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Abstract

We study the collision of a highly energetic light closed string off a stack of Dp-
branes at (sub)string-scale impact parameters and in a regime justifying a perturba-
tive treatment. Unlike at larger impact parameters –where elastic scattering and/or
tidal excitations dominate– here absorption of the closed string by the brane sys-
tem, with the associated excitation of open strings living on it, becomes important.
As a first step, we study this phenomenon at the disk level, in which the energetic
closed string turns into a single heavy open string at rest whose particularly simple
properties are described.
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1 Introduction

The dynamics of strings in the background of a collection of Dp-branes provides an excel-
lent framework to address the problem of string dynamics in curved spacetimes. It also
underlies many important developments in our understanding of quantum gravity, most
notably the gauge-gravity duality [1, 2].

In a series of relatively recent papers [3, 4, 5, 6] we have addressed the problem of
the high-energy collision of a closed string off a configuration of parallel Dp-branes. By
suitably playing with the various parameters characterizing the process, the number N of
branes, the energy E and impact parameter b of the collision, as well as the string coupling
gs, we could identify [3] a region in parameter space inside which closed string loops can
be safely neglected and, consequently, there is no closed string production or gravitational
bremsstrahlung, a considerable simplification. Even within this region there are several
interesting regimes to study.

There is a weak-gravity regime (corresponding to very large impact parameters com-
pared to the other length scales in the problem) in which string-size effects can be neglected
and general-relativity expectations are recovered in terms of gravitational deflection and
Shapiro time delay. In this regime the resulting S-matrix satisfies elastic unitarity.
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There is also a string-size-corrected weak-gravity regime (corresponding to somewhat
smaller impact parameters) in which tidal excitations of the incoming closed string become
important or even dominant [3]. In this regime we are still able to provide an exactly
unitary S-matrix, but unitarity now works in an enlarged Hilbert space containing excited
closed strings besides the incoming one. In [4, 5] (see also [7, 8]) the microscopic structure
of this S-matrix was analyzed in much detail.

There is finally a strong-gravity regime (corresponding to a gravitational radius of the
effective p-brane geometry Rp larger than b) in which the closed string is captured by the
brane system. Physically this is the most interesting situation since, in the QFT limit,
one expects information about the initial state to be lost in the capture (cf. the fall
into a potential well in quantum mechanics). By contrast, string theory should again be
able to give a unitary (i.e. information preserving) S-matrix by providing a microscopic
description of the (open string) excitations induced on the branes by the absorbed closed
string.

The study of this process is in general very hard. It can be simplified, however, under
the assumption that Rp, while comparable or even larger than b, is still smaller than the
string length parameter ls, enhanced by a square root of the logarithm of the energy, as
we will discuss in more detail in the rest of the paper 1. When this is the case the eikonal
resummation of the leading terms (in energy) of the higher-order string amplitudes [10,
11, 3] should give a correct representation of the dynamics for every value of the impact
parameter, all the way down to b = 0. Although in this limit a geometric interpretation
of the brane background is lacking, the dynamics of the string-brane system remains
extremely rich and interesting.

The absorption process is expected to lead to a state consisting of a very complicated
(yet quantum mechanically pure) linear superposition of multi-open-string excitations of
the brane system. Therefore, we may regard the problem at hand as being very close, in
spirit, to the famous information puzzle arising from the formation and evaporation of a
black hole from a pure initial state.

The study of a similar process was attempted before in the context of string-string
collisions [10, 11] where the regime analogous to the one considered here, corresponds to
taking the gravitational radius RS ≡ 2GN

√
s to be smaller than ls but possibly larger

than b. Although black hole formation is not supposed to happen in such a regime, the
final state was argued [10, 11, 12] to have many features in common with the one expected
from an evaporating black hole. Only a rough description of the final state (basically just
keeping track of the number of final strings) was obtained in [10, 11, 12]. The hope is
that, in the case of string-brane collisions, one should be able to go much further in the
microscopic description of the final state.

Our final aim is to arrive at a unitary S-matrix describing both the tidal excitation
and the absorption of the energetic incoming closed string. In this paper we shall take

1In a previous paper [6] we have studied, precisely in this regime, the elastic scattering of a closed string
for what concerns the resolution of the causality issue recently raised by Camanho et al. [9]. In this paper
we look at a complementary aspect, the absorption of the closed string resulting in the above-mentioned
production of open string excitations of the brane system.
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a first but important step in this direction by studying in detail the process at tree (i.e.
disk) level. In this approximation the energetic closed string is absorbed through the
formation of a single massive open string attached to the brane system. In this paper we
will study the detailed properties of this highly excited state at the quantum level. In a
forthcoming one [13] we will be able to give a simple and intuitive explanation of such
properties by considering a closed-string brane collision in a kinematical regime allowing for
the formation of an open string at the classical level. Furthermore, when the conditions
for the classical closed to open transition are not met it will be possible to perform a
semiclassical analysis which confirms qualitatively the results described in this paper.

The main result of this paper is an explicit microscopic description of the massive
open string created by the absorption of an arbitrary closed string. The open string
belongs to the n-th level of the string spectrum, with n ∼ α′E2 fixed by the energy of
the closed string, and as the energy increases we are exploring higher and higher levels
of the spectrum. Since the covariant methods are not very suitable to deal with generic
excited states, we will work in the light-cone gauge and derive the form of the open state
by taking the high-energy limit of the light-cone closed-open vertex [14, 15, 16, 17, 18].

The dimensionality of the Hilbert space of possible final states is exponentially large and
one would expect that the massive open string would have a very complex representation
in a generic basis. Instead, we find that by choosing a natural basis for the process, a light-
cone gauge aligned with the direction of large momentum, detailed calculations become
possible leading to an extremely simple representation of the final state.

As already mentioned, the detailed understanding of the absorption process at tree level
is only the first step in the construction of a unitary S-matrix. In order to achieve this, one
needs to take into account higher (open string) loops. We shall present elsewhere [19] how
to generate an explicitly unitary S-matrix in a suitable narrow-resonance approximation.

This paper is organized as follows. In Section 2 we review the string-brane elastic scat-
tering amplitudes in the Regge limit, presenting a general formula for arbitrary external
closed states using the eikonal operator and the Reggeon vertex operator. We then discuss
the s-channel factorization of the amplitude and its imaginary part, which is the relevant
quantity for describing the absorption of the closed string through the excitation of open
strings living on the brane system.

In Section 3 we introduce the closed-open transition amplitudes and the closed-open
light-cone vertex. The latter is essential to work with arbitrary external closed and open
states. The form of the closed-open vertex in the high-energy limit is derived in Section 4.
These results are used in Section 5 to derive a simple and explicit form for the open state
created on the brane system by the absorption of a closed string. We analyze in turn the
absorption of a tachyon, of a massless state and of a state belonging to the first massive
level and finally give a formula for a generic closed string. As a test of our results we show
how to reconstruct the imaginary part of the elastic amplitude in impact parameter space.
In Section 6 we present our conclusions.

We collected some additional material in two Appendices. In the first we compare
the closed-open transition amplitudes given by the light-cone vertex and by the covariant
methods for states belonging to the lowest levels. In the second we provide some technical
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details on the evaluation of the imaginary part of the disk using the closed-open vertex.

2 Elastic scattering of closed strings by D-branes

When a closed string propagates in the presence of a stack of N coincident Dp-branes,
the simplest new processes that can occur at leading order in perturbation theory are its
scattering (elastic or inelastic) off the Dp-branes and its absorption by the Dp-branes. Both
processes are given by a two-point function on the disk, the first with two closed string
vertex operators and the second with one closed and one open string vertex operator, since
at leading order in gsN the absorption process results in the creation of a single massive
open string on the branes worldvolume. The possibility of having a closed-open transition
induces a non-vanishing imaginary part for the tree-level elastic scattering amplitude of the
closed string. We start our analysis by reviewing the elastic amplitudes, their imaginary
part and their high energy limit. In this paper we shall restrict our attention, for simplicity,
to the bosonic string. Generalization to the superstring case is in principle straightforward
and will be presented in [19].

The amplitudes describing the elastic scattering of a closed string are characterized by
t-channel poles due to the exchange of closed strings and by s-channel poles due to inter-
mediate physical open strings, which will be analyzed in detail in the following Sections.
For instance the simplest scattering amplitude, the one for the tachyon, reads 2

ATT =
κNTp
2

Γ(−α′s− 1)Γ
(
−α′

4
t− 1

)

Γ
(
−α′s− α′

4
t− 2

) , Tp =

√
π

24

(
2π

√
α′
)11−p

. (2.1)

The normalization is given in terms of the gravitational coupling κ2 = 2−9g2s(2π)
23(α′)12,

the number of branes N , and the brane tension Tp. The various quantities are taken for
d = 26. The Mandelstam variables are defined in terms of the external momenta p1 and
p2 of the two closed string tachyons

t = −(p1 + p2)
2 = −4(E2 −M2) sin2 θ

2
,

s = −1

4
(p1 +Dp1)

2 = −1

4
(p2 +Dp2)

2 = E2 , (2.2)

where θ is the angle between ~p1 and −~p2, M2 = −4/α′ and D is the standard reflection
matrix for a Dp-brane, Dµ

ν = diag(1, . . . , 1,−1, . . . ,−1) with the first p + 1 eigenvalues
equal to 1 and the remaining 25− p equal to −1. Notice that we chose a reference frame
where (pi +Dpi) has no space-like components, so

√
s is equal to the energy of the closed

states. Using the relation

Γ(x)

Γ(x+ a)
=

∞∑

n=0

(−1)n

Γ(n+ 1)Γ(a− n)

1

x+ n
, (2.3)

2The disk amplitudes for open and closed strings with Neumann boundary conditions were first com-
puted in Ref. [20]. Their extension to include Dirichlet boundary conditions and their application to the
physics of the Dp-brane were first done in Refs. [21, 22, 23].
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with a 6= 0, 1, . . ., we can write the amplitude in Eq. (2.1) in the form3

ATT =
κNTp
2

∞∑

n=0

1

n!

Pn
(
α′t
4

)

−α′s− 1 + n
, Pn

(
α′t

4

)
=

Γ
(
α′

4
t + n+ 2

)

Γ
(
α′
4
t+ 2

) , (2.4)

that clearly displays the s-channel poles and their residues. There is a pole for each level
of the open-string spectrum, the residue being a polynomial Pn(y) of degree n in y = α′t

4
.

The imaginary part of the amplitude follows from the usual iǫ prescription and is obtained
from (2.4) by substituting each pole 1/(−α′s+m) with πiδ(α′s−m)

ImATT = π
κNTp
2

∞∑

n=0

δ (α′s− n+ 1)
1

n!
Pn

(
α′t

4

)
. (2.5)

In the Regge limit, α′s≫ 1 with α′t fixed, the amplitude (2.1) behaves as4

ATT ∼ ATT =
κNTp
2

e
−iπ

(

1+α′
4
t
)

Γ

(
−1− α′

4
t

)
(α′s)1+

α′
4
t . (2.6)

Its real and imaginary part are easily evaluated

ReATT =
κNTp
2

cosπ

(
1 +

α′

4
t

)
Γ

(
−1 − α′

4
t

)
(α′s)1+

α′
4
t ,

ImATT = π
κNTp
2

(α′s)1+
α′
4
t

Γ
(
2 + α′

4
t
) . (2.7)

It is interesting to derive the imaginary part in the Regge limit directly from the imaginary
part of the full amplitude in Eq. (2.5). When α′s ≫ 1 the discrete distribution of poles
can be approximated by a continuum, since the relative separation between adjacent levels
of the open string spectrum that are accessible at a given energy becomes of order 1

α′s . To
study the contribution of the levels in a neighborhood of α′s let us set

n = α′sx ,
∞∑

n=0

δ(α′s− n+ 1) ∼
∫ ∞

0

dx δ

(
1− x+

1

α′s

)
. (2.8)

In the limit α′s≫ 1 we then reproduce5 Eq. (2.7)

ImATT ∼ π
κNTp
2

∫ ∞

0

dx δ(1− x)
Pn
(
α′t
4

)

Γ(n+ 1)
∼ π

κNTp
2

∫ ∞

0

dx δ(1− x)
(α′sx)1+

α′t
4

Γ
(
2 + α′t

4

)

= π
κNTp
2

(α′s)1+
α′
4
t

Γ
(
2 + α′

4
t
) . (2.9)

3In deriving Eq. (2.4) we have used the Γ-function identity Γ(b)Γ(1 − b) = π
sinπb

.
4Here and in the following we will use the symbol A for the Regge limit of an amplitude A.
5In deriving Eqs. (2.7) and (2.9) we have used the large a expansion Γ(a+b)

Γ(a+c) ∼ ab−c.
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In the following we will also be interested in scattering and absorption processes happening
at fixed impact parameter. The imaginary part of the elastic disk amplitude in impact
parameter space is

ImATT (s, b) =

∫
d24−pq

(2π)24−p
e−i

~b~q ImATT (s, t) ∼ π
κNTp
2

α′s

(πα′ logα′s)
24−p

2

e
− b2

α′ logα′s , (2.10)

where ~q is a 24− p-dimensional vector satisfying −~q2 ≡ t. In the last passage we approxi-
mated Γ

(
2 + α′

4
t
)
∼ 1. This approximation amounts to neglecting at any given order in an

expansion in powers of b2

α′ logα′s terms that are suppressed by additional powers of logα′s.
The imaginary part has a characteristic Gaussian dependence on the impact parameter,
that indicates that in the Regge limit the Dp-branes behave as black disks with a radius
growing like the square root of the logarithm of the energy, R ∼

√
α′ logα′s.

