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Abstract
We present in this paper a formalism for deuteron–induced inclusive reac-
tions. We disentangle direct elastic breakup contributions from other pro-
cesses (which we generically call non–elastic breakup) implying a capture of
the neutron both above and below the neutron emission threshold. The reac-
tion is described as a two step process, namely the breakup of the deuteron
followed by the propagation of the neutron–target system driven by an opti-
cal potential. The final state interaction between the neutron and the target
can eventually form an excited compound nucleus. Within this context, the
direct neutron transfer to a sharp bound state is a limiting case of the present
formalism.

1. Introduction

The population of discrete neutron states with (d, p) transfer reactions is a well established experimental
method. It has proven to be the tool of choice for the study of the single–particle nature of states close
to the Fermi energy, providing information about the energy, spin, parity, and spectroscopic factors,
of those states. As a result of the coupling with more complex nuclear degrees of freedom, some of
them get fragmented and spread over a finite energy region, and, as we move away from the Fermi
energy, they acquire larger energy widths. As we go towards the neutron drip line, the Fermi energy
gets closer to the neutron–emission threshold, and, eventually, slides into the continuum. Standard
direct transfer reaction theory, such as the Distorted Wave Born Approximation (DWBA) and coupled
channels approaches, deal, as a rule, with the population of sharp discrete states. They are thus not well
adapted for the description of the transfer to wide states, let alone to states in the continuum region of
the spectrum. Early works to provide a more suitable formalism were initiated in the late 70’s, but the
activity in this field ended quite abruptly in the early 90’s, leaving behind an unresolved controversy
regarding different approaches ([1, 2, 3, 4, 5, 6, 7, 8, 9]). Recently, a few groups have revived the
subject, producing different computer codes to implement the reaction formalism ([10, 11, 12]). Though
their approaches are slightly different, they are all based on a two–step description of the reaction
mechanism. The two steps considered to describe the deuteron–target reaction are the breakup of the
deuteron followed by a propagation of the loose neutron in the target field. This field is modeled with
an optical potential, and can account for the absorption of the neutron both in finite–width bound states
and in the above neutron–emission threshold continuum states.

Aside from providing valuable spectroscopic information about the nature of single-particle states
in nuclei, the absorption of the neutron can be used at profit to study neutron–induced reactions in radio
active isotopes with the surrogate reaction method in inverse kinematics. A considerable theoretical
and experimental effort is being devoted to the study of neutron capture (n,γ) and neutron induced
fission (n, f ) reactions in exotic nuclei making use of the surrogate method ([13, 14, 15, 16, 17, 18]). In
these experiments, an exotic beam impinging on a deuteron target absorbs the neutron of the deuteron,
forming an (as a rule) excited compound nucleus that later decays emitting principally γ radiation and
neutrons. The theoretical prediction of the cross section for the formation of the compound nucleus in
a state of given excitation energy, angular momentum and parity (see [10]) is key for the extraction of
the (n,γ) cross sections from the analysis of the experiment ([18]). In section (1.) we briefly introduce
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the formalism, (we refer to [10] for a detailed derivation), and provide specific expressions for the
numerical calculation of non–elastic breakup cross sections. In section (1) we show examples of final
neutron states, and we discuss the relationship between the population of states below neutron–emission
threshold and the direct neutron transfer in the DWBA approximation.

2. Theoretical formulation

2.1 General formalism in the prior representation

Let us consider the reaction A(d,p)B* which includes elastic breakup and any other inelastic processes.
The three-body Hamiltonian for the problem is

H = Kn +Kp +hA(ξA)+Vpn(rpn)+VAn(rAn,ξA)+UAp(rAp), (1)

where Kn and Kp are the kinetic energy operators acting on the neutron and proton coordinates respec-
tively. We have adopted a spectator approximation for the outgoing proton, we thus model its interaction
with the target by means of an optical potential UAp. The coordinates used throughout are defined in
Fig. 1. Starting from neutron–target (UAn) and deuteron–target (UAd) optical potentials, we can define
the optical model Green’s function in the breakup channel,

