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1 Introduction

Measurements of the temperature anisotropies and polarization of the cosmic microwave
background place stringent constraints on a wide range of inflationary models. While current
data are consistent with single-field inflation, multi-field scenarios arise quite naturally in
most attempts to embed inflation within a broader theory, and it is therefore important to
address this more generic situation.

The amplitude of primordial perturbations is often described in terms of ζ, the curva-
ture perturbation on hypersurfaces of constant energy density. In single-field inflation this
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quantity is conserved on super-horizon scales, but in multi-field inflation it can evolve after
Hubble crossing [1–3]. To take this evolution into account, it is convenient to use the so-
called δN formalism [4–8], which gives the correlators of ζ at the end of inflation in terms
of the correlators of the scalar-fields fluctuations at Hubble crossing. The relation between
them is established by considering the background evolution of an ensemble of homogeneous
universes with different initial conditions (for a review, see refs. [9, 10]). This approach is
not restricted to the correlators of ζ, but can also be applied to entropy perturbations (see
e.g. [11, 12]).

A useful tool for describing the evolution on super-horizon scales is the Hamilton-Jacobi
(H-J) formalism first introduced by Salopek and Bond [5] (see also [13, 14]). This was
originally developed for the case of D scalar fields φI (here and below capital latin indices
I, J,K, . . . run from 1 to D) with canonical kinetic terms, but for generality here we shall
consider an extension to Lagrangians of the form P (XIJ , φK), where

XIJ ≡ −
(
∂µφ

I∂µφJ
)
/2 . (1.1)

The first step is to encode the background dynamics in a time independent H-J equation for
a “superpotential” W . This object is just the Hubble rate expressed as a function of the field
values φI ,

W =
1

2
H
(
φI , cI

)
, (1.2)

where a complete solution of the H-J equation contains an equal number of integration
constants cI , which account for the freedom in the initial values of the field momenta. As
we shall see, cosmological evolution can then be seen as a “gradient flow” of W (φI) in field
space. The purpose of this paper is to further develop the δN formalism by taking advantage
of this description.

The superpotential approach is also interesting in connection with the possibility of a
holographic description of inflation [15–18]. For the case of de Sitter, this idea was first
considered in refs. [19, 20], by analogy with the gauge/gravity duality which holds in asymp-
totically AdS spaces (see also refs. [21, 22]). Recently, field theories which are dual to de
Sitter have been identified for the case of higher spin gravity [23]. On the other hand, for the
case of Einstein gravity, the duality remains at an exploratory stage. In the absence of a more
concrete realization, a fruitful strategy has been to focus on small deformations of a generic
boundary conformal field theory (CFT), with Lagrangian of the form L = LCFT +

∑
I g

IOI .
This setup is characterized by a few parameters, such as the central charge of the CFT,
and the operator product expansion coefficients for the deformation operators OI . Such
parametrization allows for some explicit calculations, which can be done by using confor-
mal perturbation theory [24–26]. With the identification gI = φI (up to a proportionality
constant), the renormalisation group (RG) flow of the couplings gI in the boundary theory
corresponds to field evolution in the bulk, while the superpotential W plays the role of a
c-function for the RG flow.

The case with a single deformation operator O corresponds to single field inflation,
which has been extensively considered in the literature [15–18, 24, 25, 27–46]. In particular,
refs. [24, 25] studied the power spectrum and bispectrum of ζ, showing agreement between
the boundary and bulk calculations.1 The four-point correlation function was also computed
in ref. [33], recovering the result from the bulk calculation of ref. [47] in the slow-roll regime.

1Furthermore, in ref. [25], it was shown that the power spectrum of ζ is conserved at large scales, as expected
in the standard cosmological perturbation theory for the case of single field models. The conservation of higher
order correlation functions, however, remains an unresolved open issue.
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More recently, ref. [26] extended the holographic approach to multi-field inflation by
considering a CFT with D mutually uncorrelated deformation operators OI , and the pri-
mordial power spectra for adiabatic and entropy perturbations were computed in conformal
perturbation theory. As an application of the methods presented in this paper, here we will
compare the results of ref. [26] with a bulk calculation based on the δN technique.

The paper is organized as follows. In section 2 we review the superpotential formalism.
We also give a characterization of the attractor behavior of background solutions in terms
of the first and second slow-roll parameters. Note, however, that such parameters will not
be required to be small in our discussion. In section 3 we review the separate universe
approximation, on which the δN formalism is based. As we shall see, the superpotential
will be very useful for computing the primordial spectra, particularly in the case when the
background is an attractor. The expressions for the primordial spectra of adiabatic and
entropy perturbations in terms of the superpotential are given in section 4. In section 5, we
compare these results with those recently obtained in ref. [26] from the holographic point
of view. In section 6, we elaborate on several explicit models of inflation with a product
separable superpotential, which should be dual to a QFT with uncorrelated multi-deformation
operators. Finally, we conclude in section 7.

2 Superpotential and background evolution

Consider a scalar field theory in a (d+ 1)-dimensional spacetime, with an action of the form

S =

∫
dd+1x

√
−g P

(
XIJ , φK

)
. (2.1)

The corresponding energy momentum tensor is given by

Tµν = PIJ ∂µφ
I∂νφ

J + Pgµν , (2.2)

where we use the notation

PIJ =
∂P

∂XIJ
. (2.3)

Since XIJ is symmetric about I and J , so is PIJ . If the gradients of all fields are aligned
in the same time-like direction, the energy momentum tensor (2.2) has the form of a perfect
fluid, with pressure P and energy density given by

ρ = 2PIJX
IJ − P. (2.4)

The perfect fluid form will be valid for our background solution, where all fields depend only
on time. However, in general the fluid will be imperfect for a perturbed solution.