The elastic amplitude for the tachyon is extremely compact due to the fact that this
state is a scalar with a simple vertex operator

VT,T̄ =
κ

2π
eipX . (2.11)

The vertex operator for a generic closed string state |ψ〉 can be written as follows

VS,S̄ =
κ

2π
ǫµ1...µr ǭν1...νs V

µ1...µr
S V̄ν1...νs

S̄
, (2.12)

where S and S̄ are labels that identify the little group representations of the left and right
part of the closed state, ǫ, ǭ the corresponding polarization tensors and 6

VS = PolS (∂
rX) eipXL , (2.13)

with PolS a polynomial in the holomorphic derivatives of Xµ. Elastic and inelastic ampli-
tudes for arbitrary states of the string spectrum become more and more complex as the
number of possible contractions between momenta and polarizations increases.

Their structure however drastically simplifies in the Regge limit and, as discussed
in [4], it is possible to give a general and explicit formula in terms of the matrix elements
of the phase of the eikonal operator [10, 11, 3]. The Regge limit is characterized by a
single spatial direction of large momentum that naturally leads to a separation of the
dynamics in a longitudinal and a transverse part. It is therefore convenient to introduce a
frame consisting of two light-like vectors e±, whose spatial component coincides with the
direction of large momentum and that satisfy the following conditions

e+ · e+ = e− · e− = 0 , e+ · e− = 1 , (2.14)

together with 24 transverse spatial vectors ei, orthogonal to e±. By convention we will
choose the large momentum along the spatial axis corresponding to the last coordinate

e+ =
1√
2
(−1, 0, . . . , 0, 1) , e− =

1√
2
(1, 0, . . . , 0, 1) . (2.15)

6We write X(z, z̄) = XL(z) +XR(z̄).
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When α′s≫ 1 and α′t is kept fixed, the scattering process is dominated by the exchange
of the states of the leading Regge trajectory that can be represented by a single effective
string state, the Reggeon [24, 25, 26]

VR =

(√
2

α′
i∂X+

√
α′E

)1+α′t
4

e−iqXL , X+ = e+ ·X . (2.16)

In this limit the string-brane scattering amplitudes factorize in the product of the three-
point coupling of the two external states to the Reggeon and the one-point function of the
Reggeon in the brane background, which coincides with the Regge limit of the tachyon
scattering amplitude, Eq. (2.6). If the initial state is (S1, S̄1) with polarization tensor ǫ, ǭ
and the final state (S2, S̄2) with polarization tensor ζ , ζ̄ we can write

A(S1,S̄1),(S2,S̄2) = ATT CS1,S2,R C̄S̄1,S̄2,R̄ , (2.17)

where
CS1,S2,R = 〈VS1

VS2
VR〉 = ǫµ1...µrζν1...νs T

µ1...µr;ν1...νs
S1,S2,R

. (2.18)

The tensors TS1,S2,R are formed using the flat metric ηµν , the momentum transferred qµ

and the longitudinal polarization vector vµ, with coefficients that depend only on t and
the masses of the external states (see [4] for details).

The formula (2.17) can be simplified even further if we describe the string spectrum
using a basis of DDF operators rather than a basis of covariant vertex operators [4]. In
this way we only maintain manifest invariance with respect to the transverse SO(24)
rotation group but it becomes straightforward to enumerate the physical states. Moreover
the couplings of the external states to the Reggeon become elementary and all the tree-
level scattering amplitudes in the Regge limit can be represented as matrix elements of a
very simple operator W (s, q), closely related to the phase δ̂(s, q) of the eikonal operator.
These simplifications occur if the null vector required by the DDF construction is chosen
proportional to e+. In this way the amplitudes obtained using the DDF operators coincide
with the amplitudes given by the three-string vertex in the light-cone gauge adapted to
the kinematics of the Regge limit, as given in Eq. (2.15).

The operator W that gives the tree-level scattering amplitudes is 7

W (s, q) = 4Eδ̂(s, q) = ATT (s, t)

∫ 2π

0

dσ

2π
: eiqX̂ : . (2.19)

The operators X i are the string position operators (without zero modes and at τ = 0)

X̂ i(σ) = i

√
α′

2

∑

k 6=0

1

k

(
Aike

−ikσ + Āike
ikσ
)
, (2.20)

in a light-cone gauge with the spatial direction aligned with the direction of large mo-
mentum. The evaluation of the Regge limit of elastic or inelastic scattering amplitudes

7See [6] for a derivation of the eikonal operator for string-brane scattering in the bosonic string.
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become straightforward using the operator in Eq. (2.19). We illustrate this method with
the elastic scattering of states in the massless and in the first massive levels. A generic
massless state (level Nc = 1) can be written as follows

|gǫ, ḡǭ〉 = ǫiǭjA
i
−1Ā

j
−1|0〉 . (2.21)

The polarization tensor
ǫij = ǫiǭj , (2.22)

can be decomposed in a trace, symmetric traceless and antisymmetric part corresponding
respectively to the dilaton, graviton and Kalb-Ramond field. Denoting with ǫ the polar-
ization of the incoming state and with ζ the polarization of the outgoing state we find

Agg = 〈gζ, ḡζ̄|W (s, q) |gǫ, ḡǭ〉 =
(
ǫζ − α′

2
(ǫq) (ζq)

)(
ǭζ̄ − α′

2
(ǭq)

(
ζ̄q
))

ATT . (2.23)

This is a general result. In the Regge limit all the scattering amplitudes are obtained by
multiplying the tachyon amplitude with a suitable polynomial in the polarizations and the
momentum transferred. In impact parameter space the polynomial becomes a differential
operator in ∂bi acting on ATT (s, b). For instance

Agg(s,~b) =

(
ǫζ +

α′

2
(ǫ∂b) (ζ∂b)

)(
ǭζ̄ +

α′

2
(ǭ∂b)

(
ζ̄∂b
))

ATT (s, b) . (2.24)

The differential operator reflects the presence of higher derivative corrections to the gravi-
tational couplings in the bosonic string [9, 6]. As far as the imaginary part is concerned the
derivatives generate terms suppressed by additional powers of log(α′s) and we will neglect
them for consistency with the approximations made in deriving Eq. (2.10). Therefore

ImAgg(s,~b) ∼ ǫζ ǭζ̄ ImATT (s, b) . (2.25)

As an additional example of the general structure of the amplitudes let us consider the
first massive level, that contains the SO(25) representations in the tensor product of two
symmetric traceless tensors, one for the left and one for the right half of the string. The
SO(25) symmetric traceless tensor decomposes into a symmetric tensor and a vector of
the transverse SO(24)

|Hǫ〉 =
1√
2
ǫijA

i
−1A

j
−1|0〉 , |Lǫ〉 =

1√
2
ǫiA

i
−2|0〉 . (2.26)

The symmetric tensor can be further decomposed into a traceless and a trace part. Let
us discuss separately the elastic scattering of a closed state given by the product of two
tensors (H ⊗ H̄) and by the product of two vectors (L⊗ L̄). The remaining cases (H ⊗ L̄
and L⊗ H̄) can be analyzed in a similar way. For the state

|Hǫ, H̄ǫ〉 =
1

2
ǫij ǭklA

i
−1A

j
−1Ā

k
−1Ā

l
−1|0〉 , (2.27)
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we find

AHH =

(
ǫijζij −

α′

2
ǫii′q

i′ζjj′q
j′ +

α′2

16
ǫijq

iqjζi′j′q
i′qj

′
)

(
ǭklζ̄kl −

α′

2
ǭkk′q

k′ ζ̄ll′q
l′ +

α′2

16
ǭklq

kqlζ̄k′l′q
k′ql

′
)

ATT . (2.28)

For the state

|Lǫ, L̄ǫ〉 =
1

2
ǫiǭjA

i
−2Ā

j
−2|0〉 , (2.29)

we find

ALL =

(
ǫζ − α′

8
(ǫq) (ζq)

)(
ǭζ̄ − α′

8
(ǭq)

(
ζ̄q
))

ATT . (2.30)

A generic closed state |ψ〉 at level Nc is characterized by the collection of left and right
modes that create it acting on the vacuum

Aiα−kα , Ā
iβ
−k̄β ,

∑

α

kα =
∑

β

k̄β = Nc , (2.31)

and by a collection of polarization vectors ǫiαα , ǭ
iβ
β . To describe a state transforming in

a specific irreducible representation of the transverse SO(24), one simply acts with the
corresponding Young projector on the tensor product of the vector representations. The
elastic scattering amplitude

Aψζψǫ = ATT

∫ 2π

0

dσ

2π
〈ψζ | : eiqX : |ψǫ〉 , (2.32)

can be evaluated by expanding the exponential and collecting the terms that give a non-
vanishing matrix element8. This will result in a polynomial where the polarization vectors
of the incoming and outgoing states are contracted among themselves or with the momen-
tum transferred, like in the examples just discussed. From (2.32) it is clear that at t = 0
the elastic amplitude reduces to the contraction between the initial and final polarization
tensors

Aψζψǫ(s, 0) =
∏

α

(ζαǫα)
∏

β

(
ζ̄β ǭβ

)
ATT (s, 0) = π

κNTp
2

α′s
∏

α

(ζαǫα)
∏

β

(
ζ̄β ǭβ

)
. (2.33)

In impact parameter space the polynomial in the transferred momentum that multiplies the
tachyon amplitude ATT (s, t) becomes a differential operator in ∂bi that acts on ATT (s, b).
Up to terms suppressed by additional powers of logα′s, the imaginary part is simply

ImAψζψǫ(s, b) =
∏

α

(ζαǫα)
∏

β

(
ζ̄β ǭβ

)
ImATT (s, b) . (2.34)

8In [4] it is shown in detail how to relate the matrix elements of the eikonal operator and the covariant
amplitudes.
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3 Absorption of closed strings by D-branes

In the background of a Dp-brane a closed string can split turning itself into an open string.
This process is described at tree level by a two-point function on the disk with one closed
and one open vertex operator. The closed-open correlation functions give the transition
amplitude to specific open string states while the imaginary part of the elastic amplitude
gives the total splitting probability. We begin this Section by discussing the closed-open
amplitude in the basis of the covariant vertex operators. Since the covariant methods are
not very suitable to study highly excited string states, we then introduce the light-cone
closed-open vertex that encodes all the correlation functions between arbitrary closed and
open string states. In the rest of the paper we will develop methods that will allow us
to give a simple and precise description of the closed-open amplitudes in the high energy
limit.

3.1 Closed-open amplitudes

Consider the transition from a closed string at level Nc with spatial momentum ~pc in a
direction orthogonal to the branes 9

pc = (E,~0p, ~pc) , α′M2 = α′(E2 − ~p 2
c ) = 4(Nc − 1) Nc = 0, 1, 2 . . . , (3.1)

to an open string at level n with momentum

po = (−m,~0p,~025−p) , α′m2 = −α′p2o = n− 1 n = 0, 1, 2 . . . . (3.2)

The transition is possible if

α′E2 = α′m2 = n− 1 , α′~p 2
c = n− 4Nc + 3 ≥ 0 . (3.3)

The lowest accessible level is therefore n = 4Nc−3. As the momentum of the closed string
increases it is possible to reach an arbitrarily high level of the open string spectrum. For
instance the tachyon can create any open state, the massless states can create an open
string with n ≥ 2, closed states from the first massive level can create an open string with
n = 5 and above. For the open vertex operators we use a notation similar to the one
introduced in Eq. (2.12)

Vχ = go ǫµ1...µr V
µ1...µr
χ , (3.4)

where go =
√
2α′gp+1, with gp+1 the coupling constant of the gauge theory living on the

branes world-volume 10. When we have a stack of N Dp-branes, the open state carries
Chan-Paton factors λa that form a basis for the Lie algebra of U(1) × SU(N). Since

9The components of the momenta are given in the following order: (t, vol, perp), where t is the time
direction, vol the p-dimensional branes volume, perp the (25 − p)-dimensional space transverse to the
branes.

