrons with a pT of at least 5 GeV using
the ghost tagging method [96]. Jets within ∆R = 0.2 of the nearest electron are removed from the list.
Following that, electrons and muons within ∆R = 0.4 of the nearest jet are removed. Missing transverse
momentum is calculated using neutrinos from W-boson decays. The Wt and tt̄ events pass the fiducial se-
lection if they have exactly two leptons, exactly one b-jet and Emiss

T > 20 GeV. The numbers of simulated
Wt and tt̄ events passing this fiducial selection are shown in Table 5, and Wt production contributes 26%
of these particle-level events.

Simulated Wt and tt̄ events that satisfy the detector-level selection criteria are separated into two categor-
ies: in-fiducial (satisfying the fiducial selection criteria) and out-of-fiducial (the rest). Table 5 shows the
number of events for Wt and tt̄ in each category. The Wt contribution is 25% of the in-fiducial events, but
only 10% of the out-of-fiducial events. The out-of-fiducial events that pass the detector-level selection
typically have two or more particle-level jets, only one of which is also reconstructed at the detector level.
Thus the tt̄ contribution to the out-of-fiducial events is larger.

8.2 Systematic uncertainties

The sources of systematic uncertainty in the inclusive cross-section measurement are also considered for
the fiducial measurement. The object reconstruction and background-normalisation uncertainties also
apply in this measurement (except the tt̄ normalisation uncertainty, as discussed below). For in-fiducial
events, a variation in the theory modelling uncertainties (DR/DS, ISR/FSR, hadronisation, NLO match-
ing method, and PDF) changes the detector-level and fiducial acceptances in the same direction, which
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Table 5: Number of expected events at the particle-level and for the detector-level selection for Wt and tt̄. The
uncertainty for the particle-level includes ISR/FSR, NLO matching method, and for Wt also hadronisation, all
added in quadrature. The uncertainty for the detector-level selection includes all sources of uncertainty, added in
quadrature.

Particle-level Detector-level selection
Process selection in-fiducial out-of-fiducial
Wt 4 200 ± 100 810 ± 160 230 ± 40
tt̄ 12 000 ± 2 000 2 400 ± 500 2 100 ± 400

reduces the impact of these uncertainties. Since this does not affect out-of-fiducial events, these theory
modelling uncertainties are treated as uncorrelated between in- and out-of-fiducial events.

An additional uncertainty accounts for the relative fractions of Wt and tt̄ due to the uncertainty on the
theoretical predictions. The fraction of each type of signal is allowed to vary within their theoretical
predictions, keeping the sum constant.

8.3 Results

The fiducial cross-section is measured in a profile likelihood fit to data in the 1-jet 1-tag region. In-fiducial
and out-of-fiducial Wt and tt̄ events are scaled by the same cross-section scale factor µfid in the fit. The
measured fiducial cross-section for Wt and tt̄ production is 0.85 ± 0.01 (stat.)+0.06

−0.07 (syst.) ± 0.03 (lumi.) pb,
which corresponds to a total uncertainty of 8%. The expected uncertainty is also 8%. The impact of the
systematic uncertainties on this measurement is summarised in Table 6. The relative uncertainties are
smaller in the fiducial measurement than in the inclusive measurement (cf. Table 4) because both Wt and
tt̄ events are considered signal and because of the definition of the fiducial acceptance. The only exception
is the b-tag uncertainty, which is larger in the fiducial measurement because only 1-jet 1-tag events are
used in the fit.

The measured fiducial cross-section is compared to theoretical predictions for the sum of the fiducial Wt
and tt̄ cross-sections in Figure 11. The uncertainty on the theory predictions accounts for scale and PDF
contributions. The MSTW2008 and NNPDF2.3 predictions are obtained by re-weighting the simulated
Mc@nlo sample. The uppermost result for the predicted fiducial cross-section is based on the fiducial
acceptances and the sample normalisation utilised in this analysis. The fiducial acceptances are computed
from the nominal Powheg-Box+Pythia samples. The Wt and tt̄ cross-sections are normalised to their
NLO+NNLL and NNLO+NNLL predictions, respectively. The other results utilise the theoretical cross-
sections as computed by the respective generator.
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Cross-section [pb]
0.3 0.4 0.5 0.6 0.7 0.8 0.9

 at NNLO+NNLLttσ at NLO+NNLL, Wtσ
 DR CT10YTHIA+POX-BOWHEGP

 at NLOttσ and Wtσ
 DR CT10YTHIA+POX-BOWHEGP
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 DS CT10YTHIA+POX-BOWHEGP

 at NLOttσ and Wtσ
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 at NLOttσ and Wtσ
 DR NNPDF 2.3ERWIGMC@NLO+H