Gopt
B =

1
E−Ep−εA−Kn−UAn(rAn)+ iε

, (2)

and the source term

Sprior =
(

χ
(−)
f

∣∣UAp−UAd +UAn
∣∣φd χi

〉
, (3)

where round bracket indicates integration over the proton coordinate only, and the proton distorted wave
χ
(−)
f satisfies the equation (

E f −Kp−U†
Ap

)
χ
(−)
f = 0, (4)

where E f is the final channel energy. We can then define the neutron final wavefunction in the prior
representation,

ψ
prior
n = Gopt

B Sprior, (5)

and the non-orthogonality function

ψ
HM
n =

(
χ
(−)
f

∣∣∣ φd χi
〉
. (6)

It can be shown (see [10]) that the non–elastic breakup cross section in the prior representation can then
be written in term of (5) and (6) as

d2σ

dΩpdEp

]NEB

=− 2
h̄vd

ρp(Ep)
[
ℑ
〈

ψ
prior
n |WAn |ψ prior

n
〉

+2ℜ
〈

ψ
HM
n |WAn|ψ prior

n
〉
+
〈

ψ
HM
n |WAn |ψHM

n
〉]
, (7)
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Fig. 1: Schematic representation of the system under consideration with the coordinates used in its description.

where

ρp(Ep) =
mpkp

8π3h̄2 (8)

is the proton level density, and Ep is the kinetic energy of the detected proton.

2.2 Partial wave expansion

The implementation of the formalism relies on the numerical evaluation of the source term

Sprior(rBn;kp) = 〈χp|V |φd χd〉

=
∫

drAp χ
(−)∗
p (rAp;kp)V (rAn,rBn,rpn)φd(rpn)χ

(+)
d (rd). (9)

It is convenient to express the quantities of interest in terms of a partial wave expansion

Sprior(rBn;kp) =
2mn

h̄2 ∑
lmlp

Flmlp(rBn;kp)Y l
m(θBn)Y

lp
−m(k̂p). (10)

Let’s first extract the dependence of the neutron final angular momentum l by defining the F coefficients,

Flm(rBn;kp) =
∫

dΩBnSprior(rBn;kp)Y l∗
m (θBn), (11)

and dΩBn ≡ sin(θBn)dθBn dϕBn. The distorted waves of the proton and the deuteron can be expanded
in partial waves in a standard way,

χ
(−)∗
p (rAp;kp) =

4π

kprAp
∑
lp

i−lpeiσ
lp
p flp(rAp)

√
2lp +1

[
Y lp(r̂Ap)Y lp(k̂p)

]0

0
, (12)
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where fl(rAp) is the solution, for each partial wave, of the radial part of the Schrödinger equation with
an optical potential UAp(rAp).

χd(+)(rd) =
4π

kdrd
∑
ld

ild eiσ
ld
d gld (rd)

√
2ld +1

[
Y ld (r̂d)Y ld (k̂d)

]0

0
. (13)

In this last expression, gl(rd) is the solution, for each partial wave, of the radial part of the Schrödinger
equation with the optical potential UAd(rd) describing the relative motion between the deuteron and A
in the initial channel. If we only take into account the S–wave component of the deuteron wavefunction,
we can write

φd(rpn) =
1√
4π

ud(rpn). (14)

Then

Flm(rBn;kp) =
8π3/2

kdkp
∑
lpld

ild−lpei(σ
lp
p +σ

ld
d )
√

(2lp +1)(2ld +1)

×
∫

drAp dΩAp dΩBnrAp
flp(rAp)gld (rd)

rd
ud(rpn)V (rAn,rBn,rpn)

×
[
Y lp(r̂Ap)Y lp(k̂p)

]0

0

[
Y ld (r̂d)Y ld (k̂d)

]0

0
Y l∗

m (θBn). (15)

After some Racah algebra, we get

Flm(rBn;kp) =
8π3/2

kdkp
∑

ld−lp

ild−lpei(σ
lp
p +σ

ld
d )

∑
KM

(−1)K−M
[
Y lp(k̂p)Y ld (k̂d)

]K

−M

×
∫

drAp dΩAp dΩBnrAp
flp(rAp)gld (rd)

rd
ud(rpn)V (rAn,rBn,rpn)

×
[
Y lp(r̂Ap)Y ld (r̂d)

]K

M
(−1)l−mY l

−m(θBn). (16)