10In terms of the string coupling constant gs and the Regge slope α′ this constant is given by g2p+1 =

2πgs(2π
√
α′)p−3. The Chan-Paton factors are normalized as Tr(λiλj) = δij .
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the closed strings are singlets, the open string state must belong to the U(1) factor with
λs = 1√

N
IN and tr(λs) =

√
N . At tree level the absorption amplitude is given by the

correlation function on the disk of two vertex operators, one for the closed string state ψ
and one for the open string state χ

Bψ,χ(pc) = β 〈VSVS̄Vχ〉D , (3.5)

where the normalization β is given by

β2 =
κ

2α′NTp . (3.6)

The imaginary part of the two-point elastic closed string amplitudes can be written as

ImAψ,ψ(p1, p2) = πα′
∑

χ

Bψ,χ(p1)B
∗
ψ,χ(p2) . (3.7)

The sum extends to all the open states χ at level n and includes a sum over their po-
larizations. Some explicit examples of closed-open amplitudes obtained by evaluating the
correlation functions on the disk can be found in appendix A. Since we are interested in
the absorption of highly energetic strings and therefore in very massive open states, the
direct evaluation of correlation functions of vertex operators becomes soon prohibitively
complex. We would like to have a simple method to derive the closed-open amplitudes and
to characterize the resulting open string state, akin to the formula for the closed-closed
transition in Eq. (2.32). We will develop this method in the following Sections by studying
the high-energy limit of the light-cone closed-open string vertex, to which we now turn.

3.2 The closed-open string vertex

The closed-open light-cone vertex describes the transition from an arbitrary closed string
state to an arbitrary open state living on a Dp-brane. The closed-open vertex for the
bosonic string for the case of purely Neumann boundary conditions was first discussed
in [14, 15] and then generalized to include ghosts [17] and purely Dirichlet boundary
conditions [18]. The extension to the superstring in the Green-Schwarz formalism was
considered in [16]. Here we give the explicit form of the vertex, which we derived using
the DDF operators as in [27], for a generic Dp-brane background.

The light-cone is determined by two light-like vectors e± satisfying the following con-
ditions

e+ · e+ = e− · e− = 0 , e+ · e− = 1 . (3.8)

There are three inequivalent choices for the spatial direction of the light-cone: along the
direction of the large momentum carried by the closed string, along the volume of the
Dp-branes or transverse to both the branes and the direction of large momentum. We
will discuss explicitly the first two choices. As we will see, the open state created at high
energy has an extremely simple description if the light-cone is chosen along the direction

11



of large momentum, as we did in the previous Section in our discussion of the Regge limit
of the closed-closed scattering amplitudes and their relation to the eikonal operator.

Having chosen e± the light-cone vertex is given by

|VB〉 = β exp

[
3∑

r,s=1

∞∑

k,l=1

1

2
Ar,i−kN

rs
kl A

s,i
−l +

3∑

r=1

∞∑

k=1

P iN r
kA

r,i
−k

]
3∏

r=1

(
|0〉(r)

)
, (3.9)

where
Pi ≡

√
2α′
[
αrp

(r+1)
i − αr+1p

(r)
i

]
. (3.10)

Let us explain our notation. The normalization constant β is given in Eq. (3.6) and it is
related to the normalization of the closed 2-point function on the disk. The index i runs
along the d − 2 directions orthogonal to both e± (d = 26 for the bosonic string) and the
quantities labelled by r, s = 1, 2 refer to the left/right parts of the closed string, while
those labelled by r, s = 3 refer to the open state. In particular

p(1) =
pc
2
, p(2) =

Dpc
2

, p(3) = po , (3.11)

where pc is the momentum of the closed string 11

pc = (E,~0p, ~pt, p) , α′M2 = −α′p2c = 4(Nc − 1) , (3.12)

and po the momentum of the open string

po = (−m,~0p,~024−p, 0) , α′m2 = −α′p2o = n− 1 . (3.13)

Finally, the harmonic oscillators satisfy the following commutation relations

[Ar,ik , A
s,j
h ] = k δh+k,0 δ

rs δij . (3.14)

When considering the high energy limit we will choose, as in the previous Section, the
large momentum along the spatial axis corresponding to the last coordinate, i.e. p2 ≫ ~p2t .
We will use capital letters for the light-cone modes of the closed string and small case
letters for the light-cone modes of the open string

A1,i
k = Aik , A2,i

k = (DĀi)k , A3,i
k = aik . (3.15)

Finally the Neumann matrices N in the vertex are

N r
k = − 1

kαr+1

(
−kαr+1

αr

k

)
=

1

αrk!

Γ
(
−kαr+1

αr

)

Γ
(
−kαr+1

αr
+ 1− k

) , (3.16)

N rs
kl = − klα1α2α3

kαs + lαr
N r
kN

s
l = − α1α2α3

kαs + lαr

1

αr+1αs+1

(
−kαr+1

αr

k

)(
−lαs+1

αs

l

)
,

11The components of the momenta are given in the following order: (t, vol, perp, z), where t is the time
direction, vol the p-dimensional branes volume, perp the (24 − p)-dimensional space transverse to the
branes and to the direction z of the large momentum p.
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while the quantities αr are given by

αr = 2
√
2α′(e+p(r)) , r = 1, 2, 3 , (3.17)

with

α1 + α2 + α3 = 0 . (3.18)

The momenta Pi and the light-cone components αi depend on the choice of gauge. We
give below the explicit expressions for two inequivalent choices of the spatial components
of the light-cone vectors e±: along the direction of the large momentum carried by the
closed string and along the worldvolume of the Dp-branes.

The first choice can be made for every Dp-brane background. The light-cone vectors
are

e+ =
1√
2
(−1, 0, . . . , 0, 1) , e− =

1√
2
(1, 0, . . . , 0, 1) , (3.19)

and the αr are equal to

α1 =
√
α′ (E + p) =

√
n− 1 +

√
n− 1− 4ω ,

α2 =
√
α′ (E − p) =

√
n− 1−

√
n− 1− 4ω , (3.20)

α3 = −2
√
α′E = −2

√
n− 1 ,

where

ω =
α′

4
(M2 + ~pt

2) = Nc − 1 +
α′~pt

2

4
. (3.21)

In this light-cone gauge the index i runs over the directions transverse to the branes and
to the direction of large momentum, i.e. i = p+ 1, ..., 24. Using Eq. (3.11) we find

Pi = α3

√
α′

2
pt,i . (3.22)

Note that the argument of the Gamma functions in the Neumann coefficients depends on
the value of the energy and of the transverse momentum.

The second gauge choice is possible only for Dp-branes with p ≥ 1. The light-cone
vectors are

e+ =
1√
2
(−1, 1, . . . , 0, 0) , e− =

1√
2
(1, 1, . . . , 0, 0) . (3.23)

We then find

α1 = α2 =
√
α′E , α3 = −2

√
α′E , (3.24)

and

Pi = α3

√
α′

2
pc,i , (3.25)
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where pc,i are the components of the momentum of the closed string along the transverse
directions. In this light-cone gauge the index i runs over all directions transverse to the
brane, i = p+1, ..., 25. In this case the argument of the Gamma functions in the Neumann
coefficients does not depend on the value of the energy and of the transverse momentum.

In the rest of this paper we will work mostly in the first gauge, where we will find
a very simple representation for the massive open string. Before continuing, there is a
subtlety related to this gauge choice for the open string that deserves some explanations.
The gauge choice X+ = 2α′p+τ together with the Virasoro constraints requires that the
two open string coordinates chosen to form the light-cone satisfy Neumann boundary
conditions. This seems incompatible with defining the coordinates X± for the open string
states as the combination of the time coordinate X0, which satisfies Neumann boundary
conditions, and the direction of collision Z, which satisfies Dirichlet boundary conditions.
For instance, for any givenX0 and Z the reparametrization of the open worldsheet required
to set X+ = 2α′p+τ does not leave the worldsheet boundaries fixed.

The way around this problem is to define a modified light-cone gauge using for the
open string instead of the coordinate Z a coordinate Z̃ given by 12

Z(τ, σ) = z(σ+)− z(σ−) 7→ Z̃(τ, σ) = z(σ+) + z(σ−) , (3.26)

where σ± = τ ± σ. The coordinate Z̃ satisfies Neumann boundary conditions and there
is no subtlety in fixing the light-cone gauge X̃+ = 2α′p̃+τ , where X̃± = 1√

2
(X0 ± Z̃) and√

2p̃+ = p0o. Since the massive open strings do not have a momentum zero-mode, their
description in terms of the coordinate Z or the coordinate Z̃ is equivalent 13.

In Eq. (3.9) we wrote the vertex as a ket in the closed-open Hilbert space. Equivalently,
we could represent it as an operator mapping the closed string Hilbert space to the open
string Hilbert space, simply by replacing all the closed string creation operators with
annihilation operators. Given a closed state |ψ〉 at level Nc and with energy α′E2 = n−1,
the closed-open vertex gives its couplings to all the open string states |χ〉 at level n

Bψχ = 〈χ|V |ψ〉 . (3.27)

The imaginary part of the elastic disk amplitude with two external closed string states
|ψ1〉 and |ψ2〉 can be computed combining two closed-open vertices. At finite energy it is
convenient to choose in our first light-cone gauge a brick-wall frame where the momenta
of the incoming and outgoing closed strings are given by

p1 =

(
E,~0p,

~q

2
, p

)
, p2 =

(
−E,~0p,

~q

2
,−p

)
, (3.28)

so that t = −(p1 + p2)
2 = −~q 2. The angle θ between ~p1 and −~p2 is given by

~q 2

4
=
(
E2 −M2

)
sin2 θ

2
, p2 =

(
E2 −M2

)
cos2

θ

2
. (3.29)

12We write X(τ, σ) = XL(σ
+) +XR(σ

−).
13In terms of the original coordinates this gauge choice sets X+

L (σ+) = α′p+Lσ
+ and X−

R (σ−) = α′p−Rσ
−,

with
√
2p+L =

√
2p−R = p0o.
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We can then write

ImAψψ(s, t) = πα′〈ψ2|V †
~q/2V~q/2|ψ1〉 , α′s = n− 1 , α′t = −α′~q 2 . (3.30)

Here and in the following, we show explicitly the dependence of the closed-open vertex on
the transverse momentum carried by the closed state on which it acts. We will use this
choice of frame to check that the closed-open vertex correctly reproduces the imaginary
part of the elastic scattering of the tachyon for the first massive level of the spectrum in
Appendix A. In the Regge limit it is sometimes more convenient to choose

p1 =
(
E,~0p, ~q,

√
p2 − ~q2

)
, p2 =

(
−E,~0p,~024−p,−p

)
. (3.31)

In this frame the relation t = −(p1 + p2)
2 ∼ −~q 2 remains valid up to terms of order s−1,

which are negligible in the high energy limit if we are only interested in the leading order.

4 The high-energy limit of the closed-open vertex

In the previous Section we summarized the form of the vertex that gives the transition
amplitude between an arbitrary closed string state and an arbitrary open string state.
We now discuss how the structure of this operator simplifies when the absorbed string is
ultrarelativistic, α′s≫ 1 and M ≪ E. In this Section and in the rest of the paper we will
work in the light-cone gauge parallel to the collision axis, or more precisely to the direction
of large momentum, since it is in this gauge that we will be able to give a very explicit
description of the massive open state created on the brane worldvolume. As a check of
our construction we will verify that starting from the high-energy limit of the closed-open
vertex we can reproduce the imaginary part of the elastic amplitude, which is due to
the creation of on-shell states in the s-channel. This analysis complements the analysis
performed in [4] where we studied the Regge limit of the three-closed string light-cone
vertex, which gives the t-channel decomposition of the elastic amplitude.

Consider a closed state |ψ〉 at level Nc, with energy E such that

α′E2 = n− 1 , (4.1)

and carrying a momentum ~pt in the transverse directions, p2t ≪ E2. The non-trivial part
of the closed-open vertex in Eq. (3.9) when acting on this state can be written as

V~pt |ψ〉 = β Pn eZo+Zc,ψ |ψ〉 , (4.2)

where Zo contains only the open string modes (i.e. the Neumann coefficients N33
kl and N3

k )
and Zc,ψ contains all the remaining terms which have both open and closed string modes,
the latter restricted to those that can have a non-vanishing contraction with the modes
used to define the closed state The operator Pn is the projector on the level n of the open
string Hilbert space and enforces energy conservation. We shall derive the asymptotic
behaviour of the vertex (4.2) in the large n limit

V~pt ∼ V~pt , n≫ 1 . (4.3)
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The asymptotic vertex gives the couplings between a highly energetic closed string |ψ〉
and a very massive open string |χ〉

Bψχ = 〈χ|V~pt|ψ〉 . (4.4)

The imaginary part of the elastic disk amplitude in the Regge limit can be computed
combining two closed-open vertices

ImAψψ(s, t) = πα′〈ψ|V†
~0
V~q|ψ〉 , α′s = n− 1 , α′t = −~q 2 . (4.5)

We will also be interested in the closed-open couplings and in the imaginary part of the
elastic disk amplitude in impact parameter space

Bψχ(~b) =

∫
d24−pq

(2π)24−p
e−i

~b~q 〈χ|V~q|ψ〉 ≡ 〈χ|Ṽ~b|ψ〉 , (4.6)

ImAψψ(s,~b) = πα′
∫

d24−pq

(2π)24−p
e−i

~b~q 〈ψ|V†
0V~q|ψ〉 ≡ πα′〈ψ|V†

0Ṽ~b|ψ〉 , (4.7)

where we introduced the vertex in impact parameter space

Ṽ~b =
∫

d24−pq

(2π)24−p
e−i

~b~q V~q . (4.8)

As we shall see, at high energy the Fourier transforms in the previous expressions are
dominated by the region of small transverse momenta and therefore we will find a simple
relation between the vertex in impact parameter space and the vertex at zero transverse
momentum.