Predicted fiducial cross-sections:

 cross-sectiontMeasured fiducial Wt+t
 Total uncertainty
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ATLAS -1 = 8 TeV, 20.3 fbs

Figure 11: Comparison of the measured fiducial cross-section to theoretical predictions in a fiducial acceptance
requiring two leptons with pT > 25 GeV and |η| < 2.5, one jet with pT > 20 GeV and |η| < 2.5, and Emiss

T > 20 GeV.
The predictions are computed at NLO accuracy for the fiducial acceptance and the inclusive cross-section, except for
the top line, for which the inclusive cross-sections for Wt and tt̄ are computed at NLO+NNLL and NNLO+NNLL
accuracy, respectively.
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Table 6: Summary of the uncertainties on the observed fit result for the fiducial cross-section. Detector uncertainties
are grouped into categories. All sources of uncertainty within a category are added in quadrature to obtain the
category uncertainty.

Uncertainty Impact on µ̂fid [%]

Statistical 1.0
Luminosity 3.1
Theory modelling

ISR/FSR 4.2
Hadronisation 0.8
NLO matching method 0.7
PDF <0.1
Ratio Wt/tt̄ 2.2
DR/DS 0.1

Detector
Jet 5.2
Lepton 2.3
Emiss

T 0.2
b-tag 2.3

Background norm. <0.1
Total 8.2

9 Conclusion

The inclusive cross-section for the production of a single top quark in association with a W boson has
been measured in proton-proton collisions at a centre-of-mass energy of 8 TeV, using dilepton events
from 20.3 fb−1 of data recorded by the ATLAS detector at the LHC. Wt production is observed with a
significance of 7.7σ. The measured cross-section is

23.0 ± 1.3 (stat.)+3.2
−3.5 (syst.) ± 1.1 (lumi.) pb ,

in agreement with the NLO+NNLL expectation. The measured cross-section is used to extract a direct
measurement of the left-handed form factor times the CKM matrix element | fLVVtb| of 1.01 ± 0.10. The
lower limit on |Vtb| is 0.80 at the 95% CL, without assuming unitarity of the CKM matrix. The cross-
section for the production of a W boson and a top quark (including Wt and tt̄) has also been measured in a
fiducial acceptance requiring two leptons with pT > 25 GeV and |η| < 2.5, one jet with pT > 20 GeV and
|η| < 2.5, and Emiss