We assume a flat (d + 1)-dimensional FRW universe described by the metric ds2 =
−dt2 + a2(t)d~x2. The background field equations for φJ(t) are given by(

PIJ φ̇
J
)

˙+ dHPIJ φ̇
J − (∂P/∂φI) = 0 . (2.5)

Here

H ≡ ȧ

a
(2.6)
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is the expansion rate. The Friedmann equation reads

H2 =
2κ2

d(d− 1)
ρ =

2κ2

d(d− 1)

(
2PIJX

IJ − P
)
, (2.7)

and

Ḣ = − κ2

d− 1
PIJ φ̇

I φ̇J (2.8)

where κ2 ≡ 8πG is the gravitational constant.
As pointed out by Salopek and Bond in ref. [5] (see also refs. [13, 48–51]), the field

equations for canonical scalar fields can be recast into first-order form by introducing a
superpotential. Here, we show that the same treatment applies to non-canonical scalar fields.
Let us start by defining the momenta

πI ≡
∂P

∂φ̇I
= PIJ φ̇

J . (2.9)

In general PIJ can have explicit dependence in field velocities φ̇K , but we assume that our
Lagrangian is non-singular, so that (2.9) can be solved for the field velocities as a function
of positions and momenta:

φ̇I = F I
(
φJ , πK

)
. (2.10)

Note that the momenta πJ differ from the canonical ones ΠJ = ∂L/∂φ̇J =
√
−g πJ by a factor

of ad, but with our choice, the relation (2.10) does not contain any explicit time dependence
through the scale factor a. We may now use (2.10) in order to remove all occurrences of φ̇I

in the energy density. Then, substituting

H = 2W
(
φK
)
, (2.11)

and

πI = PIJ φ̇
J = −2(d− 1)

κ2

∂W

∂φI
, (2.12)

which satisfies eq. (2.8), into the Friedmann equation (2.7), we obtain a partial differential
equation for the superpotential W (φI):

W 2 =
κ2

2d(d− 1)
ρ
[
φK , ∂W/∂φK

]
. (2.13)

Following ref. [5], we shall call this the separated, or time independent, H-J equation.2 The
substitutions (2.11) and (2.12) are actually motivated by the form of the momentum con-
straint in the long wavelength limit [5]. We will discuss this constraint in the next section,
where we consider cosmological perturbations [see eq. (3.12)]. Nonetheless, for the time being,
we may simply think of (2.11), (2.12) and (2.13) as a convenient reformulation of the back-
ground equations of motion. Indeed, in appendix A, we show that for any solution W (φK)
of (2.13), eqs. (2.11) and (2.12) generate a solution of the field equations (2.5) and (2.7).

A complete solution of the H-J equation W (φK , cK) depending on D independent in-
tegration constants cK , can be used for generating any background solution from the first

2For the case of canonical scalar fields, it is shown in [5] that the separated H-J equation can be obtained
from the Einstein-Hamilton-Jacobi equation, after factoring out the volume of space in Hamilton’s principal
function S ∝ adW .
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order equations (2.12) and (2.11). The existence of such a solution can be understood as
follows. Given some initial data (φK0 , π

0
K) at t = t0, the background equations of motion

can be solved in order to find H(t;φK0 , π
0
K). If one of the fields has a monotonic evolution,

we can use it as the time variable, and express the initial positions of the rest in terms of
their positions at the time t. With this, we have H = H(φK ;π0

K). Finally, we may choose
cK = π0

K (or any invertible relation between cK and π0
K), leading to W = H(φK , cK)/2.

When the field space metric is non-trivial, one may wish to write the equation of motion
(2.5) in a covariant form [52–54] which is manifestly independent of the choice of field space
coordinates φI . As stressed, e.g., in ref. [54], while the covariance is not a physical require-
ment, it can be very convenient for certain purposes. Here we note that the H-J formulation,
given by equations (2.12) and (2.13), involves only first partial derivatives of scalar functions
in field space, and so it is automatically covariant.

2.1 Cosmological evolution as a gradient flow

A cosmological solution can be thought of as a trajectory in field space, parametrized by the
e-folding number N . For each field φI , we may define the corresponding beta function βI as
the dimensionless component of the tangent vector d/dN in the corresponding direction,

d

dN
=

1

κ
βI

∂

∂φI
, βI ≡ κdφI

dN
. (2.14)

The standard “first” slow-roll parameter can then be written in terms of the beta functions as

ε1 ≡ −
Ḣ

H2
=
κ2(ρ+ P )

(d− 1)H2
=
PIJβ

IβJ

(d− 1)
≥ 0 , (2.15)

where the last inequality holds provided that the null energy condition is satisfied. In what
follows, we shall assume that PIJ is non-degenerate.

In that case, PIJ can be thought of as a metric, which we may use in order to raise and
lower indices. Introducing

f ≡ − lnW, (2.16)

eq. (2.12) can be written as

βI ≡ PIJβJ =
d− 1

κ

∂f

∂φI
, (2.17)

which expresses the beta functions as a gradient. From eq. (2.18)

df

dN
=

β2

d− 1
= ε1 > 0 , (2.18)

and therefore f is monotonically increasing along any cosmological trajectory. Here, we have
used the notation β2 ≡ βIβ

I . Also, since we assume that PIJ is positive definite, the last
inequality is strict provided that at least one of the fields is moving.

If we interpret the βI as beta functions for couplings gI = κφI in the boundary theory,
then f plays the role of a c-function which decreases monotonically along the RG flow (note
that the RG flow proceeds from the UV to the IR, which is opposite to the direction of
cosmological evolution as a function of N). In this interpretation, PIJ corresponds to the
Zamolodchicov metric in the space of couplings [55]. Such metric is needed in order to relate
the components of the RG flow tangent vector βI , which have the upper index, to the gradient
of a c-function, whose components have the lower index. We shall further elaborate on the
dual picture in section 5.

– 5 –
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2.2 Attractor behaviour

As mentioned above, the integration constants cK in W (φK , cK) correspond to the freedom
of choosing the initial value of the momenta π0

I for given initial values of the fields φK0 . In the
present context, the initial conditions for the long wavelength bulk evolution are implemented
around the time of horizon crossing. Under a small variation of the integration constants,
the gradient flow will change. It is then important to characterize whether such dependence
remains at late times, or whether it decays.

First of all, it should be noted that along the field trajectory

∂W

∂cK
= AKa−d, (2.19)

where AK are constants and we remind that d is the number of spatial dimensions. For
the case of scalar fields with canonical kinetic terms, this result was first derived in ref. [5].
We show in appendix B that the same result generalizes to Lagrangians with non-canonical
kinetic terms. Eq. (2.19) tells us that the effect of the integration constants on the Hubble rate
(H = 2W ) decays quite rapidly with the scale factor. Of course, this does not immediately
imply that the gradient flow will always have an attractor behaviour. It is not enough that the
Hubble rate converges to the unperturbed value, but also the perturbed trajectories should
converge to the unperturbed ones. It seems difficult to formulate a sufficient condition for
such convergence in the general case.3 Here, we shall consider a necessary condition, which is
also a sufficient condition in the one-field case, or when there is effectively just an adiabatic
perturbation by the end of inflation.