In order to derive the high energy limit of the vertex, we must determine the asymp-
totic behaviour of the Neumann coefficients. At high energy the ratios of the light-cone
components p+ of the momenta of the three strings that appear in Eq. (3.16) behave as
follows

α3

α2
= − 2m

E − p
∼ −n

ω
,

α2

α1

=
E − p

E + p
∼ ω

n
,

α1

α3
= −E + p

2m
∼ −1 +

ω

n
, (4.9)

where the αi are defined in Eq. (3.20) and ω is defined in Eq. (3.21). Using these expressions

we can analyze the high energy limit of the Neumann coefficients N rs
kl and N r

k
~P . When n

tends to infinity, the coefficients quadratic in the open modes behave like

N33
kl ∼ −ω

n

1

k + l

k−ω
k
n

Γ
(
1− ω k

n

) l−ω
l
n

Γ
(
1− ω l

n

) . (4.10)
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If in the large n limit the ratios k/n and l/n tend to zero this is

N33
kl ∼ −ω

n

1

k + l
. (4.11)

On the other hand, if the open modes are of order n setting

k = nx , l = ny , (4.12)

we find

N33
kl ∼ −n−ω(x+y)−2 x−ωxy−ωy

Γ(1− ωx)Γ(1− ωy)

ω

x+ y
. (4.13)

The coefficients quadratic in the closed modes have the following behaviour

N11
kl ∼ ω

n

(−1)k+l

k + l
,

N22
kl ∼

(n
ω

)k+l kk
k!

ll

l!

1

k + l
,

N12
kl ∼ (−1)k+1

(n
ω

)l−1 ll−1

l!
. (4.14)

The left and right closed string modes k, l are always much smaller than n. Note that the
coefficients N22

kl scale like a positive power of n. The mixed coefficients with one closed
and one open mode behave generically like

N13
kl ∼ (−1)k

l − k

ω

n

l−ω
l
n

Γ
(
1− ω l

n

) ,

N23
kl ∼ 1

k − ω l
n

kk

k!

(n
ω

)k−1 l−ω
l
n

Γ
(
1− ω l

n

) . (4.15)

The coefficients N13
kl possess an interesting feature. They are enhanced by an additional

power of n when the open and the closed indices coincide

N13
kk ∼ −(−1)k

k

n

ωk

sin
(
πω k

n

)

π
∼ −(−1)k

k
, (4.16)

where the last approximation holds since k ≪ n. This feature will lead to a simple formula
for the absorption of a generic closed string state. Finally the coefficients linear in the
string modes behave as follows

N1
k
~P ∼ (−1)k

k

√
α′

2
~pt ,

N2
k
~P ∼ −k

k

k!

(n
ω

)k 1
k

√
α′

2
~pt ,

N3
k
~P ∼ k−ω

k
n

Γ
(
1− ω k

n

) 1
k

√
α′

2
~pt . (4.17)
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5 Closed-open transitions at high energy

We are now ready to derive the form of the open state created in the absorption process.
For clarity, we will analyze separately the absorption of a tachyon, of a massless state and
of a state belonging to the first massive level. We will then describe the open state created
by the absorption of an arbitrary closed state.

We will discuss first the case in which the closed state carries zero transverse momentum
and show how to reconstruct the discontinuity of the elastic amplitude at t = 0. We will
then include a transverse momentum ~pt (with p

2
t ≪ E2) and derive the form of the open

state created at fixed impact parameter b, showing how to reconstruct the discontinuity
of the elastic amplitude in impact parameter space for arbitrary values of b.

5.1 Tachyon

We begin for simplicity with the vertex that describes the transition of a closed string
tachyon with ~pt = 0 to an open string state with mass α′m2 = n− 1

V~0|0〉 = β Pn e
1
2

∑

k,lN
33
kl a

i
−ka

i
−l |0〉 , (5.1)

where for large n

N33
kl ∼ nx+y−2 xxyy

Γ(1 + x)Γ(1 + y)

1

x+ y
, k = nx , l = ny, (5.2)

which follows from Eq. (4.13) with ω = −1. Expanding the exponential in Eq. (5.1), we
obtain the following series representations for the open state

V~0|0〉 = β

∞∑

Q=0

1

Q!2Q
Pn

Q∏

α=1

∑

kα,lα

N33
kαlαa

iα
−kαa

iα
−lα |0〉 , (5.3)

and for the imaginary part of the elastic amplitude

ImATT = πα′β2
∞∑

Q=0

1

(Q!)222Q

∑

{kα,lα}

Q∏

α=1

(
N33
kαlα

)2 〈0|
Q∏

α=1

aiαkαa
iα
lα

Q∏

α=1

aiα−kαa
iα
−lα |0〉 , (5.4)

where the integers kα, lα satisfy the constraint
∑Q

α=1(kα+ lα) = n. It is remarkable that at
high energy and in the gauge aligned to the large momentum, it is sufficient to keep only
the first few terms in the previous series in order to get a very accurate representation of
the state.

Let us evaluate the first term in the series in Eq. (5.4), which approximates the open
state with the state created by the action of just one couple of open modes ai−ka

i
−l

ImATT ∼ πα′β2
∑

k,l
k+l=n

1

4

(
N33
kl

)2 〈0|aikailaj−ka
j
−l|0〉 = πα′β2

∑

k,l
k+l=n

12
(
N33
kl

)2
kl , (5.5)
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where we used the fact that the indices i, j run from 1 to 24. At high energy we can
evaluate the previous sum by approximating it with an integral, using Eq. (5.2)

ImATT ∼ 12 πα′β2 n

∫ 1

0

dx

∫ 1

0

dyδ(x+ y − 1)
x2x+1y2y+1

Γ2(1 + x)Γ2(1 + y)
. (5.6)

Evaluating the integral we find that this approximation to the complete open state already
accounts for 0.93 of the total imaginary part

ImATT ∼ 0.929 πα′β2 n . (5.7)

Note that since in this case the product of the Neumann coefficients (N33
kl )

2
kl give a

contribution of order one, the power of n required by the discontinuity of the elastic
amplitude is entirely due to the multiplicity of the possible states (the number of partitions
of n into two integers). In general for any given term of the series in Eq. (5.4) containing
Q couples of oscillators the overall power of n results from a power of n2−2Q from the
product of the Neumann coefficients and a power of n2Q−1 from the sum over all possible
states.

Consider for instance the second term in the series. There are now eight modes in the
matrix element and two classes of inequivalent contractions among them, giving respec-
tively a double trace and a single trace in the transverse indices. In the first case we have

72

∫
dx1dy1dx2dy2

2∏

i=1

x2xi+1
i y2yi+1

i

Γ2(xi + 1)Γ2(yi + 1)

δ (x1 + y1 + x2 + y2 − 1)

(x1 + y1)2(x2 + y2)2
, (5.8)

and in the second

6

∫
dx1dy1dx2dy2

2∏

i=1

x2xi+1
i y2yi+1

i

Γ2(xi + 1)Γ2(yi + 1)

δ (x1 + y1 + x2 + y2 − 1)

(x1 + y1)(y1 + x2)(x2 + y2)(y2 + x1)
, (5.9)

where in both cases we omitted a factor πα′β2n. Adding the contribution of these two
terms to the leading contribution we obtain

ImATT ∼ 0.998 πα′β2 n . (5.10)

Therefore only 0.2% of the full forward imaginary part is left to terms with six or more
oscillators. This is strong evidence that the series converges rapidly and that

〈0|eZ†
0PneZ0|0〉 = n , (5.11)

as required by Eq. (4.5).
Let us now consider the absorption amplitude and the imaginary part of the disk at

fixed impact parameter. We will find that the open state is closely related to the one
created by the tachyon when ~pt = 0. We start from the vertex with a non-vanishing
transverse momentum ~q and evaluate its Fourier transform. For clarity, in the following
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we will display explicitly the dependence of the Neumann coefficients on the transverse
momentum ~q, writing N rs

kl (~q) and N
r
k (~q).

When the transverse momentum is non zero, the vertex becomes

V~q|0〉 = β Pn e
1
2

∑

k,lN
33
kl

(~q)ai−ka
i
−l+

∑

k N
3
k
(~q)P iai−k |0〉 , (5.12)

where

N33
kl (~q) ∼ k(1−λ)

k
n l(1−λ)

l
n

Γ
(
1 + (1− λ) k

n

)
Γ
(
1 + (1− λ) l

n

) (1− λ)

n(k + l)
, λ =

α′~q 2

4
,

N3
k (~q) ~P ∼ k(1−λ)

k
n

Γ
(
1 + (1− λ) k

n

) 1

k

√
α′

2
~q . (5.13)

Expanding the exponential in Eq. (5.12), it is easy to see that the linear and the quadratic
Neumann coefficients give contributions of the same order in the energy. It is however
possible to find a very simple form for the closed-open vertex in impact parameter space.
The main observation is that the essential dependence of the coefficients N33

kl (~q) and N
3
k (~q)

on the transverse momentum is in the factors k−λ
k
n or, with k = nx,

(nx)−λx = e−
α′~q 2

4
x log(nx) ∼ e−

α′~q2
4
x logn , (5.14)

since x log x≪ x log n. In order to evaluate

Ṽ~b|0〉 =
∫

d24−pq

(2π)24−p
e−i

~b~q V~q|0〉 , (5.15)

we expand the Neumann coefficients in Eq. (5.13) in a power series in ~q 2, retaining however
in each term the ~q 2-dependent powers of the energy in Eq. (5.14). We then expand the
exponential rewriting the operator in Eq. (5.12) as follows

V~q = W
[
1 + ~q 2O2 + ~q 2qiOi

3 + ...+ qi1 ...qikOi1...ik
k + . . .

]
, (5.16)

where the operator W is given by

W = β Pn e
1
2

∑

k,lW
33
kl a

i
−ka

i
−l+

√

α′
2

∑

kW
3
ka
i
−kq

i|0〉 , (5.17)

with

W 33
kl = N33

kl (0) e
−α′~q 2

4
k+l
n

logn , W 3
k =

k
k
n
−1

Γ
(
1 + k

n

) e−
α′~q 2

4
k
n
logn . (5.18)

Here N33
kl (0) are the Neumann coefficients at zero transverse momentum in (5.1) and the

coefficients W 33
kl coincide with them except for the Gaussian factor in ~q. Note also that we

kept in the exponential the terms linear in ~q and in the open modes.
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We can evaluate the contribution of the first term in the series following the same steps
as at the beginning of this section. We find

Ṽ~b|0〉 ∼ β

∫
d24−pq

(2π)24−p
e−i

~b~q Pn
[
e

1
2

∑

k,lW
33
kl a

i
−ka

i
−l+

√

α′
2

∑

kW
3
ka
i
−kq

i

]
|0〉

= β

∫
d24−pq

(2π)24−p
e−i

~b~q e−
α′~q 2

4
logn Pn


 e

1
2

∑

k,lN
33
kl (0)a

i
−ka

i
−l+

√

α′
2

∑

k
k
k
n−1

Γ(1+ k
n)

ai−kq
i


 |0〉

=
1

(πα′ logα′s)
24−p

2

Pn
[
e
− 1

α′ logα′s

(

bi+i
√

α′
2

∑

k
1
k
ai−k

)2

V~0

]
|0〉 . (5.19)

In the second passage we used that, due to the presence of the projector, the ~q 2-dependent
powers of the energy in the coefficients W 33

kαlα
and W 3

kα
combine in an overall Gaussian

factor. In the last passage we approximated k/n ∼ 0 in the operator multiplying V~0 since
in impact parameter space the leading contributions due to this operator arise from modes
with k ≪ n.

The Fourier transform of the first term in the series in Eq. (5.16) thus coincides with
the vertex at zero transverse momentum up to the insertion of an operator with an overall
dependence on b given by a Gaussian form factor

e
− b2

α′ logα′s . (5.20)

Note that the length scale in this form factor is the string scale enhanced by a logarithm
of the energy

α′ logα′s . (5.21)

This is due to the well-known logarithmic growth of a highly energetic string in the trans-
verse directions. Precisely as a consequence of this phenomenon, all the other contributions
in the series in Eq. (5.16) are subleading in the high-energy limit and the term we have
just evaluated gives the full answer.

