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Abstract  
Energy storage capacitors are used in large quantities in high power converters for particle 
accelerators. In this application capacitors see neither a DC nor an AC voltage but a combination of 
the two. The paper presents a new power converter explicitly designed to perform accelerated testing 
on these capacitors and the results of the tests.    

Introduction 
At CERN several power converters are used to supply current to magnets in particle accelerators. The 
typical load cycle is represented by a current pulse starting from a low value where particles are 
injected and rising up as they are accelerated. After particles are ejected at the flat top, the current is 
brought back to zero and another cycle is started.  
 

  
Figure 1.  Typical magnets current cycle and storage capacitor voltage shape 

Given the inductive nature of the load, the mean power is in general much lower than the peak. This is 
particularly important for multi megawatt power converters where power swings of several tens of MW 
are requested to the AC network as a consequence of the huge peak power of the magnets. Capacitor 
energy storage is very effective in limiting these power oscillations. The energy stored by capacitors in 
electric form is exchanged with the magnetic energy of the magnets such that when the magnets current 
increases, the capacitors voltage decreases (Figure 1).  
 
In its application as energy storage elements, capacitors undergo atypical voltage conditions with a 
combination of AC at low frequency and DC components; a load condition not deeply investigated by 
capacitor producers. 
Given the considerable quantity of energy storage capacitors installed in present and future projects, 
CERN decided to build a testing laboratory for assessing the lifetime of the solutions proposed by 
different companies. 
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Storage capacitors technology 
All tested solutions are derived from DC filtering applications with metalized polypropylene film 
capacitors (MPPFC). The capacitors are realized by a parallel-series connection of many basic units 
each formed by hundreds of meters of polypropylene metalized film tightly superimposed to each 
other (Figure 2). The polypropylene film for this range of application is typically 4 to 12um thick; a 
layer (20 to 200 nm) of Al, Al+Zn, Zn metallization is vacuum deposited on the film surface, forming 
the capacitor electrodes.  MPPFC are available either oil impregnated or not oil impregnated (some 
manufacturers use oil not for film impregnation but as a filler). When impregnated the PP film 
increases the breakdown electric field from the theoretical maximum of 640 V/pm to 810 V/pm (e.g. 
25%) [3]; the basic units shall therefore be less hard wounded to allow the impregnating oil to 
penetrate among the different film layers (Figure 2 right; rough type PP film are used in this case). 
Typically vegetable oils (rapeseed, castor...) are used for polypropylene impregnated capacitors. Non-
impregnated capacitors, on the other hand, are tightly wounded in a solid rock unit (Figure 2 left); the 
higher the pressure, the lower is the amount of energy required for the self-healing to operate [2][4] 
and therefore the smallest is the impact of clearing defects.   
The robustness of MPPFC resides in a characteristics property called self-healing defined as the 
capacity to gracefully eliminate short circuits among electrodes by a controlled vaporization of the 
electrodes around the default. Many papers [1], [2], [5] propose the discharge energy as the main 
parameter characterizing the self-healing in MPPFC: 

ௗ௦ܧ [1] ൌ ·ర.ళ·ሺ/௦ሻభ.ఴ·ఈሺሻ        (1) 

V= voltage applied; ohm/sq=surface resistivity of the metallization; αሺPሻ= function of the interlayer 
pressure. 
 
Equation (1) is very useful to understand the main parameters influencing the self-healing efficiency to 
avoid dramatic failure of the capacitors. The smaller the discharge energy the easier it is to stop any 
breakdown initiated by unavoidable defects present in the capacitor and therefore to have an efficient 
self-healing mechanism.  

 
Figure 2.  Basic unit shape for non-impregnated (left) and oil impregnated (right) capacitors. 

The electric field through the polypropylene dielectric film has a fundamental importance in the design 
of capacitors. Not only must it be lower than the polypropylene breakdown value, but it must limit the 
discharge energy in the self-healing process. To reduce the electric field in the PP film to an 
admissible value, different suppliers propose either external series of various basic units, or internal 
series realized by an appropriate electrode-film pattern as showed in Figure 3.   
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Figure 3. Film internal and external series  

Figure 4. Different approaches to MPPFC 
metallization: variable thickness (left) and 
segmented (right). 