The idea is to consider the change in the field momentum, projected on the unperturbed
trajectory. The fractional change in πIπ

I under a small variation ∆cK is given by

∆ ln
(
πIπ

I
)
≡ δ1 + δ2 =

πI∆πI + πI∆π
I

πJπJ
. (2.20)

Here, we use the notation πI = P IJπJ = φ̇I , and δ1 and δ2 correspond, respectively, to the
first and second terms in the right hand side of the last equality. For the background to be
an attractor, we require that these go to zero as the universe expands,

lim
a→∞

δ1,2 = 0. (2.21)

Since the metric PIJ depends on momenta, it will have dependence on cK , and so the two
terms δ1 and δ2 can have a somewhat different behaviour. We require that the condition (2.21)
should hold separately for the two terms, so that the projection of both ∆πI and ∆πI on the
unperturbed trajectory can be considered to be small.

Using eq. (2.12) it is straightforward to show that

πI∆πI = −4(d− 1)

κ2
W

d

dN

(
∂W

∂cK

)
∆cK . (2.22)

3Attractor behaviour cannot be formulated in the true phase space, as emphasized by Remmen and Car-
roll [56]. Our condition here will be formulated in the (φI , πI) space, where πI = PIJ φ̇

J . As pointed out
in [56], for a single field with canonical kinetic term, this is an “effective” phase space under Hamiltonian
evolution, in the sense that the Hamiltonian vector field of phase space can be uniquely mapped to a vector
field in the effective phase space.

– 6 –
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Using (2.19) in (2.22), and (2.7), we have

πI∆πI = (∂cKρ) ∆cK ≡ ∆ρ. (2.23)

For later convenience, here we have used the Friedmann equation to write W 2 in terms of
the energy density ρ (which depends on the cK only through the kinetic variables XIJ).
Using (2.19) again in order to evaluate the derivative with respect to cK , we have

δ1 =
2d

Hε1ad
∆W0, (2.24)

where ∆W0 = AJ∆cJ is the change in W at the initial time due to the variation ∆cJ .
From (2.24) we find that the first condition (2.21) for the attractor behavior, concerning

the behavior of δ1, will be satisfied provided that

d− ε1 + ε2 > p ≥ 0 . (2.25)

Here we have introduced the second slow-roll parameter

ε2 ≡
d ln ε1

dN
=

ε̇1

ε1H
, (2.26)

and a positive constant p. Eq. (2.25) guarantees that δ1 decays faster than a−p. If p is small,
then the approach to the attractor can be slow, requiring a time-scale of the order ∆N ∼ p−1

e-foldings. An efficient approach to the attractor on the Hubble time-scale requires p & 1.
In addition, we need to consider the behaviour of δ2, which may place additional re-

strictions. Since πIπ
I = (ρ+ P ), from (2.20) and (2.23) we immediately obtain

πI∆π
I = (∂cKP ) ∆cK ≡ ∆P. (2.27)

Note that the pressure P only depends on the cK through the kinetic variables XIJ , and
therefore

∂cKP = PIJ ∂cKX
IJ . (2.28)

The same is true of the energy density,

∂cKρ = ρIJ ∂cKX
IJ , (2.29)

where ρIJ = PIJ + 2XKLPKL,IJ is the symmetrized partial derivative of ρ with respect to
XIJ . Since in general ρIJ 6= PIJ , δ2 can behave differently than δ1.

For instance if the background solution satisfies the relation

∆P = c2
s ∆ρ, (2.30)

for some function c2
s, then we have

δ2 =
πI∆π

I

πJπJ
= c2

sδ1 =
2c2
sd

Hε1ad
∆W0. (2.31)

The second condition in (2.21), concerning the behavior of δ2 will then be satisfied pro-
vided that

d− ε1 + ε2 − s > p ≥ 0 . (2.32)

– 7 –
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This differs from (2.25) by the last term in the left hand side of the inequality, which is
defined as

s ≡ d ln c2
s

dN
. (2.33)

Although (2.30) is not completely general, it does cover some important cases. For instance,
if the Lagrangian is linear in XIJ , then the metric PIJ = GIJ(φI) is just a function of the
fields, and (2.30) is satisfied with the speed of sound c2

s = 1. In this case δ1 = δ2 and the
conditions (2.25) and (2.32) coincide. Another interesting example where (2.30) is satisfied
with a non-trivial speed of sound cs 6= 1 is the case of a multi-field DBI action, which is
discussed in [57].4 Finally, eq. (2.30) also applies to generic one field models. It is easy to
check that in such case, the attractor condition (2.32) is related to the absence of a growing
mode for the curvature perturbation on uniform field hypersurfaces [58].

For a generic multi-field model the condition that δ2 vanishes in the asymptotic future
will be more elaborate than (2.32), and should be worked out on a case by case basis. We
leave this as a subject for further research.

3 Separate universe approximation and δN formalism

The approximate homogeneity and isotropy of cosmological evolution entails a useful relation
between the curvature perturbation and the differential e-folding number, which is used in
the so-called δN formalism. Let us start by reviewing the conditions for the realisation of a
universe with such approximate symmetries. The superpotential formalism will be useful in
clarifying the conditions for the validity of this approach, particularly in the implementation
of the momentum constraint.

3.1 Separate universe approximation

The δN method is based on the “separate universe assumption”. This is the statement that
when a characteristic (physical) scale L of fluctuations is much bigger than the Hubble length
H−1, i.e. L � H−1, each region of the universe of Hubble size evolves as a locally homoge-
neous and isotropic FRW universe. This is justified if each Hubble patch is approximately
homogeneous and isotropic up to corrections of order ε� 1, with

ε ≡ 1

LH
.

Then, since different Hubble patches are causally disconnected for local theories, they should
evolve independently of one another.