To verify this we do not need the precise form of the operator coefficients Oi1...ik , all
that is relevant is that each term is multiplied by the Gaussian factor in Eq. (5.20). When
we evaluate the Fourier transform of the other terms in the series, the powers of the
transverse momentum become derivatives with respect to the impact parameter and the
resulting contribution is then suppressed by inverse powers of logα′s. The final result is
therefore

Ṽ~b|0〉 =
1

(πα′ logα′s)
24−p

2

Pn
[
e
− 1

α′ logα′s

(

bi+i
√

α′
2

∑

k
1
k
ai−k

)2

V~0

]
|0〉 . (5.22)

This is the form of the vertex that we will use in actual calculations. It can also be written
in a very suggestive form if we interpret the Gaussian factor as a squeezed state for the
effective creation and destruction operators

Bi =
1√
logn

n∑

k=1

aik
k
, Bi† =

1√
logn

n∑

k=1

ai−k
k

. (5.23)
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In the high energy limit they satisfy

[Bi, Bj†] =
δij
log n

n∑

k=1

1

k
∼ δij . (5.24)

Since the squeezed states represent the position eigenstates in the oscillator basis of the
Hilbert space we can write

|b〉X =
1

(
√
πln)

24−p
2

e
− b2

2l2n
−i

√
2

ln
B†b+ 1

2(B
†)

2

|0〉 = e−ib
~P |0〉X , l2n = α′ log n , (5.25)

where |b〉X is an eigenstate of the position operators

X i = i
ln√
2

(
Bi − Bi†) = i

√
α′

2

n∑

k=1

(
aik
k

− ai−k
k

)
≡ −2

√
α′

n∑

k=1

pik
k
, (5.26)

with eigenvalue bi and the P i are the corresponding momentum operators

P i =
1√
2ln

(
Bi +Bi†) = 1√

2α′ logα′s

n∑

k=1

(
aik
k

+
ai−k
k

)
≡ 1√

2α′ logα′s

n∑

k=1

xik . (5.27)

Here xk and pk are the position and momentum modes of the open string, as defined in the
two previous equations. The state |b〉X is normalized in the standard way, 〈b|b′〉 = δ(b−b′).
We can then write

Ṽ~b|0〉 =
e
− b2

2α′ logα′s

(πα′ logα′s)
24−p

4

Pn V~0 |b〉X . (5.28)

This form of the closed-open vertex in impact parameter space is very natural. The appear-
ance of the squeezed state |b〉X indicates that the closed-open transition is proportional to
a delta function δ(X − b) for the effective position operator X . Its presence reflects the
locality of the string interactions, the light-cone vertex allowing only transitions between
closed and open strings that overlap along their entire length. This requires in particular
that the closed string should touch the branes in at least one point in order for the transi-
tion to take place. The way that a closed string initially localized away from the location
of the branes manages to touch them and split is via quantum fluctuations in its position.

From Eq. (5.22) we see in fact that the transition happens with a non negligible am-
plitude as long as b2 ≤ α′ logα′s, that is for impact parameters that can be much larger
than the maximal size α′M of a string of mass M , which is kept fixed in the high energy
limit. We can picture the transition as happening in two stages. First the closed string
becomes polarized, stretching towards the branes so that it touches them in at least one
point, then it splits to form the final open string. The Gaussian dependence on the impact
parameter of the transition amplitude can then be related to the probability amplitude
of finding the closed string in a configuration where it overlaps with the branes. We will
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confirm this picture in [13] where we will discuss the classical open string solutions that
correspond to the state created on the branes in the closed-open transition.

Let us finally note that using Eq. (5.28) one can prove that states created at different
values of the impact parameter are orthogonal. This follows from the fact that at high
energy PnV0|b〉X remains to a first approximation an eigenstate of the transverse position
opertors X i.

Using this vertex we can evaluate the discontinuity of the elastic amplitude in impact
parameter space. The calculation is most easily done representing the imaginary part as
the product of the vertex at impact parameter b and the vertex at zero momentum, as in
Eq. (4.7)

ImATT (s, b) = πα′〈0|V†
~0
Ṽ~b|0〉 . (5.29)

In order to evaluate

〈0|V†
~0
Pn
[
e
− 1

α′ logα′s

(

bi+i
√

α′
2

∑

k
1
k
ai−k

)2

V~0

]
|0〉 , (5.30)

it is sufficient to notice that, compared with the calculation done for t = 0, the additional
terms in the previous formula give contributions that are suppressed by powers of logα′s.
We then find

ImATT (s, b) = πα′β2 α′s
e
− b2

α′ logα′s

(πα′ logα′s)
24−p

2

, (5.31)

reproducing Eq. (2.10). Here the factor α′s ≡ n comes from the matrix element containing
two vertices at t = 0, as we have already seen in Eqs. (5.6), (5.10) and (5.11).

5.2 Massless states

We now discuss the absorption of a massless closed string state

|gǫ, ḡǭ〉 = (ǫA−1) (ǭĀ−1)|0〉 , (5.32)

with polarization tensor ǫiǭj . The open state created by the absorption of a very energetic
massless closed string has an extremely simple description, simpler than the one we found
for the absorption of a tachyon. When the transverse momentum vanishes it is given by

V~0|gǫ, ḡǭ〉 = (ǫa−1) (a−n+1Dǭ)|0〉 . (5.33)

In order to derive this result we have to deal with some technical complications, which
arise because our light-cone gauge is not very suitable to describe the right part of a closed
massless state with zero transverse momentum. The action of the reflection matrix Dµν

makes it equivalent to a state with p+ = 0, see α2 in (3.20) with Nc = 1 and ~pt = 0.
We could simply evaluate the transition amplitudes with ~pt 6= 0 and then take the limit
~pt → 0. However it turns out that in order to have a well defined limit it is necessary
to give a small mass µ to the massless state and send first ~pt to zero and then µ to zero.
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Otherwise the result of the limit would depend on the direction of ~pt, as a consequence
of the singular behaviour of the Neumann coefficients N2

k . A more detailed discussion of
this subtlety can be found in Appendix A, where we make a direct comparison between a
covariant amplitude and an amplitude derived using the light-cone vertex and show that
the two agree when the limit of zero transverse momentum is taken as explained above.

When acting on a massless state the general closed-open vertex becomes

V~pt|gǫ, ḡǭ〉 = β PneZo+Zc,g |gǫ, ḡǭ〉 , (5.34)

where

Zc,g = N12
11A1DĀ1 +N23

1uĀ1Da−u +N13
1uA1a−u +N1

1
~PA1 +N2

1
~PDĀ1 ,

Zo =
1

2
N33
kl a−ka−l +N3

uPa−u . (5.35)

Therefore

V~pt|gǫ, ḡǭ〉 = β Pn eZo
[
(ǫDǭ)N12

11 +N23
1uN

13
1v (ǫa−v) (a−uDǭ) + N23

1uN
1
1 (a−uDǭ) (ǫ

~P )

+ N13
1uN

2
1 (ǫa−u) (ǭD

~P ) +N1
1N

2
1 (ǭD

~P )(ǫ ~P )
]
|0〉 . (5.36)

This expression simplifies considerably in the high-energy limit. Let us set

λ =
α′

4
~p 2
t + α′µ2 , (5.37)

where µ is the small mass introduced to regularize the limit ~pt → 0. For large n the
Neumann coefficients in Eq. (5.36) behave as follows

N12
11 ∼ 1 , N13

1k ∼ − 1

k − 1

λ

n

k−λ
k
n

Γ
(
1− λ k

n

) , k 6= 1 , N13
11 ∼ 1 . (5.38)

Note the enhancement of the contractions between left modes and open modes when the
mode numbers coincide. We also have

N23
1k ∼ n

n− λk

k−λ
k
n

Γ
(
1− λ k

n

) , N33
kl ∼ − λ

n(k + l)

k−λ
k
n

Γ
(
1− λ k

n

) l−λ
l
n

Γ
(
1− λ l

n

) , (5.39)

and

N1
1
~P ∼ −

√
α′

2
~pt , N2

1
~P ∼ −n

λ

√
α′

2
~pt , N3

k
~P ∼ 1

k

k−λ
k
n

Γ
(
1− λ k

n

)
√
α′

2
~pt . (5.40)

Focusing on the energy dependence of the Neumann coefficients, we can see that the fourth
term in Eq. (5.36) would give a leading contribution of order n which however disappears

in the ~pt → 0 limit. Similarly we can discard all other terms containing factors of ~P which
vanish in the ~pt → 0 limit thanks to the presence of the mass µ. Thus the next most
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relevant term is the second when v = 1 and u = n− 1, so as to use the last in (5.38), and
is of order

√
n when written in terms of mode operators that commute to one. Therefore

the leading terms at high energy are

V~pt |gǫ, ḡǭ〉 ∼ β Pn
[
eZoN13

11N
23
1u(ǫa−1) (a−uDǭ)

]
|0〉 . (5.41)

Let us now take the limit ~pt → 0 on Zo. Since N
33
kl vanish when we set µ = 0 we also have

eZo ∼ 1. Taking into account the projector Pn and using that N23
1,n−1 ∼ n−α′µ2 we find the

state in Eq. (5.33)

V~0|gǫ, ḡǭ〉 = (ǫa−1) (a−n+1Dǭ)|0〉 . (5.42)

This open state reproduces the imaginary part of the elastic amplitude at t = 0 in the
high-energy limit in Eq. (2.33)

ImAgg = πα′〈gζ, ḡζ̄|V†
~0
V~0|g, ḡ〉 = πα′β2 ǫs(Dǭ)rζs′(Dζ̄)r′〈0|ar

′
n−1a

s′
1 a

r
−n+1a

s
−1|0〉

= πα′β2(ǫζ)(ǭζ̄)(n− 1) ∼ πα′β2n(ǫζ)(ǭζ̄) , (5.43)

as one can see by using Eq. (3.6).
Let us now consider the leading terms in the expansion of V~pt for small transverse

momenta and derive the absorption amplitude in impact parameter space. We shall focus
on the leading term in Eq. (2.34), neglecting contributions suppressed by additional powers
of logα′s. The steps are essentially the same as for the absorption of the tachyon. We
first notice that as in that case the Neumann coefficients multiplying an open mode a−k

have a dependence on the transverse momentum of the form k−
α′
4
~q 2 k

n
logn, that in impact

parameter space gives again a Gaussian in b. We can then neglect all the terms proportional
to ~P since they become derivatives ∂b and correspond to subleading terms14 in an expansion
in powers of b2

α′ logα′s . Therefore at high energy and for small λ the second (dominant) term

in the right-hand-side of Eq. (5.36) becomes

V~pt|gǫ, ḡǭ〉 ∼ −β Pn
[
eN

3
k
Piai−k N23

1u(ǫa−1) (a−uDǭ)
]
|0〉 . (5.44)

Using that

N23
1u ∼ u−λ

u
n , N3

k ∼ k−λ
k
n

k

√
α′

2
~pt , (5.45)

and following the same steps as in the discussion of the tachyon, we find in impact param-
eter space

Ṽ~b |gǫ, ḡǭ〉 =
1

(πα′ logα′s)
24−p

2

Pn
[
e
− 1

α′ logα′s

(

bi+i
√

α′
2

∑

k
1
k
ai−k

)2 ∞∑

u=1

(ǫa−1) (a−uDǭ)

]
|0〉

=
e
− b2

2α′ logα′s

(πα′ logα′s)
24−p

4

Pn
∞∑

u=1

(ǫa−1) (ǭDa−u) |b〉X , (5.46)

14If we set µ = 0 before taking the limit of small transverse momentum this would not be true for
the terms containing N2

1 and up to two factors of ~P , since N2
1 ∼ 1

α′~p 2

t

. These terms would lead to a

dependence of the open state on the direction along which the transverse momentum is sent to zero.
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and

ImAgg = πα′〈gζ, ḡζ̄|V†
~0
Ṽ~b|gǫ, ḡǭ〉 = (ǫζ)(ǭζ̄) ImATT , (5.47)

in agreement with Eq. (2.25).

5.3 First massive level

We turn now to the absorption of a massive string state belonging to the first massive
level Nc = 2, reviewed in Section 2. We will discuss the absorption of a closed state of
the form (L⊗ L̄) or (H ⊗ H̄). We will see that in both cases the enhancement of the N13

Neumann coefficients in Eq. (4.16) leads to a simple form for the open state. The analysis
of the absorption of (H ⊗ H̄) will also show that in the closed-open vertex at high energy
while the left components of the polarization tensor always appear contracted with open
modes (terms proportional to N13), the right components can appear either contracted
with open modes (terms proportional to N23) or among themselves (terms proportional
to N22).

It is therefore not immediate to see how the product of two absorption amplitudes
can reproduce the imaginary part of the elastic amplitude in Eqs. (2.33) since the latter
contains only one type of contraction, where the left (right) components of the polarization
tensor of one state are contracted with the left (right) components of the other. We will
argue that the coefficients of all the other types of contractions that could appear in the
product indeed vanish.

The simplification of the form of the open state due to the enhancement of the N13

Neumann coefficients and the above-mentioned cancellation are the two main new features
that appear in the evaluation of the absorption of a massive closed string. The analysis of
the first massive level will then make the discussion of the general case relatively straight-
forward.

