

FLAVOUR PHYSICS AT LHCb

ICNFP 2015: 4th International Conference on New Frontiers in Physics

Bernardo Adeva, University of Santiago de Compostela on behalf of the LHCb Collaboration

Quark flavour mixing

 $V_{\it CKM}$ originates from MISALIGNMENT between UP and DOWN quark couplings to the Higgs boson

$$-\mathcal{L}_{Y}^{q} = Y^{D} \bar{Q}_{L} \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} D_{R} + Y^{U} \bar{Q}_{L} \begin{pmatrix} \bar{\phi}^{0} \\ -\phi^{-} \end{pmatrix} U_{R} + H.C. \qquad Y^{U} \neq Y^{D} \qquad V_{CKM} = U_{L}^{U+} U_{L}^{D}$$

- KM theory is highly predictive
 - □ huge range of phenomena, over many orders of magnitude in energy with only 4 independent parameters (not including quark masses)
- CKM matrix has minimal flavour violation
 - extended theories do not replicate in general such flavour structure
- KM mechanism introduces CP violation
 - \Box it is THE standing theory of CP violation, in absence of neutrino masses or θ_{QCD}

The Unitarity Triangles

- CKM matrix must be UNITARY for a given number of quark generations (3) : $V_{CKM}^{+} = V_{CKM}$
- which provides many relationships, prominently:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

 only one independent phase, but 4 measurable combinations can be formed of the type

 $V_{\alpha i}V_{\alpha j}^*V_{\beta j}V_{\beta i}^*$ such as β (BaBar, Belle 2001, this talk), β_s (LHCb 2013), γ (this talk)

http://ckmfitter.in2p3.fr see also http://www.utfit.org

 consistency of measurements are tests of the Standard Model and provide model-independent constraints on New Physics

Two roads to travel the same path

in quark flavour physics

is KM theory perturbed?

- not necessarily in quark sector
- unpredicted scale
- **CPV** in NEUTRINOS now realistic, with sizable θ_{13}

CP VIOLATION

extra sources must be there for baryogenesis

leaky SM Non appearence at ATLAS/CMS makes the case more compelling

> can be seen in RARE DECAYS through quantum loops

NEW HEAVY PARTICLES

theoretically favoured

24 August 2015

Topics covered in this talk

The LHCb apparatus

CP VIOLATION

Why γ from B \rightarrow DK is important

- \blacksquare γ plays a unique role in flavour physics
 - □ it can be measured from tree diagrams alone (probably the only such CP violating parameter)
- Therefore a reference point for the Standard Model
 - particularly important after New Physics is discovered

A final state COMMON to D^0 and \bar{D}^0 is required. Different possibilities are characterized in the literature (GLW,ADS,GGSZ)

γ status

- Most precise channel is D_{CP}K

 (awaiting LHCb update with full
 Run 1 data sample)
 - LHCb only combination, without latest results (but including measurements on DK*0 and time dependent $D_s^{\pm}K^{\pm}$) gives $\gamma = (73 + 9 10)^{\circ}$, best single-experiment result (CKM2014 update)
- New LHCb measurements with competitive sensitity

New decays modes for γ at LHCb

- Highly significant signals in CP modes B⁻ \rightarrow DK⁻ $\pi^+\pi^-$, D \rightarrow K⁺ π^- , K⁺K⁻, $\pi^+\pi^-$
- New independent, additional LHCb measurement:

$$\gamma = \left(74^{+20}_{-18}\right)^o$$

arXiv:1505.07044, submitted to PRD

First observation of the suppressed ADS mode $B^- \rightarrow (K^+\pi^-)_D K^-\pi^+\pi^-$, very sensitive to γ

New decays modes for γ at LHCb

Further analysis strategies by LHCb on the neutral modes B⁻ \rightarrow DK⁻ with D \rightarrow $\pi^+\pi^-\pi^0$, D \rightarrow K⁺K⁻ π^0 and D \rightarrow K⁻ $\pi^+\pi^0$ (ADS)