 
From (1) we can understand the interest of increasing metallization resistivity in order to have high 
electric field (and thus energy density) and still possess an efficient self-healing mechanism. 
The drawback of increasing metallization resistivity is that a thin metallization is required that is more 
prone to electrochemical corrosion. This is the second most important ageing mechanism of MPPFC 
that appears as a progressive loss of the metallization leading to marked capacitance loss. 
To solve this issue, capacitor producers employ different metallizing alloys the most used being 
Al+Zn. The addition of Zn greatly reduces the electro corrosion effect on thin metallization layers. 
Alternatively a segmented or variable resistance metallization can be used (Figure 4).  

A power converter for testing capacitors 
A special power converter has been designed and produced for the capacitors accelerated testing 
laboratory. The main characteristic the power converter shall possess is the ability to generate voltage 
waveforms with an arbitrary shaped AC component offset by a DC value as shown in Figure 1. 
The power converter schematic principle is highlighted in Figure 5. A DC source is connected in 
series with two AC sources in order to generate the desired voltage waveform across the capacitors 
under test (Cdut).  
The DC source consists of a step-up transformer connected to a 12-pulse diode rectifier. The output 
voltage can be regulated with a variac from 0 to 6200V. A parallel capacitor bank (Cbyp) is required 
to allow the AC current to circulate. This capacitance is in series with the one under test and must 
therefore be much bigger so that the AC voltage generated by the AC source is taken primarily by the 
capacitors under test. In order to simplify the design of the AC source, the total voltage is realized by 
using two single phase inverters with a 1000 V dc link. The maximum AC voltage that can be 
generated by the two AC sources is therefore slightly lower than ± 4 kV. The AC source is virtually 
capable to generate any desired voltage shape unless the derived peak current is limited to 150 A rms 
and 200 A pk. Figure 8 shows the power converter in operation and the thermal chamber used for 
heating up capacitors. The system is capable to either test 4 reduced scale samples at a time or one 
fully scaled unit. 

Control 
The reference for the AC voltage is implemented in a Digital Signal Processor (DSP) from a fixed-size 
array of values. In order to generate the same reference at different frequencies, an interpolation is 
used based on a counter k whose length is frequency dependent.  

ܸ ൌ ൬ݕܽݎݎܣ ೖವାଵ െ ݕܽݎݎܣ ೖವ൰ כ ቀ݇ െ ݐ݊݅ ቀ ்ቁ כ ቁܶܦ  ݕܽݎݎܣ ೖವ   (2)  

Where DT marks the number of increments between two consecutive array cells. 
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Figure 5: Simplified schematic of the Capacitor testing power converter 
The capacitors under test and the filter inductors create an un-damped LC circuit resonating at different 
frequencies depending upon the value of the tested capacitor. The output voltage (AC component only) 
and currents are shown in Figure 6.  

 
Figure 6: Measured output voltage and currents without (left) and with (right) damping 
The circuit is actively damped by the controller using the measured capacitor current as state feedback 
in the output of the voltage control regulation loop (Figure 7). 
ሻݏሺݐݑሻܸݏሺݐݑܸܿ݀  ൌ 11  ݏ߱ߦ2  ௦మఠబమ

   
 ߱ ൌ ଵඥೠ  ; ߦ  ൌ ೠଶఠబ           (3) 

 
Figure 7: Active damping using the converter output current 
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Figure 8: Capacitor testing power converter (left) and heating chamber (left) 
 
The combination of AC and DC components is shown in Figure 9 for the charge-discharge 5Hz 
waveform and for sinusoidal shape. 
 

 
Figure 9: Total voltage applied to the Cdut with a charge-discharge profile at 5Hz (left) and with 5Hz 
sinusoidal shape (right) 

Accelerated testing criteria 
In the search of the best technology six different solutions from different suppliers were tested. Three 
of them are non-impregnated capacitors and the remaining are oil-impregnated capacitors. 
Besides the filling material, the seven solutions differ in the following main characteristics: 

• Internal and external number of series; 
• Metallization material and pattern. 

 
For the accelerated testing the end of life criteria is defined as a loss of 5% in capacitance value. To 
accelerate the ageing, we played on the following accelerating factors: 
• Testing ambient temperature; 
• Peak voltage applied to the capacitors (Figure 1); 
• Discharge repetition rate. 
 

A simplified model for lifetime evaluation of MPPFC is very often proposed as below [5]:  

 Lୟୡୡ ൌ L · eB·ሺ భTౙౙି భTబሻ. ቀ VబVౙౙቁC
 (4) 
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Figure 17: Solution N4 film conditio
 
 

Figure 18: Solution N3 film conditio
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