Let us consider first the state

|Lǫ, L̄ǭ〉 =
1

2
(ǫA−2) (ǭĀ−2)|0〉 . (5.48)

At high energy the Neumann coefficients become

N33
kl ∼ −ω

n

1

k + l

k−ω
k
n

Γ
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n

) l−ω
l
n

Γ
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1− ω l

n

) , N23
2k ∼ n

ω

2

2− ω
n
k

k−
k
n

Γ
(
1− k

n

) ,

N12
22 ∼ −n

ω
, N13

2k ∼ ω

n(k − 2)

k−ω
k
n

Γ
(
1− ω k

n

) , k 6= 2 , N13
2,2 ∼ −1

2
, (5.49)
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2
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~pt , N2

2
~P = −n

2
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√
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2
~pt , N3

k
~P =

k−ω
k
n

Γ
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1− ω k

n

) 1

k

√
α′

2
~pt ,

where ω = 1 + α′

4
~p 2
t . For this example we find, limiting ourselves to ~pt = 0,

Zc,L = N12
22A2DĀ2 +N23

2uĀ2Da−u +N13
2uA2a−u , (5.50)
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and

V~0|Lǫ, L̄ǭ〉 = βPneZo
[
2(ǫDǭ)N12

22 + 2N13
2vN

23
2u(ǫa−v) (a−uDǭ)

]
|0〉 . (5.51)

To identify which of the terms in the square brackets in Eq. (5.51) gives the leading
contribution at high energy we need to keep track of the powers of the energy associated
with the Neumann coefficients N33

kl . The main observation is that since these coefficients
scale like

N33
kl ∼ n−ω( kn+

l
n)−2 , (5.52)

the insertion of Q couples of open modes gives a contribution to the discontinuity of the
elastic amplitude that scales like

n−2Q−2ωn2Q−1 = n−1−2ω = n1−2Nc−α′
2
~p2t , (5.53)

where the power n2Q−1 comes from the sum over all possible states. In order for a term
in the expansion of eZc,ψ to contribute with the leading power of the energy we then need
a power of n2Nc from the square of the corresponding Neumann coefficients and the sum
over the possible states. In the case at hand we need a factor of n4. The first term in
Eq. (5.51) is therefore always subleading while in the second we need to set v = 2 so that

V~0|Lǫ, L̄ǭ〉 = −β N23
2u Pn

[
eZo(ǫa−2) (a−uDǭ)

]
|0〉 . (5.54)

The form of the open state is very simple. The left part of the closed polarization tensor
is contracted with open modes with the same mode number as the left closed modes,
as a result of the enhancement of the coefficient N13

22 , Eq. (4.16). The right part of the
closed polarization tensor is contracted with open modes with mode number u of order n
(coefficients N23

2u).
As a check of Eq. (5.54) let us evaluate the product

〈Lζ , L̄ζ̄|V†
~0
V~0|Lǫ, L̄ǭ〉 = ζs′(Dζ̄)r′ǫs(Dǭ)r β

2
∑

u,v

N23
2uN

23
2v 〈0|as

′
2 a

r′
v e

Z†
oPneZoas−2a

r
−u|0〉 .

(5.55)
In order to do this, we expand the exponentials and use the fact that the open modes
with mode number of order n in Zo commute with the open modes with mode number
of order one. The direct contraction between the oscillators without any N33 insertion is
subleading since the sum over u is then restricted to u = n− 2 and N23

2,n−2 ∼ 4
n
. The next

term requires the matrix element

〈0|ar′v aik′ail′ aj−ka
j
−la

r
−u|0〉 , (5.56)

which gives two inequivalent contractions between the transverse indices. We find

ImALL ∼ πα′β2n(ǫζ)(ǭζ̄) [96 · IL,1 + 8 · IL,2] , (5.57)
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where the explicit expressions for the integrals IL,i, i = 1, 2, can be found in Appendix B
together with a more detailed description of the calculation. Substituting the numerical
values we obtain the first approximation to the imaginary part of the disc

ImALL ∼ πα′β2 n(ǫζ)(ǭζ̄) 0.841 . (5.58)

If we include the second term in the series, we obtain

ImALL ∼ πα′β2 n(ǫζ)(ǭζ̄) 0.994 . (5.59)

The matrix elements and the integrals required to evaluate this second term are again
collected in Appendix B (see Eqs. (B.8), (B.9) and (B.10)).

We turn now to the state

|Hǫ, H̄ǭ〉 =
1

2
ǫi(1)ǫ

j
(2)ǭ

k
(1)ǭ

l
(2)A

i
−1A

j
−1Ā

k
−1Ā

l
−1|0〉 , (5.60)

with ǫ̂ij ≡ ǫi(1)ǫ
j
(2) and ˆ̄ǫkl ≡ ǭk(1)ǭ

l
(2) symmetric tensors. The Neumann coefficients with two

open modes are the same as before while those with two closed modes are

N11
11 ∼ ω

2n
, N12

11 ∼ 1 , N22
11 ∼ n2

2ω2
. (5.61)

The mixed open-closed coefficients are
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Let us discuss explicitly only the vertex with ~pt = 0. We need to retain the following
closed modes

Zc,H =
1

2
N11

11A
r
1A

r
1 +

1

2
N22

11 Ā
r
1Ā

r
1 +N12

11A
r
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1 +N23
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1uA
r
1a
r
−v , (5.64)

and terms up to the forth order in the expansion of eZc,H can contribute to the absorption
amplitude. We find

V~0|Hǫ, H̄ǭ〉 = β Pn eZo
[
(N12

11 )
2
(
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) (
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+

1
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(
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(
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(
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s
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t
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]
|0〉 . (5.65)
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Let us analyze this expression and show that the leading contribution at high energy is
due to the first term in the second line and to the last term. Substituting the explicit
values of the Neumann coefficients in the first two terms we find contributions of the form

eZo
[(
ǫ(1)Dǭ(1)

) (
ǫ(2)Dǭ(2)

)
+
n

4

(
ǫ(1)ǫ(2)

) (
ǭ(1)ǭ(2)

)]
|0〉 , (5.66)

which are clearly subleading. The next three terms are

eZo
[
n2

4
N13

1uN
13
1v

(
ǭ(1)ǭ(2)

)
ǫs(1)ǫ

t
(2)a

s
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1
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N23

1uN
23
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(
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(
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)
ǫt(2)(Dǭ(2))

sas−ua
t
−v
]
|0〉 . (5.67)

For generic values of the indices they are subleading but when both N13 factors are en-
hanced the first term scales with the power of the energy required to be relevant in the
high energy limit. Finally also the term with four open modes gives a leading contribution
only when both the N13 factors are enhanced. The result of this analysis is that

V~0|Hǫ, H̄ǭ〉 = β Pn eZo
[
1

2

∑

u,v

N23
1uN

23
1v ǫ

s
(1)ǫ

t
(2)(Dǭ(1))

r(Dǭ(2))
l as−1a

t
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l
−v
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(
ǭ(1)ǭ(2)

)
ǫs(1)ǫ

t
(2)a

s
−1a

t
−1

]
|0〉 . (5.68)

The open state has again a simple form. As before, the left part of the closed polarization
tensor is contracted with open modes that coincide with the left closed modes, as a result
of the enhancement of the coefficient N13

11 , Eq. (4.16). However the indices of the right
part of the closed polarization tensor can be contracted either with open modes of order n
(coefficients N23

1u) or among themselves (coefficient N22
11 ). The latter terms give additional

contributions to the closed-open couplings of closed states with non-vanishing traces for
their right polarization tensor.

Let us now consider the imaginary part of the elastic amplitude. We proceed as we
did for the tachyon, expanding the exponentials eZo and evaluating the first few terms in
the series to show that they already account for most of the discontinuity. We shall use
again the fact that low frequency open modes commute with the high frequency modes in
Zo. We find

ImAHH ∼ πα′β2
(
ǫ̂ij ζ̂ij

) 1

8
〈0|
[
n2 ˆ̄ζll + 2N23
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†
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PneZo
[
n2 ˆ̄ǫkk + 2N23

1uN
23
1v (Dˆ̄ǫD)rwa

r
−ua

w
−v
]
|0〉 . (5.69)

The first non-vanishing term in the series is

(ǫ̂ij ζ̂ij)(ˆ̄ǫkl
ˆ̄ζkl)

∑

u,v

δu+v,n
(
N23

1uN
23
1v

)2
uv ∼ (ǫ̂ij ζ̂ij)(ˆ̄ǫkl

ˆ̄ζkl)n

∫ 1

0

dx
x1−2x(1− x)−1+2x

Γ2(2− x)Γ2(1 + x)
.

(5.70)
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The numerical value of the integral is

IH,1 =

∫ 1

0

dx
x1−2x(1− x)−1+2x

Γ2(2− x)Γ2(1 + x)
∼ 0.831797 , (5.71)

and we see that, as in the previous cases, the first term already accounts for most of the
discontinuity. However, as shown in Eq. (B.13) and also discussed below, the other two
contributions in Eq. (5.69) turn out to give contractions among the polarizations that
are not present in the imaginary part of the amplitude. In order to see if they cancel, we
have included higher order terms that come from the expansion of the exponentials in Eq.
(5.69). The detailed derivation of them is given in Appendix B. The result is

ImAHH ∼ πα′β2 n
(
ǫ̂ij ζ̂ij

) [
(IH,1 + 12IH,4 + 2IH,5)

(
ˆ̄ǫkl

ˆ̄ζkl

)
(5.72)

+

(
−1

2
IH,2 +

3

2
IH,3 +

1

2
IH,6 − 6IH,7 −

1

2
IH,8 + 9IH,9 +

3

4
IH,10

)(
ˆ̄ǫkk

ˆ̄ζll

)]
,

where the explicit expressions for the integrals IH,i and their numerical values are collected
in the Appendix. The main new feature is that the imaginary part seems to be proportional
to two different contractions of the polarization tensors

(ǫ̂ij ζ̂ij)(ˆ̄ǫkl
ˆ̄ζkl) , (ǫ̂ij ζ̂ij)ˆ̄ǫkk

ˆ̄ζll . (5.73)

The first contraction is the only one we expect according to the discussion in Section 2 and
therefore the coefficient of the second one should vanish. A cancellation is indeed possible

since the coefficient of the contraction ˆ̄ǫkk
ˆ̄ζll receives contributions from terms with opposite

sign according to whether they contain an even or an odd number of coefficients N33
kl . We

do not have a general proof that the cancellation actually occurs but the explicit evaluation
of the higher order terms in Eq. (5.72) seems to indicate that this is the case since the
sum of all the IH,i in the second line of Eq. (5.72) gives a result which is one order of
magnitude smaller than the individual terms. Indeed, substituting the numerical values
of the integrals in Eq. (5.72) we find

ImAHH ∼ πα′β2 n
(
ǫ̂ij ζ̂ij

) [
0.993

(
ˆ̄ǫkl

ˆ̄ζkl

)
− 0.004

(
ˆ̄ǫkk

ˆ̄ζll

)]
. (5.74)

It would be interesting to have a general proof of this cancellation to all orders in the
series expansion.

So far our discussion of the closed-open vertex for the states of the first massive level
has been limited to ~pt = 0. As we did for the tachyon and the massless sector, we can
derive the vertex in impact parameter space from the small ~pt behaviour of the vertex in
momentum space. The steps are the same and the result is again that the vertex in impact
parameter space is given by the vertex at zero momentum multiplied by the squeezed state
in the effective modes (5.23). It is easy to check that it reproduces the leading term in the
imaginary part of the elastic amplitude, Eq. (2.34).
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5.4 Generic massive states

The pattern observed in our study of the first massive level generalizes to arbitrary mass
levels, with the only requirement that the closed state be ultrarelativistic, M ≪ E. We
will find that, thanks to the properties of the Neumann coefficients discussed in Section 4,
even in this more general case it is still possible to give a simple, explicit and systematic
description of the open state created in the s-channel. Consider a closed state |ψ〉 at level
Nc

|ψ〉 =
∞∏

k=1

1√
nk!knk

(
ǫ(k)A−k

)nk
∞∏

l=1

1√
n̄l!ln̄l

(
ǭ(l)Ā−l

)n̄l |0〉 , (5.75)

created by a collection of left and right modes, Aik−k and Ājl−l, with multiplicity nk and n̄l
such that ∞∑

k̄=1

knk =
∞∑

l̄=1

ln̄l = Nc , (5.76)

and characterized by a collection of left and right polarization vectors ǫiα(kα), ǭ
jβ
(lβ )

with

α = 1, ..., nk and β = 1, ..., n̄l. Here we are using the compact notation

(
ǫ(k)A−k

)nk ≡
nk∏

α=1

ǫiα(kα)A
iα
−k . (5.77)

The action of the closed-open vertex on this state gives

V~0|ψ〉 = β Pn eZo+Zc,ψ |ψ〉 , (5.78)

where, as before, Zo contains only open string modes while Zc,ψ both open and closed
string modes, the latter restricted to those in the set used to define the closed state.