Phys. Rev. D91 112014 (2015), arXiv:1504.05442

- Recent analysis of coherently produced $D\overline{D}$ at $\psi(3770)$ has shown that $D \rightarrow \pi^+\pi^-\pi^0$ is very close to a CP-even eigenstate (CP-even fraction $F_+=0.968\pm0.017$), which makes it particularly suitable for γ analysis (so called quasi-GLW) PLB 740 (2015) 1 arXiv:1410.3964.
- No evidence of CP violation has been obtained yet at LHCb, but good consistency with other measurements has been shown

V_{ub}/V_{cb} from $\Lambda_b \rightarrow p\mu\nu/\Lambda_b \rightarrow \Lambda_c^+\mu\nu$

- $|V_{ub}|$ governs the most sensitive misalignment between up/down quark flavor couplings to the Higgs boson
- Excellent measurements from $B^- \to \pi^0 l^- \bar{v}$ and $B^0 \to \pi^+ l^- \bar{v}$ at B-factories, but long standing discrepancy between exclusive and inclusive (containing all $b \to u l^- \bar{v}$ transitions) measurements, at 3.8σ level:

$$\begin{split} |V_{cb}| &= (42.4 \pm 0.9) \times 10^{-3} & |V_{ub}| = (4.41 \pm 0.15 ^{+0.15}_{-0.17}) \times 10^{-3} & (incl.) \\ |V_{cb}| &= (39.5 \pm 0.8) \times 10^{-3} & |V_{ub}| = (3.23 \pm 0.31) \times 10^{-3} & (excl.) \end{split}$$

■ LHCb at a hadron collider uses the corrected mass:

$$\mathbf{M}_{corr} = \sqrt{\mathbf{M}_{h\mu}^2 + \mathbf{p}_{\perp}^2} + \mathbf{p}_{\perp}$$

and directly compares $\Lambda_b \to p\mu^-\bar{\nu}$ with $\Lambda_b \to \Lambda_c^+(pK^-\pi^+)\mu^-\bar{\nu}$

V_{ub}/V_{cb} from $\Lambda_b \rightarrow p\mu\nu/\Lambda_b \rightarrow \Lambda_c^+\mu\nu$

Lattice QCD form factors, needed in the calculation of $|V_{ub}|$, $|V_{ub}|$

are most precise at high q^2 ($\mu\nu$),

select $q^2 > 15 \text{ GeV}^2$

• q^2 can be determined using Λ_b flight direction and mass, up to a two-fold ambiguity

■ vertex isolation is used, $\Lambda_c^+ \rightarrow pK^-\pi^+$ cross-feed is the main background

fit M_{corr} to get the signal yields

Nature Physics 10.1038 arXiv:1504.01568

arXiv: 1503.01421

V_{ub}/V_{cb} from $\Lambda_b \rightarrow p\mu\nu/\Lambda_b \rightarrow \Lambda_c^+\mu\nu$

 New physics claimed to explain the puzzle with extra RH currents

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ub}^L \left(\bar{u} \gamma_{\mu} P_L b + \epsilon_R \bar{u} \gamma_{\mu} P_R b \right) \left(\bar{\nu} \gamma^{\mu} P_L l \right) + h.c.$$

F. Bernlochner et al. PRD 90, 094003 (2014)

LHCb:
$$\frac{B(\Lambda_b \to p \mu^- \overline{\nu}_{\mu})_{q^2 > 15 GeV^2/c^4}}{B(\Lambda_b \to \Lambda_c \mu^- \overline{\nu}_{\mu})_{q^2 > 7 GeV^2/c^4}} = (1.00 \pm 0.04(stat) \pm 0.08(syst)) \times 10^{-2}$$

Nature Physics 10.1038 arXiv:1504.01568

 $\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 (exp) \pm 0.004 (lattice)$