Consider the ADM line element,

ds2 = −α2dt2 + γij
(
dxi + βidt

)(
dxj + βjdt

)
, (3.1)

where α and βi are the lapse function and the shift vector, and γij is the spatial metric.
Here, the shift vector βi with the index i should be distinguished from the beta function βI

4More generally, when PKL,IJ is given by

PKL,IJ = f1PIJPKL + f2 (PIKPJL + PILPJK) ,

where f1 and f2 are functionals of φI and XIJ , ∆P and ∆ρ are linearly related as in eq. (2.30). In such a
case, the second attractor condition can be formulated as (2.32).

– 8 –
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with the index I. We parametrize γij as

γij = a2e2R(x)
[
eh(x)

]
ij
, trh = 0 . (3.2)

The time-like congruence orthogonal to t = const. slices has a unit tangent vector given by
nµ = α−1(1, −βi), and its expansion K is given by

K ≡ ∇µnµ =
1√
−g

∂µ
(√
−gnµ

)
= α−1

[
d
(
H + Ṙ

)
−Diβ

i
]
, (3.3)

where Di is the covariant derivative defined with respect to the spatial metric γij . The e-
folding number may be defined as the integral of the expansion along the normal congruence:5

N ≡ 1

d

∫
K α dt . (3.4)

In what follows, the metric is assumed to take the FRW form in the long wavelength
limit ε→ 0, and we shall use the gauge where the traceless matrix h is also transverse,

∂ihij = 0. (3.5)

For scalar fields, the anisotropic stress Tij − (1/d)γklTklγij is of order O(ε2). As shown in
ref. [59], using Einstein’s equations, after neglecting terms of lower order in ε, which decay
like a−d, we have

∂jβ
i = O

(
ε2
)
, (3.6)

and

ḣij = O
(
ε2
)
. (3.7)

Using these conditions and introducing the derivative with respect to the number of e-
foldings N ,

∂N ≡
d

Kα
∂t , (3.8)

the Einstein equations and the field equations of the scalar fields read [60]

K2 =
2κ2

d(d− 1)

(
PIJK

2∂Nφ
I∂Nφ

J − d2P
)

+O
(
ε2
)
, (3.9)

∂NK = − κ2

d− 1
KPIJ∂Nφ

I∂Nφ
J +O

(
ε2
)
, (3.10)

K∂N
(
PIJK∂Nφ

J
)

+ dK2PIJ∂Nφ
J − d2

(
∂P/∂φI

)
= O

(
ε2
)
. (3.11)

At the leading order in the gradient expansion, these equations coincide with the background
field equations, where K should be understood as dH for this comparison. For definiteness,
in what follows we shall refer to eqs. (3.9)–(3.11), together with eqs. (3.6) and (3.7), as the
separate universe approximation.

5Alternatively, we may define the co-moving e-folding number Nc ≡
∫

(Kc/d)dτ . Here dτ =
√
α2 − βiβidt

is the element of proper time along a co-moving worldline, and Kc is the expansion of the co-moving congru-
ence, whose unit tangent vector is given by nµc = (α2 − βiβi)−1/2(1,~0). It is straightforward to check that for
∂iβ

i = O(ε2), Nc ≈ N , up to terms quadratic in the spatial gradients.
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3.2 Momentum constraint

The momentum constraint has no counterpart in the background field equations, and so it
might enforce additional requirements for the validity of the separate universe approximation.
The momentum constraint is given by [60]

∂iK = − κ2

d− 1
KPIJ∂Nφ

I∂iφ
J +O

(
aε3
)
. (3.12)

A factor of a is inserted in O(aε3), since here we are considering the comoving derivative
of the extrinsic curvature, while in our conventions a factor of ε corresponds to a physical
gradient. On the other hand, taking the spatial derivative of the Hamiltonian constraint (3.9)
and using eqs. (3.10) and (3.11), we obtain

∂iK = − κ2

d− 1
KPIJ∂Nφ

I∂iφ
J +Bi +O

(
aε3
)
, (3.13)

where Bi is defined as

Bi ≡
κ2K

(d− 1)∂N ln(edNK)

[
∂Nφ

I∂i
(
PIJ∂Nφ

J
)
− ∂N

(
PIJ∂Nφ

J
)
∂iφ

I
]
. (3.14)

Here we used eq. (3.10) to rewrite the denominator on the right hand side. Comparing (3.12)
and (3.13) we see that the consistency of the Hamiltonian and momentum constraint re-
quires that

a−1Bi = O
(
ε3
)
. (3.15)

Sugiyama, Komatsu and Futamase [59] pointed out that the condition (3.15) is automat-
ically satisfied under the slow-roll approximation. Here, we argue that this conclusion is
not restricted to slow-roll, but follows more generally from the attractor behaviour discussed
in subsection 2.2. Indeed, repeating the same argument as in the background, we can ex-
press the field equations at the leading order of the gradient expansion with the use of the
superpotential as

PIJ∂Nφ
J = −d− 1

κ2

∂ lnW

∂φI
+O

(
ε2
)
, (3.16)

where the superpotential is now related to the extrinsic curvature by K = 2dW + O(ε2).
In the attractor regime, the dependence of the superpotential W (φK , cK) on the integration
constants cK can be neglected. Then, substituting eq. (3.16) in eq. (3.14), the leading terms
in the two expressions within round brackets in the left hand side of eq. (3.14) cancel each
other, and we are left with a−1Bi = O(ε3).

Beyond the attractor regime, we need to consider the dependence of W in the constants
cK . In that case, substituting eq. (3.16) in eq. (3.14) we have

a−1Bi = − 2dW

∂N ln(edNW )

d

dN

(
∂ lnW

∂cJ

)(
a−1∂icJ

)
+O

(
ε3
)
, (3.17)

where the total derivative with respect to N is taken along the dynamical trajectories at
fixed cK . From eq. (2.19),

∂W

∂cJ
= AJe−dN +O

(
ε2
)
, (3.18)

– 10 –



J
C
A
P
0
2
(
2
0
1
6
)
0
3
6

and after some simple algebra, we have

a−1Bi = 2d a−dAJ
∂icJ
a

+O
(
ε3
)
. (3.19)

The first term in the right hand side contains only one spatial derivative, and so it is naively
of order ε in the gradient expansion, rather than ε3. Thus, unless the cK are constant in
space, it might seem that the momentum constraint (3.12) is inconsistent with the spatial
derivative of the Hamiltonian constraint given in eq. (3.13).6 Note, however, that the term of
order ε is accompanied by a decaying function which scales as7 a−d, while the terms of order
ε3 include gradients of non-decaying contributions. In particular, for spatial dimension d > 2,
the first term in (3.19) falls off with physical wavelength faster than ε3, and hence it can be
safely ignored for present purposes. For any given co-moving scale, the initial conditions for
the long wavelength evolution are generated at horizon crossing, and the first term in (3.19)
will be negligible soon after that.