T > 20 GeV. The fiducial cross-section is

0.85 ± 0.01 (stat.)+0.06
−0.07 (syst.) ± 0.03 (lumi.) pb .
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M. Janus54, G. Jarlskog81, N. Javadov65,b, T. Javůrek48, L. Jeanty15, J. Jejelava51a,u, G.-Y. Jeng150,
D. Jennens88, P. Jenni48,v, J. Jentzsch43, C. Jeske170, S. Jézéquel5, H. Ji173, J. Jia148, Y. Jiang33b,
S. Jiggins78, J. Jimenez Pena167, S. Jin33a, A. Jinaru26b, O. Jinnouchi157, M.D. Joergensen36,
P. Johansson139, K.A. Johns7, W.J. Johnson138, K. Jon-And146a,146b, G. Jones170, R.W.L. Jones72,
T.J. Jones74, J. Jongmanns58a, P.M. Jorge126a,126b, K.D. Joshi84, J. Jovicevic159a, X. Ju173,
A. Juste Rozas12,q, M. Kaci167, A. Kaczmarska39, M. Kado117, H. Kagan111, M. Kagan143, S.J. Kahn85,
E. Kajomovitz45, C.W. Kalderon120, A. Kaluza83, S. Kama40, A. Kamenshchikov130, N. Kanaya155,
S. Kaneti28, V.A. Kantserov98, J. Kanzaki66, B. Kaplan110, L.S. Kaplan173, A. Kapliy31, D. Kar145c,
K. Karakostas10, A. Karamaoun3, N. Karastathis10,107, M.J. Kareem54, E. Karentzos10, M. Karnevskiy83,
S.N. Karpov65, Z.M. Karpova65, K. Karthik110, V. Kartvelishvili72, A.N. Karyukhin130, K. Kasahara160,
L. Kashif173, R.D. Kass111, A. Kastanas14, Y. Kataoka155, C. Kato155, A. Katre49, J. Katzy42,
K. Kawade103, K. Kawagoe70, T. Kawamoto155, G. Kawamura54, S. Kazama155, V.F. Kazanin109,c,
R. Keeler169, R. Kehoe40, J.S. Keller42, J.J. Kempster77, H. Keoshkerian84, O. Kepka127,
B.P. Kerševan75, S. Kersten175, R.A. Keyes87, F. Khalil-zada11, H. Khandanyan146a,146b, A. Khanov114,
A.G. Kharlamov109,c, T.J. Khoo28, V. Khovanskiy97, E. Khramov65, J. Khubua51b,w, S. Kido67,
H.Y. Kim8, S.H. Kim160, Y.K. Kim31, N. Kimura154, O.M. Kind16, B.T. King74, M. King167,
S.B. King168, J. Kirk131, A.E. Kiryunin101, T. Kishimoto67, D. Kisielewska38a, F. Kiss48, K. Kiuchi160,
O. Kivernyk136, E. Kladiva144b, M.H. Klein35, M. Klein74, U. Klein74, K. Kleinknecht83,
P. Klimek146a,146b, A. Klimentov25, R. Klingenberg43, J.A. Klinger139, T. Klioutchnikova30,
E.-E. Kluge58a, P. Kluit107, S. Kluth101, J. Knapik39, E. Kneringer62, E.B.F.G. Knoops85, A. Knue53,
A. Kobayashi155, D. Kobayashi157, T. Kobayashi155, M. Kobel44, M. Kocian143, P. Kodys129, T. Koffas29,
E. Koffeman107, L.A. Kogan120, S. Kohlmann175, Z. Kohout128, T. Kohriki66, T. Koi143, H. Kolanoski16,
M. Kolb58b, I. Koletsou5, A.A. Komar96,∗, Y. Komori155, T. Kondo66, N. Kondrashova42, K. Köneke48,
A.C. König106, T. Kono66, R. Konoplich110,x, N. Konstantinidis78, R. Kopeliansky152, S. Koperny38a,
L. Köpke83, A.K. Kopp48, K. Korcyl39, K. Kordas154, A. Korn78, A.A. Korol109,c, I. Korolkov12,
E.V. Korolkova139, O. Kortner101, S. Kortner101, T. Kosek129, V.V. Kostyukhin21, V.M. Kotov65,
A. Kotwal45, A. Kourkoumeli-Charalampidi154, C. Kourkoumelis9, V. Kouskoura25, A. Koutsman159a,
R. Kowalewski169, T.Z. Kowalski38a, W. Kozanecki136, A.S. Kozhin130, V.A. Kramarenko99,
G. Kramberger75, D. Krasnopevtsev98, M.W. Krasny80, A. Krasznahorkay30, J.K. Kraus21,
A. Kravchenko25, S. Kreiss110, M. Kretz58c, J. Kretzschmar74, K. Kreutzfeldt52, P. Krieger158,
K. Krizka31, K. Kroeninger43, H. Kroha101, J. Kroll122, J. Kroseberg21, J. Krstic13, U. Kruchonak65,
H. Krüger21, N. Krumnack64, A. Kruse173, M.C. Kruse45, M. Kruskal22, T. Kubota88, H. Kucuk78,
S. Kuday4b, S. Kuehn48, A. Kugel58c, F. Kuger174, A. Kuhl137, T. Kuhl42, V. Kukhtin65, R. Kukla136,
Y. Kulchitsky92, S. Kuleshov32b, M. Kuna132a,132b, T. Kunigo68, A. Kupco127, H. Kurashige67,
Y.A. Kurochkin92, V. Kus127, E.S. Kuwertz169, M. Kuze157, J. Kvita115, T. Kwan169,
D. Kyriazopoulos139, A. La Rosa137, J.L. La Rosa Navarro24d, L. La Rotonda37a,37b, C. Lacasta167,
F. Lacava132a,132b, J. Lacey29, H. Lacker16, D. Lacour80, V.R. Lacuesta167, E. Ladygin65, R. Lafaye5,
B. Laforge80, T. Lagouri176, S. Lai54, L. Lambourne78, S. Lammers61, C.L. Lampen7, W. Lampl7,
E. Lançon136, U. Landgraf48, M.P.J. Landon76, V.S. Lang58a, J.C. Lange12, A.J. Lankford163, F. Lanni25,
K. Lantzsch21, A. Lanza121a, S. Laplace80, C. Lapoire30, J.F. Laporte136, T. Lari91a,
F. Lasagni Manghi20a,20b, M. Lassnig30, P. Laurelli47, W. Lavrijsen15, A.T. Law137, P. Laycock74,
T. Lazovich57, O. Le Dortz80, E. Le Guirriec85, E. Le Menedeu12, M. LeBlanc169, T. LeCompte6,
F. Ledroit-Guillon55, C.A. Lee145a, S.C. Lee151, L. Lee1, G. Lefebvre80, M. Lefebvre169, F. Legger100,
C. Leggett15, A. Lehan74, G. Lehmann Miotto30, X. Lei7, W.A. Leight29, A. Leisos154,y, A.G. Leister176,