Consider first the vertex with ~pt = 0. The action of eZc,ψ on the state gives a polynomial
in the open modes of the same order as the monomial in the closed modes that defines the
closed state. From the high-energy scaling of the Neumann coefficients discussed in Section
4, it follows that the leading contributions to the absorption amplitude are obtained when
the indices of the open and closed modes in the coefficients N13

ku coincide. The right closed
modes are then either coupled to open modes of order n through the coefficients N23

lu or
contracted among themselves using the coefficients N22

kl . Finally one acts on the resulting
polynomial with the operator eZo . The first few terms in the expansion of the exponential
already give an accurate description of the open state.

We can then write the following general formula for the open state created on the brane
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world-volume when the closed state |ψ〉 is absorbed by the Dp-brane system
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 |0〉 , (5.79)

where the dots stand for all the other possible pairings of the right closed modes. Although
notationally cumbersome, the previous formula neatly summarizes the representation of
the massive open state in our basis of light-cone modes. There is a subset of open modes
that are contracted with the left polarization vectors and copy precisely the left part of the
closed state, in that they carry exactly the same indices. There are then open modes of
order n contracted with the right polarization vectors, plus all possible terms that can be
obtained by contracting couples of right polarization indices among themselves. Finally
there are insertions of traces of open modes ai−ua

i
−v from the expansion of the operator

eZo , as for the absorption of a closed tachyon.
We emphasize again that when one evaluates the imaginary part of the disk using the

closed-open couplings given by Eq. (5.79) only the term proportional to the contraction
∏

(k,α)

(
ζ(kα)ǫ(kα)

) ∏

(l,β)

(
ζ̄lβ ǭlβ

)
, (5.80)

between the polarizations of the initial and the final state should remain, while all the
terms containing one or more factors of the form

(
ζ̄(rρ)ζ̄(sσ)

) (
ǭ(r′

ρ′ )
ǭ(s′

σ′)

)
, (5.81)

should cancel. We do not have a general proof that this is the case.
Finally, the vertex in impact parameter space is given by the vertex at zero momentum

multiplied by the squeezed state in the effective modes in Eq. (5.23) and reproduces the
leading term in the imaginary part of the elastic amplitude, Eq. (2.34).

6 Conclusions

In this paper we have started the analysis of the absorption of a light, very energetic string
by a stack of Dp-branes and of the consequent excitation of the latter. The final aim of this

32



study is to show how such a complicated process can be described in terms of a unitary
S-matrix, thereby generalizing to the absorption regime what has been achieved so far in
the scattering regime (including tidal excitation of the closed string).

This problem, in general, is a very complicated one. It becomes tractable, however, by
appropriately restricting the kinematic regime under scrutiny as explained in detail in the
introduction. This allows, on the one hand, to ignore closed-string loops (and therefore
gravitational bremsstrahlung) and, on the other hand, to neglect higher corrections to the
leading eikonal. Under these approximations one expects to be able to construct a unitary
S-matrix in a Hilbert space consisting of a single (but possibly excited) closed string and
of an arbitrary number of open strings living on the brane world-volume.

Here we have considered the first term of this eikonal resummation, namely the tree-
level (disk) approximation, postponing to further work [19] the full unitarization program.
In this approximation also the open-string Hilbert space contains a single (in general highly
excited) string. A very encouraging outcome of our analysis has been the emergence of
a simple description of the relevant states in the open sector. This makes one hope that
resummation of the eikonal series will not be that hard. At the same time, the simple
properties of the open sector can be given a classical (or semi-classical) interpretation [13],
suggesting that a semiclassical treatment of the whole series could be sufficient for yielding
a unitary S-matrix.

We conclude by mentioning that the price to pay for making the problem tractable is to
work at sufficiently small string coupling for the characteristic radius of the brane-induced
geometry Rp to be smaller than the string length ls ∼

√
α′ enhanced by a logarithmic

factor. In that limit we expect the dominantly produced open strings to be heavy. Making
contact with the AdS/CFT correspondence [1], [2] in the supergravity approximation will
unfortunately require the opposite limit of a large Rp in string units. Such a regime
appears still far from what our present computational technology can achieve.
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A The light-cone vertex and the covariant amplitudes

In this Appendix we make a direct comparison between the closed-open transition am-
plitudes evaluated using the light-cone vertex and those derived using the covariant for-
malism. The simplest closed-open transition amplitudes that can be evaluated using the
covariant formalism are those to open states belonging to the leading Regge trajectory
whose vertex operators are

VSn =
go√
n!

[ −i√
2α′

]n n∏

i=1

ζαi ∂X
αieipoX , α′m2 = n− 1 , (A.1)

where we follow the notation introduced in Sections 2 and 3. Since transitions to the
tachyon and the vector are forbidden by the kinematics we only need n ≥ 2.

As in Section 3, when we evaluate an amplitude using the covariant formalism we write

pc = (E,~0p, ~pc) , (A.2)

where ~pc belongs to the (25−p)-dimensional space transverse to the branes. We also define
the tensor δ⊥ as the Kronecker delta in the spatial directions orthogonal to p̂c, where p̂c
is the unit vector p̂c =

~pc
|~pc| .

When we evaluate an amplitude using the closed-open vertex we write

pc = (E,~0p, ~pt, p) . (A.3)

Here ~pt belongs to the (24 − p)-dimensional space transverse to the branes and to the
direction x25 ≡ z.

A.1 Tachyon to leading Regge

When the initial closed state is a tachyon we find

BT,Sn(p̂c) = β
(−1)n√
n!

(
n+ 3

2

)n
2

n∏

i=1

(ζip̂c) , (A.4)

where we used that α′~pc
2 = n + 3. Only the polarization with all indices longitudinal is

excited. For instance for n = 2 the polarization tensor of the state that is excited is

ζlon,2 =
1

5
√
24

(−δ⊥ + 24p̂cp̂c) , (A.5)

and for n = 3

ζlon,3 =
1

9
√
8
(δ⊥p̂c + δ⊥p̂c + δ⊥p̂c − 24p̂cp̂cp̂c) . (A.6)

At level n = 2 and n = 3 the states of the leading Regge trajectory give all the physical
states and therefore we can use the amplitudes in Eq. (A.4) to reconstruct the discontinuity
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of the elastic amplitude at the corresponding energies. Consider the case n = 2. To
evaluate the imaginary part of the elastic amplitude we write

ImA = πα′
∑

ζ

BT,S2
(p̂1)BT,S2

(p̂2) = πα′β225

8

∑

ζ

(
ζij p̂

i
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j
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) (
ζklp̂
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2 p̂
l
2

)
(A.7)

= πα′β225

8
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8
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25 cos2 θ − 1
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5

2
y +

y2

2

)
,

where θ is the angle between p̂1 and p̂2. The result agrees with Eq. (2.4). We used that the
sum over a complete set of traceless symmetric tensors of rank two in 25 spatial dimensions
gives ∑

ζ

ζijζkl =
1

2
(δikδjl + δilδjk)−

1

25
δijδkl , (A.8)

and that

sin2 θ

2
= − y

α′(E2 −M2)
, y =

α′

4
t . (A.9)

The cases n ≥ 3 can be treated in a similar way.
Let us now study the transition from the tachyon to the first massive level using the

light-cone vertex. The closed-open vertex gives in this case

V~pt|0〉 = β
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N33
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where

N33
11 = −1 − ρ2

8
, N3

2α3 =
ρ

2
, N3

1α3 = 1 , ρ ≡ p

E
=
√
5− α′~p2t . (A.11)

More explicitly

V~pt |0〉 = β
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Therefore the covariant state with the polarization tensor in Eq. (A.5) corresponds to the
normalized state

|ζlon,2, ~pt〉 =
1√
3

[
4− α′~p2t
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j
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|0〉 , (A.13)

which for ~pt = 0 (i.e. when the light-cone gauge is aligned to p̂c) reduces to

|ζlon,2, 0〉 =
1√
48
ai−1a

i
−1|0〉 . (A.14)

35



It is amusing to verify that the state in Eq. (A.13) can be obtained from the state in

Eq. (A.14) by a rotation of an angle ϕ with sinϕ = |~pt|
|~pc| in the plane (p̂c, p̂t), as it should.

If we call the rotation plane the plane (z, y), the rotation operator is

Rzy(ϕ) = e−iϕJ
zy

, Jzy =
i

2
√
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k

(
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y
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)
, (A.15)

where Lk =
1
2

∑
l 6=0 a

i
k−la

i
l. Let us consider for simplicity an infinitesimal rotation. When

ϕ≪ 1 we find from Eq. (A.13)
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]
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The term linear in ϕ coincides with the effect of an infinitesimal rotation on the state with
~pt = 0
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2
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We can finally reconstruct the imaginary part of the elastic amplitude for α′E2 = 1. Since
we are not in the high energy limit we work in the brick wall frame defined in Eq. (3.28).
Using Eq. (3.30) we find

ImA = πα′β2

[
12
(
N33
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)
, (A.18)

in agreement with Eq. (2.4).

A.2 Massless to leading Regge

When the initial closed state is a massless state with vertex operator

Vg = − κ

2π

2

α′ ǫµǭν ∂X
µ∂̄Xν eipcX , α′M2 = 0 , (A.19)

we find
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{
−α

′

2
Dµν 1

(z − z̄)2
Ln (A.20)

− iα′D
να1ζα1

(z̄ − x)2

(
α′

2

Dpµc
z − z̄

+ α′ pµo
z − x

)
nLn−1 + iα′ η

µα1ζα1

(z − x)2

(
α′

2

Dpνc
z − z̄

+ α′ pνo
x− z̄

)
nLn−1

+ α′2 D
να1ζα1

ηµα2ζα2

(z − x)2(z̄ − x)2
n(n− 1)Ln−2 +

(
α′

2

Dpµc
z − z̄

+ α′ pµo
z − x

)(
α′

2

Dpνc
z − z̄

+ α′ pνo
x− z̄

)
Ln

}
,

36



where

Lk =

(
z − z̄

|x− z|2
)k n∏

i=n−k+1

(−iα′|~pc| ζip̂c) . (A.21)

As a basis for the polarizations of the massless closed string it is natural to use 24 spacelike
vectors orthogonal to the time direction t̂ and to p̂c. The same 24 spacelike vectors together
with p̂c provide a basis for the polarizations of the massive open state. In this basis

ǫDpc = ǭDpc = ǫpo = ǭpo = 0 , (A.22)

and the previous expression reduces to

Bg,Sn = β
(−1)n+1

√
n!

(
n− 1

2

)n
2

ǫµǭν [D
µνζ1p̂cζ2p̂c + 2n ηµα1ζα1

Dνα2ζα2
]

n∏

i=3

(ζip̂c) , (A.23)

where we used that α′~pc
2 = n − 1. Let us analyze in detail the transition to the first

massive level (n = 2)

Bg,S2
= −β 1

2
√
2
ǫµǭν [D

µνζρσp̂
ρ
c p̂
σ
c + 4 ζµαD

αν ] , (A.24)

where ζρσ is symmetric and traceless. We discuss separately the excitation of an open
string with polarization transverse to p̂c and parallel to p̂c

Bg,S2,tr = −
√
2β ǫµDǭνζ

µν , Bg,S2,lon = − β√
12
ǫµǭνD

µν , (A.25)

and analyze in turn the absorption of a dilaton ϕ, a graviton G and a Kalb-Ramond field
B. The dilaton can only excite longitudinally polarized states with amplitude 15

Bϕ
g,S2,lon

=
β√
72

(12− p) . (A.26)

The graviton and the Kalb-Ramond field can only excite states with transverse polariza-
tion. The graviton can be absorbed when its indices are both parallel to the brane or both
orthogonal to the brane and the collision axis

B
G‖,‖
g,S2,tr

= −
√
2β , B

G‖,⊥
g,S2,tr

= 0 , B
G⊥,⊥
g,S2,tr

=
√
2β , (A.27)

while the Kalb-Ramond field can be absorbed when one of its indices is parallel to the
brane and the other is orthogonal to the brane and the collision axis

B
B‖,‖
g,S2,tr

= 0 , B
B‖,⊥
g,S2,tr

= −
√
2β , B

B⊥,⊥
g,S2,tr

= 0 . (A.28)

If the massive polarization is longitudinal we find

Bg,S2,l = − β√
12
ǫµǭνD

µν . (A.29)

15Here p is the dimension of the Dp-branes.
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We see that only the dilaton couples since all the other closed polarizations are traceless 16

Bg,S2,l =
β√
12

24− 2p√
24

=
β√
72

(12− p) . (A.30)

The basis of physical polarizations that we used in the previous discussion coincides with
the basis of light-cone polarizations for a massless state with ~pt = 0. In this case the vertex
gives

V0|gǫ, ḡǭ〉 = β

[
N13

11N
23
11 ǫiDǭja

i
−1a

j
−1 +

1

2
ǫkDǭkN

12
11N

33
11a

i
−1a

i
−1

]
, (A.31)

where

N13
11 = −1 + ρ

2
= −1 , N23

11 = N12
11 = 1 , N33

11 = −1 − ρ2

8
= 0 , (A.32)

since ρ = p
E
= 1. Therefore

V0|gǫ, ḡǭ〉 = −βǫiDǭjai−1a
j
−1 . (A.33)