We can then make the replacement[
Y lp(r̂Ap)Y ld (r̂d)

]K

M
Y l
−m(θBn)→ 〈l l m −m|0 0〉

{[
Y lp(r̂Ap)Y ld (r̂d)

]l
Y l(θBn)

}0

0

=
(−1)l−m
√

2l +1

{[
Y lp(r̂Ap)Y ld (r̂d)

]l
Y l(θBn)

}0

0
, (17)

as all other possible angular momentum couplings integrate to zero. Note that this is required for angular
momentum conservation. The integrand being rotationally invariant, we can evaluate it for a particular
configuration (say, the z–axis along rBn,kp and rAp lying in the xy plane) and multiply the result by a
factor of 8π2 (resulting from the integration over ϕAp,ϕBn and θBn). Then one can then write the l,m, lp
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coefficient defined in eq. (10) as the 2–D integral that is numerically evaluated in our code,

Flmlp(rBn;kp) = (−1)m 16π5/2

kdkp
∑
ld

ild−lpei(σ
lp
p +σ

ld
d )〈lp ld −m 0|l −m〉

×
√

2ld +1
2l +1

∫
rApdrAp sin(θ)dθ

flp(rAp)gld (rd)

rd

×ud(rpn)V (rAn,rBn,rpn)
[
Y lp(θ)Y ld (θd)

]l

0
, (18)

where θd ,rpn,rd are obtained as functions of rAp,rBn,θ ,θBn according to the definitions found in Fig.
1, and are to be evaluated for θBn = 0.

The non orthogonality term defined in eq. (6) can also be expanded in partial waves in a very
similar way,

ψ
HM
n (rBn;kp) = ∑

l,m,lp

φ
HM
lmlp

(rBn;kp)Y l
m(θBn)Y

lp
−m(k̂p)/rBn, (19)

with

φ
HM
lmlp

(rBn;kp) = (−1)m 16π5/2

kdkp
∑
ld

ild−lpei(σ
lp
p +σ

ld
d )〈lp ld −m 0|l −m〉

×
√

2ld +1
2l +1

∫
rApdrAp sin(θ)dθ

flp(rAp)gld (rd)

rd
ud(rpn)

[
Y lp(θ)Y ld (θd)

]l

0
. (20)

2.3 Neutron wavefunction
The partial wave expansion of the Green’s function (2) for a given neutron energy ε can be written as

Gl(rBn,r′Bn) =
fl(kn,rBn<)gl(kn,rBn>)

knrBnr′Bn
, (21)

where kn =
√

2mnε/h̄, and fl(kn,rBn)(gl(kn,rBn)) is the regular (irregular) solution of the homogeneous
equation (

− h̄2

2mn

∂ 2

∂ r2
Bn

+UBn(rBn)+
h̄2l(l +1)

2mnr2
Bn
− ε

)
{ fl(kn,rBn),gl(kn,rBn)}= 0. (22)

The neutron wavefunction

ψn(rBn;kp) = ∑
l,m,lp

φlmlp(rBn;kp)Y l
m(θBn)Y

lp
−m(k̂p)/rBn, (23)

can then be obtained with according to eq. (5),

φlmlp(rBn,kp) =
∫

Gl(rBn,r′Bn)Flmlp(r
′
Bn;kp)r′2Bndr′Bn

=
1
kn

(
gl(kn,rBn)

∫ rBn

0
fl(kn,r′Bn)Flmlp(r

′
Bn;kp)r′Bndr′Bn

+ fl(kn,rBn)
∫

∞

rBn

gl(kn,r′Bn)Flmlp(r
′
Bn;kp)r′Bndr′Bn

)
. (24)
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Fig. 2: Neutron partial wave coefficient φ000(rBn) for ε = 2.5 MeV (dashed black line) and ε = −7.5 MeV (red
line).
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Fig. 3: Non–elastic breakup cross section computed at neutron energies E around a resonance En =−1 MeV. We
compare the complete calculation (left side of eq. (29)) with the isolated–resonance, first–order approximation
(right side of eq. (29)), for WAn = 0.5 MeV, WAn = 3 MeV and WAn = 10 MeV. The arrow indicates the value of
the eigenstate En corresponding to the real part of the optical potential UAn, and the vertical dashed line is drawn
at the neutron–emission threshold.
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3. Results