40



M.A.L. Leite24d, R. Leitner129, D. Lellouch172, B. Lemmer54, K.J.C. Leney78, T. Lenz21, B. Lenzi30,
R. Leone7, S. Leone124a,124b, C. Leonidopoulos46, S. Leontsinis10, C. Leroy95, C.G. Lester28,
M. Levchenko123, J. Levêque5, D. Levin89, L.J. Levinson172, M. Levy18, A. Lewis120, A.M. Leyko21,
M. Leyton41, B. Li33b,z, H. Li148, H.L. Li31, L. Li45, L. Li33e, S. Li45, X. Li84, Y. Li33c,aa, Z. Liang137,
H. Liao34, B. Liberti133a, A. Liblong158, P. Lichard30, K. Lie165, J. Liebal21, W. Liebig14, C. Limbach21,
A. Limosani150, S.C. Lin151,ab, T.H. Lin83, F. Linde107, B.E. Lindquist148, J.T. Linnemann90,
E. Lipeles122, A. Lipniacka14, M. Lisovyi58b, T.M. Liss165, D. Lissauer25, A. Lister168, A.M. Litke137,
B. Liu151,ac, D. Liu151, H. Liu89, J. Liu85, J.B. Liu33b, K. Liu85, L. Liu165, M. Liu45, M. Liu33b, Y. Liu33b,
M. Livan121a,121b, A. Lleres55, J. Llorente Merino82, S.L. Lloyd76, F. Lo Sterzo151, E. Lobodzinska42,
P. Loch7, W.S. Lockman137, F.K. Loebinger84, A.E. Loevschall-Jensen36, K.M. Loew23, A. Loginov176,
T. Lohse16, K. Lohwasser42, M. Lokajicek127, B.A. Long22, J.D. Long165, R.E. Long72, K.A. Looper111,
L. Lopes126a, D. Lopez Mateos57, B. Lopez Paredes139, I. Lopez Paz12, J. Lorenz100,
N. Lorenzo Martinez61, M. Losada162, P.J. Lösel100, X. Lou33a, A. Lounis117, J. Love6, P.A. Love72,
H. Lu60a, N. Lu89, H.J. Lubatti138, C. Luci132a,132b, A. Lucotte55, C. Luedtke48, F. Luehring61,
W. Lukas62, L. Luminari132a, O. Lundberg146a,146b, B. Lund-Jensen147, D. Lynn25, R. Lysak127,
E. Lytken81, H. Ma25, L.L. Ma33d, G. Maccarrone47, A. Macchiolo101, C.M. Macdonald139, B. Maček75,
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