Consider now the following basis of light-cone states for the first massive level

|χtr〉 =
ωij√
2
ai−1 a

j
−1 , |χlon〉 =

1√
48
ai−1 a

i
−1 , (A.34)

with ωij a symmetric traceless tensor in 24 space directions. Then we find

〈χtr|V0|gǫ, ḡǭ〉 = −
√
2βǫiDǭjω

ij ,

〈χlon|V0|gǫ, ḡǭ〉 = − β√
12
ǫiǭjD

ij , (A.35)

in perfect agreement with the covariant amplitude.
Let us now consider ~pt 6= 0. In this case the basis of light-cone polarizations is different

from the basis naturally associated to the states in the covariant calculation. The vertex
gives

V~pt|gǫ, ḡǭ〉 = β

[
N13

11N
23
11 ǫiDǭja

i
−1a

j
−1 + α2

3N
1
1N

23
11N

3
1

α′

2
(ǫ~pt)Dǭ

ipjta
i
−1a

j
−1

+ α3N
1
1N

23
12

√
α′

2
(ǫ~pt)Dǭ

iai−2 + α2
3N

2
1N

13
11N

3
1

α′

2
(Dǭ~pt) ǫ

ipjta
i
−1a

j
−1

+ α3N
2
1N

13
12

√
α′

2
(Dǭ~pt) ǫ

iai−2 +
1

2

(
ǫkDǭkN

12
11 + α2

3N
1
1N

2
1

α′

2
(ǫ~pt) (Dǭ~pt)

)

(
N33

11a
i
−1a

i
−1 +

α′

2
α2
3

(
N3

1

)2
pitp

j
ta
i
−1a

j
−1 +

√
2α′α3N

3
2 p

i
ta
i
−2

)]
, (A.36)

16Here p is the dimension of the Dp-branes.
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where

N13
11 = −1 + ρ

2
, N23

11 = N12
11 = 1 , N33

11 = −1 − ρ2

8
,

α3N
1
1 = − 2

1 + ρ
, α3N

2
1 = − 2

1 − ρ
, α3N

3
1 = 1 ,

N13
12 = −1− ρ

2
, N23

12 =
1 + ρ

2
, α3N

3
2 =

ρ

2
, (A.37)

and
ρ =

p

E
=
√

1− α′~pt2 . (A.38)

In the limit ~pt → 0 we find

V~pt|gǫ, ḡǭ〉 → −βǫi
(
Dǭj − 2 (Dǭp̂t) p̂

j
t

)
ai−1a

j
−1 . (A.39)

We see that the result of the limit depends on the direction of ~pt. It does not agree with
Eq. (A.33) and does not reproduce the covariant amplitudes. The correct limit is found if
we give a small mass µ to the closed state setting

ρ(µ) =
p

E
=
√

1− α′ (~pt2 + µ2) , (A.40)

and then send ~pt to zero before removing the mass.

B On the calculation of ImA from the vertex

In this Appendix we describe in more detail how to derive the imaginary part of the disk
starting from the closed-open vertex. We will discuss the absorption of the massive states
|L, L̄〉 and |H, H̄〉, already analyzed in Section 5. It is convenient to define

σω(k) ≡
k−ω

k
n

Γ
(
1− ω k

n

) , σω(x) ≡
x−ωx

Γ (1− ωx)
, ω = N − 1 +

α′

4
~p 2
t . (B.1)

We also introduce the following compact notation for the integration over the n-simplex

∫
dµn ≡

∫ 1

0

dx1...

∫ 1

0

dxnδ

(
n∑

i=1

xi − 1

)
. (B.2)

Let us begin with the evaluation of the first few terms in the series of the imaginary part
of the elastic amplitude for the state |L, L̄〉. The first contribution is

ImALL ∼ π

4
α′β2 ζs′Dζ̄r′ǫsDǭr

∑

u,k,l

v,k′,l′

δu+k+l,nN
23
2uN

23
2vN

33
kl N

33
k′l′〈0|as

′
2 a

r′
v a

i
k′a

i
l′ a

j
−ka

j
−la

r
−ua

s
−2|0〉

=
π

2
α′β2 (ζǫ)Dζ̄r′Dǭr

∑

u,k,l

v,k′,l′

δu+k+l,nN
23
2uN

23
2vN

33
kl N

33
k′l′〈0|ar

′
v a

i
k′a

i
l′ a

j
−ka

j
−la

r
−u|0〉 , (B.3)
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where we used the fact that only when the modes a±2 are contracted among themselves
we obtain a leading contribution. Performing the contractions between the modes in the
vacuum expectation value in the second line of the previous equation and taking into
account the symmetry of the coefficients N33

kl with respect to the exchange of the lower
indices we find

ImALL ∼ π

2
α′β2 (ζǫ)

(
ζ̄ ǭ
) ∑

u,k,l

v,k′,l′

δu+k+l,nN
23
2uN

23
2vN

33
kl N

33
k′l′ (48kluδuvδkk′δll′ + 4uvlδukδvk′δll′)

=
π

2
α′β2 (ζǫ)

(
ζ̄ ǭ
)∑

u,k,l

δu+k+l,n klu
[
48
(
N23

2uN
33
kl

)2
+ 4N23

2uN
23
2kN

33
ul N

33
kl

]
(B.4)

= πα′β2 (ζǫ)
(
ζ̄ ǭ
) ∑

u,k,l

δu+k+l,n klu
(σ1(u)σ1(k)σ1(l))

2

(
2− u

n

)
(k + l)

[
96(

2− u
n

)
(k + l)

+
8(

2− k
n

)
(u+ l)

]
.

We now approximate the sums with integrals setting u = nx1, k = nx2, l = nx3 and
taking the large n limit, as discussed in Section 5

ImALL ∼ πα′β2 n (ζǫ)
(
ζ̄ ǭ
)
[96IL,1 + 8IL,2] , (B.5)

where

IL,1 =

∫
dµ3 x1x2x3

(
σ1(x1)σ1(x2)σ1(x3)

(2− x1) (x2 + x3)

)2

∼ 0.0082007 , (B.6)

IL,2 =

∫
dµ3

x1x2x3 (σ1(x1)σ1(x2)σ1(x3))
2

(2− x1) (2− x2) (x1 + x3)(x2 + x3)
∼ 0.0066155 .

The second contribution is proportional to

1

64
N23

2uN
23
2vN

33
kl N

33
ghN

33
k′l′N

33
g′h′〈0|as

′
2 a

r′
v a

i
k′a

i
l′ a

j
g′a

j
h′ a

w
−ga

w
−ha

q
−ka

q
−la

r
−ua

s
−2|0〉 (B.7)

=
1

32
N23

2uN
23
2vN

33
kl N

33
ghN

33
k′l′N

33
g′h′ δ

ss′
[
4ugδrr

′
δiwδuvδgk′ + 16ugδwr

′
δirδgvδuk′

]
〈0|ail′ ajg′a

j
h′ a

w
−ha

q
−ka

q
−l|0〉

=
1

32
N23

2uN
23
2vN

33
kl N

33
ghN

33
k′l′N

33
g′h′ δ

rr′δss
′
ughkl (96δuvδgk′ + 16δgvδuk′) (48δl′hδg′kδh′l + 4δg′hδh′lδkl′) ,

where we left the sum understood. Setting u = nx1, g = nx2, h = nx3, k = nx4, l = nx5
and taking the large n limit we find

n δrr
′
δss

′
(576 IL,3 + 96 IL,4 + 48 IL,5 + 8 IL,6) , (B.8)

40



where

IL,3 =

∫
dµ5 x1x2x3x4x5

(
σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5)

(2− x1) (x2 + x3)(x4 + x5)

)2

∼ 0.0002179 , (B.9)

IL,4 =

∫
dµ5

x1x2x3x4x5 (σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5))
2

(2− x1) (2− x2) (x2 + x3)(x4 + x5)2(x1 + x3)
∼ 0.0001709 ,

IL,5 =

∫
dµ5

x1x2x3x4x5 (σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5))
2

(2− x1)
2 (x2 + x3)(x2 + x4)(x4 + x5)(x3 + x5)

∼ 0.0002087 ,

IL,6 =

∫
dµ5

x1x2x3x4x5 (σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5))
2

(2− x1) (2− x2) (x2 + x3)(x4 + x5)(x1 + x4)(x3 + x5)
∼ 0.0001667 .

Adding the second contribution to the first we obtain

ImALL ∼ πα′β2 n (ζǫ)(ζ̄ ǭ) (0.841 + 0.153) = πα′β2 n (ζǫ)(ζ̄ ǭ) 0.994 . (B.10)

We now give the details of the derivation of the higher order terms in the series expansion
of the imaginary part of the disk for the state |H, H̄〉. We start by rewriting Eq. (5.69)

ImAHH ∼ πα′β2
(
ǫ̂ij ζ̂ij

) 1

8
〈0|
[
n2 ˆ̄ζll + 2N23

1u′N
23
1v′(D

ˆ̄ζD)r′s′a
r′
u′a

s′
v′

]
eZ

†
o

PneZo
[
n2 ˆ̄ǫkk + 2N23

1uN
23
1v (Dˆ̄ǫD)rsa

r
−ua

s
−v
]
|0〉 . (B.11)

In addition to the term already evaluated in Eq. (5.70) of Section 5, we have the following
terms with two summation variables

πα′β2
(
ǫ̂ij ζ̂ij

) 1

8

∑

k,l

δk+l,n

[
4klN23

1kN
23
1l N

33
kl + 12n2kl

(
N33
kl

)2]
n2 ˆ̄ǫrr

ˆ̄ζss , (B.12)

that in the continuum limit become

πα′β2 n
(
ǫ̂ij ζ̂ij

)∑

k,l

δk+l,n

[
−1

2
IH,2 +

3

2
IH,3

]
ˆ̄ǫrr

ˆ̄ζss , (B.13)

where

IH,2 =

∫
dµ2 x1x2

(σ1(x1)σ1(x2))
2

(1− x1)(1− x2)(x1 + x2)
∼ 0.178692 ,

IH,3 =

∫
dµ2 x1x2

(σ1(x1)σ1(x2))
2

(x1 + x2)2
∼ 0.039863 . (B.14)

In Eq. (B.13) we have obtained two terms that do not have the correct contraction for
the polarizations as discussed in Eq. (5.73). Therefore, let us go back to Eq. (B.11)
and include also higher order terms that come from the expansion of the two exponentials
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containing Zo and Z
†
0. There are four terms with four summation variables that contribute

to the imaginary part. The first one is

πα′β2
(
ǫ̂ij ζ̂ij

)
(D ˆ̄ζD)r′s′(Dˆ̄ǫD)rs

1

8
N23
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23
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33
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i
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j
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j
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r
−ua

s
−v|0〉

= πα′β2 n
(
ǫ̂ij ζ̂ij

)[
(12IH,4 + 2IH,5)

(
ˆ̄ǫkl

ˆ̄ζkl

)
+

1

2
IH,6 ˆ̄ǫkk

ˆ̄ζll

]
, (B.15)

where the three integrals correspond to three inequivalent contractions of the modes in
the vacuum expectation value and are given by

IH,4 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))
2

(1− x1)2(1− x2)2(x3 + x4)2
∼ 0.012072 , (B.16)

IH,5 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))
2

(1− x1)2(1− x2)(1− x3)(x3 + x4)(x2 + x4)
∼ 0.007971 ,

IH,6 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))
2

(1− x1)(1− x2)(1− x3)(1− x4)(x1 + x2)(x3 + x4)
∼ 0.005733 .

The second is
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1
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, (B.17)

where the two integrals are

IH,7 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))
2

(1− x1)(1− x2)(x1 + x2)(x3 + x4)2
∼ 0.008181 , (B.18)

IH,8 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))
2

(1− x1)(1− x2)(x3 + x4)(x1 + x3)(x2 + x4)
∼ 0.007700 .

The third gives a contribution identical to the second and the fourth is
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where the two integrals are

IH,9 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))
2

(x1 + x2)2(x3 + x4)2
∼ 0.007789 , (B.20)

IH,10 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))
2

(x1 + x2)(x3 + x4)(x1 + x3)(x2 + x4)
∼ 0.007538 .
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Collecting all the terms with two and four summation variables we then find

ImAHH ∼ πα′β2 n
(
ǫ̂ij ζ̂ij

) [
(IH,1 + 12IH,4 + 2IH,5)

(
ˆ̄ǫkl

ˆ̄ζkl

)

+

(
−1

2
IH,2 +

3

2
IH,3 +

1

2
IH,6 − 6IH,7 −

1

2
IH,8 + 9IH,9 +

3

4
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ˆ̄ǫkk
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]

∼ πα′β2 n
(
ǫ̂ij ζ̂ij

) [
0.993

(
ˆ̄ǫkl

ˆ̄ζkl

)
− 0.004 ˆ̄ǫkk
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]
. (B.21)

The terms contributing to the first kind of contraction are all positive and seem to add to
one. The sign of the terms contributing to the second kind of contraction alternates with
the number of factors of N33 and seem to add to zero. In fact the result of the sum is one
order of magnitude smaller than the individual terms.
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