■ LHCb results do not support RH currents, agree with exclusive

$\sin(2\beta)$ from B⁰ \rightarrow J/ ψ K⁰

- time evolution of $B^0/B^{\overline{0}}$ asymmetry, 41500 decays
- LHCb is now competitive:

result consistent with world averages and with other measurements constraing $\sin(2\beta)$:

$$0.771^{+0.017}_{-0.041}$$
 CKMfitter arXiv:1501.05013

significant improvement will require understanding of higherorder contributions

LHCb-PAPER-2015-004 arXiv:1503.07089

$\sin(2\beta) \equiv \sin(2\phi_1)$

RARE AND SEMI-RARE DECAYS

$B_s \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$

 $B \rightarrow \mu^+\mu^-$ decays are an *acid test* for New Physics models

Very suppressed $(10^{-9}-10^{-10})$ in SM due to:

- GIM mechanism (Z^0)
- chirality of W[±]
- minimal flavor violation (H⁰)

Features not generally respected by generic extensions!

Predictions are sharp:

$$B(B_s \rightarrow \mu^+\mu^-)_{SM} = (3.66 \pm 0.23) \times 10^{-9}$$

$$B(B^0 \rightarrow \mu^+ \mu^-)_{SM} = (1.06 \pm 0.09) \times 10^{-10}$$

Exemplary sensitivity for SUSY:

$$B(B_s \rightarrow \mu^+\mu^-) \approx (\tan\beta)^6/M_{A0}$$

$B_s \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$

- LHCb / CMS collaborative upshot
 - complementary angular regions with respect to LHC beams
 - designed for different purposes: higher instantaneous ∠ compensates lower
 B → μμ efficiency (CMS)
 - dimuon mass resolution different: uniform $\approx 25 \text{ MeV/c}^2$ for LHCb and angle dependent ranging from 32-76 MeV/c² for CMS
- Combination of CMS and LHCb data results in conclusive evidence for $B_s \rightarrow \mu^+\mu^-$, and in a 3σ effect for $B^0 \rightarrow \mu^+\mu^-$
- Results consistent with SM at 2σ level: A NEW PHASE OF PRECISION MEASUREMENTS IS INITIATED

Nature Letter 522 (2015) 68

$B \rightarrow D^{(*)} \tau \nu$

- Lepton universality can be broken by new physics with τ lepton, and ratios like $R(D^*)=B(B \to D^{(*)}\tau v)/B(B \to D^{(*)}\mu v)$ are sensitive to it
 - \square in two Higgs doblet models (2HDM), the D/D* helicity amplitudes H_s become:

$$H_s^{2HDM} \approx H_s^{SM} \left(1 + (S_R \pm S_L) \frac{q^2}{m_\tau(m_b \mp m_c)} \right)$$

with scalar NP contributions $S_{L,R}$ proportional to $(\bar{c}P_{L,R}b)(\bar{\tau}P_L\nu_{\tau})$ $P_{L,R}=(1\mp\gamma_5)/2$

■ BaBar reported anomalous high values of $R(D^*)$ and R(D):

Those exclude 2HDM where $S_L = 0$ (type II, minimal SUSY) in the full tanβ-m_{H±} plane, but are compatible with general 2HDM having $|S_R + S_L| < 1.4$

$B \rightarrow D^*\tau v$ at LHCb

First b $\rightarrow \tau$ reco at a hadron collider : $\overline{B}{}^0 \rightarrow D^{*+} \tau^- \overline{\nu}_{\tau}$ and $B^0 \rightarrow D^{*+} \mu^- \overline{\nu}_{\mu}$ identical final state topologies with $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ and $\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau}$

- LHCb result *confirms* the excess to the SM value 0.252±0.003. Fit also extracts form factor parameters, which appear to agree with world averages.
 - \square B⁰ rest-frame variables $(m_{miss}^2, E_{\mu}^*, q^2)$ are measured with (15-20)% resolution thanks to \vec{p}_B estimation with charged particles
 - □ Control samples of various backgrounds allow precise corrections
 - → good prospects for Run 2 , systematics expected to scale with sample sizes