As noted in ref. [59], the momentum constraint can always be satisfied in the gradient
expansion by modifying (3.6), so that βi includes terms of lower order in ε, starting at
aβi = O(ε−1). As mentioned before eq. (3.6), such lower order terms can be shown to decay as
a−d for matter whose anisotropic stress is of order ε2. Using the Hamiltonian and momentum
constraints at the linearized order in the flat slicing we can obtain the relation [59]8

∂i∂jβ
j +Bi = 0 , (3.20)

where we used that

∂t =

(
H − 1

d
∂iβ

i

)
∂N , (3.21)

which follows from eqs. (3.3) and (3.8), and assuming a flat gauge where R = 0. Using
eq. (3.20), we can relate the term of order ε−1 in the expansion of the shift vector βi to the
first term on the right hand side of (3.19):

∂iβ
i = −2d

ad
∆W0 +O

(
ε2
)
, (3.22)

where ∆W0 ≡ AJ∆cJ is a slowly varying function of position. After this mode decays, a−1Bi
is formally of order ε3 and ∂iβ

j = O(ε2), consistent with the separate universe approxima-
tion (3.6).

3.3 δN formalism

In the separate universe approximation, the last term in square brackets of eq. (3.3) van-
ishes as

Diβ
i = O

(
ε2
)

(3.23)

6For instance, it was stated in [5] that in single-field models the integration constant in the solution of the
H-J equation should be constant in space for consistency between the Hamiltonian and momentum constraint.
But as we argue here, this is not necessarily the case.

7For the case of canonical fields, such scale dependence of the leading term in the gradient expansion of
Bi was first derived in ref. [59].

8When we include the second term in eq. (3.21), our equation (3.20) differs from the equation (49) in
ref. [59].
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in the long wavelength limit. Inserting eq. (3.3) into eq. (3.4) and neglecting O(ε2) terms we
obtain

δN(t2, t1;x) ≡ N (t2, t1;x)−N(t2, t1) ' R(t2,x)−R(t1, x) , (3.24)

where N is the e-folding number for the unperturbed background evolution.

With the help of eq. (3.24), one can map the spatial distribution of the scalar fields near
the time when the relevant scale crosses the horizon, δφI∗(x), to the curvature perturbation
at some final space-like hypersurface Σe near the end of inflation, R(te,x). The spatial
distribution of the scalar fields should be specified on the “initial” space-like hypersurface Σ∗
where the spatial curvature vanishes,

R(t∗,x) = 0. (3.25)

For the final hypersurface Σe we have some freedom. For instance, we may take it to be a
hypersurface of constant energy density,

ρ(tρe ,x) = ρe = const. (3.26)

Note that eqs. (3.25) and (3.26) define the times t∗(x) and tρe(x) as implicit functions of
position. Alternatively, by a suitable choice of coordinates the hypersurfaces Σ∗ and Σe

can be made to coincide with initial and final t = const. slices. The adiabatic curvature
perturbation is defined as:

ζ(tρe ,x) ≡ R(tρe ,x). (3.27)

Using t1 = t∗ and t2 = tρe in eq. (3.24), from (3.25) and (3.27) we obtain the familiar relation
between ζ and the differential e-folding number

ζ(tρe ,x) = δN(tρe , t∗;x) ≡ δN
(
tρe ; δφ

J
∗ (x)

)
. (3.28)

For the last equality we used the separate universe approximation and assumed that the
inhomogeneity in the e-folding number can be determined from the initial distribution of the
fields δφJ∗ (x) = δφJ(t∗, x). More precisely, the e-folding number from the initial to the final
hypersurfaces should be computed by solving the Friedmann equation in each Hubble patch.
In principle, this requires (φJ∗ , πJ∗) as initial conditions, so the initial time derivative of the
field distribution is also needed. However, as discussed in the previous section, when the
trajectory is an attractor, the dependence on the initial time derivative dies off rapidly and
then the initial distribution can be expressed only in terms of φI∗. For the one field case, this
is discussed in detail in the following subsection.

If the inflationary trajectories in field space converge to a unique one [6, 7], then the
adiabatic curvature perturbation ζ becomes subsequently constant in time, i.e. independent
of the value of the density ρe which defines the final hypersurface. However, in general, we
also need to deal with entropy modes at the final hypersurface. These can be calculated
along similar lines as ζ.

In particular, choosing the uniform field slicing with φI = φIe = const. as the final
hypersurface, which we may denote by ΣφIe

(φKe ), one obtains a set of D independent gauge

invariant variables ζ(I) which represent the curvature perturbation in the different δφI = 0
slicings (see for instance [11, 12]):

ζ(I)
(
φKe , x

)
≡ R

(
ΣφIe

,x
)

= δN
(

ΣφIe
, Σ∗;x

)
≡ δN (I)

(
φKe ; δφJ∗ (x)

)
. (3.29)
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Expanding ζ(I)(te, x) in terms of the scalar field fluctuations δφJ∗ (x), we obtain

ζ(I)(te, x) =
∞∑
n=1

1

n!
N

(I)
J1...Jn

δφJ1∗ (x) · · · δφJn∗ (x), (3.30)

with

N
(I)
J1...Jn

≡ ∂nN (I)

∂φJ1∗ ...∂φ
Jn
∗
. (3.31)

Such partial derivatives of N (I) can be determined from the solution of the equation of
motion for the local FRW universe as a function of initial field values φJ∗ in the vicinity of
the background solution.