It is important to note that the neutron wavefunctions (23) are not eigenfunctions of a hermitian Hamil-
tonian, and can be associated with any arbitrary energy ε , both positive and negative. In order to get the
physical wavefunctions, the corresponding boundary conditions have to be enforced by implementing
them in the Green’s function (21). In order to do that, we impose limrAn→0 fl(kn,rAn) = 0 for the reg-
ular solution. At large distances the boundary condition of course depends on whether the energy ε is
positive or negative. For scattering neutron states (positive ε),

lim
rAn→∞

gl(kn,rAn)→ ei(knrAn− lπ
2 ), (25)

while for final neutron bound states (negative ε),

lim
rAn→∞

gl(kn,rAn)→ e−(κnrAn), (26)

with κn =
√−2mnε/h̄. This last, somewhat less standard, condition can be implemented by integrating

inwards numerically a function with the boundary condition

gl(kn,R∞−h) =
gl(kn,R∞)

(1−κnh)
, (27)

where R∞ is a large value of the radius and h is the numerical integration step, chosen such that κnh� 1.
We can thus use eq. (24) to obtain the neutron wavefunction for arbitrary positive and negative energies.
As an example, we show in Fig. 2 the wavefunction φ000 for ε = 2.5 MeV and ε = −7.5 MeV. The
neutron wavefunction (23) and the non–orthogonality term (19) can then be used in (7) to obtain the
non–elastic breakup cross section. If the final neutron energy is negative, the capture of the neutron in a
region in which the imaginary part WAn of the optical is small is related to the direct transfer to a sharp
bound state. Actually, it can be shown (see [10]) that, in first order of 〈WAn〉 ≡ 〈φn|WAn|φn〉, there is a
simple relationship between the cross section for the capture of a neutron in a bound state of finite width
and the cross section for the direct transfer to the corresponding zero–width bound state. Assuming that
the one–neutron transfer DWBA amplitude

T (1NT)
n =

∫
φ
∗
n

(
χ
(−)
f

∣∣Vprior
∣∣φd χi

〉
dr′An (28)

to the single–particle state φn of the target–neutron residual nucleus is constant in an energy range of
the order of Γn = 2〈WAn〉, we have

d2σ

dΩpdEp
(E,Ω)

]NEB

≈ 1
2π

Γn

(En−E)2 +Γ2
n/4

dσn

dΩ
(Ω), (29)

where dσn
dΩ

is the direct transfer differential cross section to the nth eigenstate of the real potential.
For the above approximation to be valid, 〈WAn〉 needs to be small, and the distance ∆E between the
resonance En and te closest one has to be big enough (∆E � Γn). In particular, the latter condition is
hardly verified if the resonance is too close (i.e., within a distance of the order or smaller than Γn) to the
continuum (neutron emission threshold). In Fig. 3 we compare the first order approximation with the
exact calculation for energies close to a resonance 1 MeV away from the neutron emission threshold,
for three different values of WAn.
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4. Conclusions
We have presented a formalism for inclusive deuteron–induced reactions, in which the final neutron–
target system is left in an arbitrary state characterized by its energy, angular momentum and parity. The
general derivation of the expression of the non–elastic breakup eq. (7) is given elsewhere ([10]), as
well as the comparison with experimental results. In this paper we have focused our attention in the
final neutron wavefunction, presenting an explicit expression that can be computed numerically (see
eqs. (23) and (24)). If the target–neutron interaction is modeled with an optical potential UAn with a
non–zero imaginary part WAn, the negative–energy part of the neutron spectrum is no longer discrete.
Instead of being composed by sharp single–particle states, the neutron can have any continuous value
of the energy above the Fermi energy. This continuous spectrum exhibit a resonant behavior around a
discrete set of energies, with widths naturally related with the value of WAn. We show that, in the limit
in which WAn is small compared to the real part of UAn and to the distance between resonances, the set
of discrete resonances can be related to the discrete single–particle spectrum, i.e., the set of eigenvalues
corresponding to the real part of UAn. Moreover, the energy–integrated cross section around a resonance
gives the direct DWBA transfer cross section to that particular state.
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