$B \rightarrow D^{(*)} \tau \nu$

Tension with SM seems to persist

unofficial average, very preliminary

$$R(D^*) = 0.322 \pm 0.021$$

 $R(D) = 0.390 \pm 0.047$

statistical or systematic correlations not accounted for

thanks to M. Rotondo

Angular analysis of $B^0 \rightarrow K^{*0}$

- b \rightarrow s $\mu^+\mu^-$ FCNC transition allowed in SM via electroweak penguin and box diagrams, subject to contamination by new heavy particles (Z', extra H...)
- angular observables in $K^{*0}(K^+\pi^-)\mu^+\mu^-$ characterized by 6 amplitudes: for K^{*0} helicities and $\mu^+\mu^-$ chiralities (L,R)
- full set of 8 observables analised (3 fb⁻¹) as function of $q^2(\mu^+\mu^-)$, only some are shown

largely in agreement with SM, however ... see next

Kolymbari

Zero crossing point q_0^2 OK with SM, very sensitive to some MSSM models arXiv:0811.1214

$B^0 \rightarrow K^{*0} \mu^+ \mu^- \& tension in P$

- Earlier publication by LHCb with 2011 dataset PRL 111 (2013) 191801 found a local deviation from SM prediction with 3.7σ significance in one particular observable: P '5
- Possible interpretations of this discrepancy was widely discussed in the literature (over 13 papers in 2014). The full datasample with 3 fb⁻¹ confirms a 3.7 σ statistical discrepancy
- P'₅ is related to the L/R asymmetry of the interference between A_0 and A_1 :

sensitive to NP in VV or VA (Wilson coefficient C₉)

$$P_5' = \sqrt{2}Re\left(A_0^L A_\perp^{L*} - A_0^R A_\perp^{R*}\right) / \sqrt{F_L(1 - F_L)} = S_5 / \sqrt{F_L(1 - F_L)}$$
 $F_L = |A_0^L|^2 + |A_0^R|^2$

S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, arXiv:1407.8526

$B_s \rightarrow \Phi \mu^+ \mu^-$

- Contrary to $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $B_s \rightarrow \Phi(K^+K^-)\mu^+ \mu^-$ is not selftagging. Good complementarity (yield $\approx 1/6$)
- Full angular analysis as function of $q^2(\mu^+\mu^-)$, all of the 8 observables are determined for the first time
 - physics-wise, the observables are different from K* μμ (new CP-violating asymmetries, no S₅ or A_{FB})
- All angular observables are *consistent with the SM*, but tension seen in the branching fraction
 - a similar trend is also seen for the branching fractions of other $b \rightarrow s \mu^+ \mu^-$ decays at LHCb (B⁰ \rightarrow K^(*) $\mu^+ \mu^-$, JHEP 06 (2014) 133, B⁺ \rightarrow K⁺ $\pi^+ \pi^- \mu^+ \mu^-$, JHEP 10 (2014) 064.

Summary

- Appreciable amount of Flavour Physics results by LHCb this year, not everything has been covered in this talk (absent were charm CPV, other rare decays, B → no charm, etc)
- Sensitivity to $B_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ has reached the 10^{-10} level and will continue to improve
- A few interesting "tensions" with the SM to follow up very closely:
 - \square hints on τ -lepton non-universality in $R(D^*)$ and R(D)
 - □ S_5 observable in B \rightarrow K*0 µµ deviated from SM , also b \rightarrow s µµ rates too low.
 - \Box inclusive/exclusive tension in $|V_{ub}|$ still there, although RH currents are not supported
- Much to know in the short and longer terms:
 - □ Run 2 has just started at LHC (LHCb & ATLAS &CMS)
 - □ LHCb upgrade & Belle II will take over from 2018 on

THE END

Global fits $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Global fits performed on the new LHCb B⁰ \rightarrow K*0 $\mu^+\mu^-$ data J. Matias and D. Straub, Moriond EW 2015 arXiv:1503.06199

Angular observables, branching fractions and combination Consistently, data favour $C_9^{NP} \neq 0$ at 3-4 σ