The relative entropy perturbation SIJ is defined as the difference between two ζ(I)s (see
e.g. [12, 61]),

SIJ(t, x) ≡ d
[
ζ(I)(t, x)− ζ(J)(t, x)

]
, (3.32)

which can of course be expanded in powers of δφI∗ by substituting eq. (3.30).
Finally, we note that the uniform Hubble (or energy density) slicing is given by

0 =
δH

H
=

D∑
I=1

∂ lnW

∂φI
δφI = − κ

d− 1

D∑
I=1

βIδφ
I . (3.33)

On the other hand, at linear order, the curvature perturbationR changes under the time shift
t→ t+δt as R → R−Hδt, while the field fluctuations δφI change as δφI → δφI−(βI/κ)Hδt.
Using these transformations and eqs. (3.27) and (3.29), we have

ζ = R− κ
D∑
I=1

βI
β2
δφI =

D∑
I=1

βIβ
I

β2
ζ(I) , ζ(I) = R− κδφ

I

βI
. (3.34)

Hence, at linear order we can relate the curvature perturbations ζ and ζ(I) by means of a
simple expression involving the β functions.

3.4 Linearized perturbations in one field models

In eq. (3.28) we have neglected the dependence of δN on the initial momenta πI∗ . Let us show
more explicitly how this approximation is justified in the simple example of a one field model.
First, let us show that the full linearized solution is recovered from the δN computation. The
e-folding number can be written as

N =

∫ φe

φ∗

H

φ̇
dφ. (3.35)

In this subsection, where we focus on one field models, we omit the index for φI and πI . The
variation δN is due to the variation of the initial value of the field δφ∗, and to the variation of
the initial momentum δπ∗. The latter corresponds to a variation of the integration constant
∆cφ in the solution of the H-J equation. Thus, we have

δN = −H∗δφ∗
φ̇∗

+ δN2, (3.36)
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where the first term is constant, and corresponds to the well known constant solution for ζ
on superhorizon scales, while the second term is given by

δN2 = ∆cφ

∫ φe

φ∗

φ̇

H

d

dcφ

(
H

φ̇

)
dN. (3.37)

This can be cast in the form

δN2 =

∫ (
∆W

W
− δ2

)
dN, (3.38)

where δ2 is defined in (2.31). Using (2.19), we have

∆W

W
=

2

Had
∆W0. (3.39)

Now, by keeping track of the last term in (3.3), which is decaying and has been neglected in
the relation (3.28) between ζ and δN , we get

ζ = δN +
1

d

∫
∂iβ

i

H
dN = δN −

∫
∆W

W
dN. (3.40)

In the last step we have used eq. (3.22), and we have kept only the term of order ε0 in the
gradient expansion, neglecting the terms of order ε2. Combining with eq. (3.37) we obtain

ζ2 = −
∫
δ2dN = −2d∆W0

∫
c2
s

Hε1ad
dN. (3.41)

This coincides with the long wavelength solution of the standard linearized equation of motion
for perturbations [58], as expected. If the background is an attractor, then δ2 is exponentially
decaying with N , and so by choosing our initial time appropriately, ζ2 can be neglected
altogether. This is the standard decaying mode of the curvature perturbation. In the single-
field case, this confirms that we can neglect the dependence of δN on the initial momentum π∗.

4 Primordial spectra from superpotential

In this section we consider the spectra of the curvature and entropy perturbations, respec-
tively ζ and SIJ , at t = te in the case of a separable product superpotential. Let us start
by considering the more elementary cross spectra for the ζ(I), which are defined in Fourier
space as

〈ζ(I)(k)ζ(J)(k′)〉 ≡ (2π)dδ(k + k′)P(IJ)
ζ (k) . (4.1)

Note that P(IJ)
ζ is related to the power spectrum of δφI at the time t∗,

〈δφI∗(k)δφJ∗ (k
′)〉 ≡ (2π)dδ(k + k′)PIJφ∗ (k) , (4.2)

by

P(IJ)
ζ (k) = N

(I)
K N

(J)
L P

KL
φ∗ (k) , (4.3)

where we have used eq. (3.30).
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Likewise, we can consider higher order correlation functions. The bispectrum of ζ is
defined by

〈ζ(I)(k1)ζ(J)(k2)ζ(K)(k3)〉 ≡ (2π)dδ(k1 + k2 + k3)B(IJK)
ζ (k1, k2, k3) . (4.4)

This can be decomposed into two contributions,

B(IJK)
ζ (k1, k2, k3) = B(IJK)

ζ,sub (k1, k2, k3) + B(IJK)
ζ,super(k1, k2, k3) . (4.5)

The first one corresponds to the intrinsic non-Gaussianity generated until around t = t∗ and
is related to the 3-point function of the field perturbations at horizon crossing by

(2π)dδ(k1 + k2 + k3)B(IJK)
ζ,sub (k1, k2, k3) = N

(I)
J1
N

(J)
J2
N

(K)
J3
〈δφJ1∗ (k1)δφJ2∗ (k2)δφJ3∗ (k3)〉 .

(4.6)
The second one is generated by the super-horizon nonlinear evolution. Using Wick’s theorem,
it is given by

B(IJK)
ζ,super(k1, k2, k3) = N

(I)
J1
N

(J)
J2
N

(K)
J3J4
PJ1J3δφ∗

(k1)PJ2J4δφ∗
(k2) + (2 perms) , (4.7)

where we have used the symmetry of N
(K)
J3J4

with respect to the lower indices.

4.1 Separable product superpotential

Let us focus on the case where the Lagrangian in eq. (2.1) is such that the metric PIJ is
diagonal and each element I only depends on the kinetic term XI ≡ XII and on the field φI ,

PIJ = δIJKI

(
XI , φI

)
, XI = −1

2
∂µφ

I∂µφI . (4.8)

Moreover, we will assume that the superpotential is given by a separable product, i.e.,

W
(
φI
)

=
D∏
I=1

W (I)
(
φI
)
. (4.9)

By the assumptions (4.8) and (4.9), eq. (2.12) becomes

KI

(
φI , πI

) dφI

dN
= −d− 1

κ2

∂ lnW (I)
(
φI
)

∂φI
, (4.10)

where in the argument of KI we have traded the field velocities φ̇I by their expression in
terms of fields and conjugate momenta, through eq. (2.10) (which is also separable in this
case). Note that the momentum πI ∝ ∂W/∂φI will actually be a function of all fields φJ .
Hence, for the purpose of making eq. (4.10) separable, we shall further restrict to the two
following cases.

The first case is when the kinetic term is linear in XII so that KI = KI(φ
I). In that

case, we can always use a field redefinition to bring it to the canonical form

P
(
XI , φI

)
=

D∑
I=1

XI − V
(
φI
)
. (4.11)
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The second case of interest is the one field case, D = 1, in which case we can use eq. (2.12)
to express πφ as a function of φ, for an arbitrary P (X,φ).

In these two cases, solving for the velocity and using the definition of beta func-
tion (2.14), one obtains

βI ≡ κdφI

dN
= βI

(
φI
)
. (4.12)

Hence the evolution of φI as a function of e-folding number N can be determined without
being affected by the other scalar fields. The e-folding number between the slicing δφI = 0
at t = te and the flat slicing at t = t∗ is then given by

N (I)(te, t∗) =

∫ te

t∗

Hdt =

∫ φIe

φI∗

κdφI

βI (φI)
. (4.13)

If the trajectory is an attractor, then after the decaying mode becomes negligibly small, the
variation in the e-folding number is given by

δN (I) = −κδφ
I
∗

βI∗
, (4.14)

with βI∗ ≡ βI(φI∗). From this expression we can calculate the derivatives of N (I) with respect
to the variations in δφJ∗ :

N
(I)
J = − κ

βI∗
δIJ , (4.15)

N
(I)
J1J2

=
κ

(βI∗)
2

dβI∗
dφI∗

δIJ1δJ1J2 =
κ2

(βI∗)
3

dβI∗
dN∗

δIJ1δJ1J2 , (4.16)

and so on. Hence, the trajectory is constructed out of D independent trajectories, and there
is no mixing among the different field components.

It is known that δN can be analytically solved also in different examples. Under the
assumption of slow-roll, it has been shown that the number of e-foldings N can be computed
analytically when the potential V (φI) is a separable product of potentials where each one
depends on a single field φI [62], or when it is a separable sum [63]. This has been used
to compute the non-Gaussianity in multi-field models of inflation, in the case of slow-roll
evolution in two-field [63] and in multi-field models [64, 65]. The approach of [62, 63] has
been extended beyond slow-roll, exploiting the H-J formalism in the case of a sum separable
Hubble parameter [66–68]. Since by eq. (2.11) the Hubble parameter H(φI) is nothing
but the superpotential W (φI) (up to a factor 2), this treatment can be straightforwardly
applied to the case of a sum separable superpotential. The approach of [62] was applied also
to the separable product superpotential (Hubble) case by Saffin in ref. [69]. As discussed
in appendix C, where they overlap, our results agree with this reference. Note that as
we discussed above, for the separable product superpotential, when the background is an
attractor we can compute δN without introducing integration constants along the trajectory,
as in ref. [62].

4.2 Primordial spectra

In what follows, we shall assume that the perturbations in the different fields δφI∗ are uncor-
related at the time of horizon crossing:

PIJφ∗ (k) = δIJPφJ∗ (k) . (4.17)
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In the multi-field case, eq. (4.17) will hold provided that the linearized equations of motion
for perturbations decouple from each other. For instance, when W (I) are exponentials, it
is easy to show that we can go to a basis in field space where perturbations are decoupled
from each other. The reason is that, as we shall see, we can always change variables so that
the corresponding potential V (φI) depends only on one of the fields, while the other ones
are massless. In this example, the slow roll parameter ε1 need not be small. Note that for
wavelengths well within the horizon, the field dependence in the potential is unimportant and
perturbations of the different fields are effectively decoupled from each other. This suggests
that in a more general setting the fields will be uncorrelated near the time of horizon crossing
provided that ε2 � 1.

Using eq. (4.17) in the power spectrum of ζ(I), eq. (4.3), we have

P(IJ)
ζ (k) = δKLN

(I)
K N

(J)
L PφL∗ (k) . (4.18)

Using eq. (4.15), we obtain

P(IJ)
ζ (k) = δIJP(I)

ζ (k) , P(I)
ζ (k) ≡ κ2

(βI∗)
2PφI∗(k) , (4.19)

For canonical scalar fields in d = 3 dimensions, the field spectrum PφJ∗ is given by

PφI∗(k) = Pφ∗(k) =
H2
∗

2k3
, (4.20)

and is the same for all I.
The result (4.19) is also valid for the case of a single field with arbitrary speed of sound.

In this single field case

Pφ∗(k) =
H2
∗

2k3cs∗PX∗
, c2s ≡

PX
PX + 2XPXX

, (4.21)

where cs is the speed of propagation of fluctuations and a ∗ denotes sound-horizon crossing,
k = a∗H∗/cs∗.

Defining the cross spectra for the curvature and entropy perturbations by

〈ζ(k)ζ(k′)〉 ≡ (2π)dδ(k + k′)Pζ(k) , (4.22)

〈ζ(k)SIJ(k′)〉 ≡ (2π)dδ(k + k′)PζSIJ (k) , (4.23)

〈SIJ(k)SKL(k′)〉 ≡ (2π)dδ(k + k′)PSIJSKL(k) . (4.24)

and using eqs. (3.32), (3.34) and (4.19), we obtain

Pζ(k) =
D∑
I=1

(
βIeβ

I
e

β2
e

)2
κ2

(βI∗)
2Pφ∗ , (4.25)

PζSIJ (k) = d

[
βIeβ

I
e

β2
e

κ2

(βI∗)
2 −

βJeβ
J
e

β2
e

κ2

(βJ∗ )2

]
Pφ∗ , (4.26)

PSIJSKL(k) = d2
D∑

M=1

κ2

(βM∗ )2 (δIM− δJM)(δKM − δLM )Pφ∗ , (4.27)
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where an index e denotes a quantity evaluated at t = te. Thus, the only non-vanishing
components of PSIJSKL(k) are

PSIJSIJ (k) = −PSIJSJI (k) = d2

[
κ2

(βI∗)
2 +

κ2

(βJ∗ )2

]
Pφ∗ . (4.28)

Since the power spectrum of ζI does not vary after the Hubble crossing, the auto-correlation
of SIJ does not vary either.

From eq. (3.34), the power spectrum of ζ is given by the sum of the conserved power
spectra of ζI as

Pζ(k) =

D∑
J=1

RJ P(J)
ζ (k), RJ ≡

(
βJβ

J

β2

)2

. (4.29)

Notice that when the trajectory converges at t = te, say in the direction of I = 1, satisfying

β1
e � βIe

√
β1
∗
βI∗

(4.30)

for I 6= 1, the amplitude of ζ is determined solely by the one for I = 1 at t = t∗ as in the
single field case as

Pζ(k) ' P(1)
ζ (k) . (4.31)

Then, the influence of the components I 6= 1 does not explicitly show up in the power
spectrum of ζ, while the change of these components can be still traced through their contri-
butions to H∗. This property was pointed out by Garcia-Bellido and Wands in the different
separable example, where the slow-roll approximation is employed [62].

Similarly, the bispectrum generated by the super-horizon evolution in eq. (4.7) can be
rewritten using eq. (4.17),

B(IJK)
ζ,super(k1, k2, k3) = N

(I)
LMN

(J)
L N

(K)
M Pφ∗(k1)Pφ∗(k2) + (2 perms) . (4.32)

Inserting eqs. (4.15) and (4.16) into eq. (4.32), we obtain

B(IJK)
ζ,super(k1, k2, k3) = δIJδIK

d lnβI∗
dN∗

P(I)
ζ (k1)P(I)

ζ (k2) + (2 perms) . (4.33)

The bispectrum for the entropy perturbations is trivially obtained from eq. (4.33), since SIJ

is linear in ζ(I). In principle, the bispectrum of ζ can also be found from eq. (4.33) by using
the nonlinear relation between ζ and ζ(I).

5 δN and holographic inflation

In refs. [24–26], the primordial spectra were computed holographically by means of the dual
quantum field theory which lives on the three-dimensional boundary. The computation from
holography may provide an alternative way to address the primordial perturbations generated
during inflation. In this section, we reexamine the primordial spectra derived from the δN
formalism, comparing them to the prediction from holography.
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5.1 Inflation from holography

In this subsection, we briefly overview the way to compute the primordial perturbations from
the dual boundary theory, following refs. [25–27, 32]. During inflation, spacetime is quasi-de
Sitter, i.e., the de Sitter symmetry SO(1, 4) is slightly broken by the time evolving inflaton
field. In order to provide the boundary QFT which is dual to the inflationary spacetime, we
need to slightly break the conformal symmetry in R3, which is also SO(1, 4). In particular, to
address a model with D scalar fields, we consider a boundary QFT whose action is given by

SQFT[χ] = SCFT[χ] +

D∑
I=1

∫
dΩdg

IOI(x) , (5.1)

where dΩd is the d-dimensional invariant volume and χ is the boundary field. The second
term describes the deviation from the conformal field theory. Here, OI(x) is a composite
operator of χ and gI are the coupling constants. Solving the renormalization group flow, we
can compute the beta function,

βIg ≡
dgI

d lnµ
, (5.2)

as a functional of gI , where µ is the renormalization scale. In general, since the different
components I can couple with each other, solving eq. (5.2) analytically is hard. However, in
the case where the beta function is separable as βIg = βIg (gI), i.e., in the case where there

is no correlation between the different components of OI , we can analytically solve eq. (5.2)
as in a QFT with a single deformation operator. In such a case, we can also compute the
auto-correlation functions of O(x) as a function of µ, analytically.

Assuming that the wave functions of the curvature and entropy perturbations are related
to the generating functional of the dual quantum fields as

ψbulk

[
ζ, sI

′
]

= AZQFT

[
ζ, sI

′
]
, (5.3)

where A is a normalization constant, we can compute the correlators of ζ and sI
′
. Here, to

include only independent degrees of freedom, we introduced the entropy perturbations sI
′

as
sI
′ ≡ S1I′ with I ′ = 2, · · · , D. In the boundary QFT, the primordial perturbations ζ and

sI
′

should be treated as external fields. Once the wave function ψbulk is specified, we can
compute all the correlators for ζ and sI

′
. For instance, the n-point function for ζ is given by

〈ζ(x1)ζ(x2) · · · ζ(xn)〉 =

∫
Dζ

D∏
I′=2

DsI
′ |ψbulk|2 ζ(x1)ζ(x2) · · · ζ(xn) . (5.4)

The cosmological evolution in the bulk is described by the D scalar fields as a function
of time and of the spatial coordinates. To describe the bulk evolution by means of the dual
boundary QFT, these bulk quantities should be related to the quantities in the boundary
QFT. One may expect that the time evolution in the bulk will be described by the RG flow
in the boundary and then the time evolution of φI will be determined by the RG flow of gI .
When we specify the relation between the time in the bulk and the renormalization scale in
the boundary, t = t(µ), and also the relation between φI and gI ,

gI = gI
(
φJ
)
, (5.5)
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with the use of eq. (5.3), the correlators of ζ and sI
′
can be described by gI and the correlators

of O [25, 26]. Then, the correlators of the primordial perturbations can be holographically
computed by solving the RG flow in the boundary.

In refs. [24, 70–72] it was argued that in the de Sitter limit the renormalization scale µ
should be proportional to the scale factor a,

µ ∝ a . (5.6)

However, the relations suggested in these references differ from each other when the solutions
deviate from de Sitter spacetime. In ref. [25], considering the RG flow with two fixed points (a
fixed point (FP) is a point where the beta function vanishes), which corresponds to the time
evolution in cosmology from one de Sitter to another de Sitter, it was shown that with the
choice of eq. (5.6), the power spectrum of the curvature perturbation ζ in single field models
is conserved at large scales so that the holographic computation gives a result consistent
with the standard cosmological perturbation theory. Meanwhile, a more subtle issue is left
unresolved for the conservation of the bispectrum [25].

5.2 Comparison of the bulk and boundary computations

In this subsection, we compare the result from the boundary computation, which is obtained
by solving the RG flow, to the one from the bulk computation which is obtained in the
δN formalism. When the RG flow with D deformation operators is separable, i.e., it is
given by the D copies of the RG flow with single deformation operator, using the conformal
perturbation theory, we can derive the beta function βIg as [26]

βIg =
dgI(µ)

d lnµ
=
(
∆I − d

)
gI(µ) +

πd/2

Γ(d/2)

CI
c
{gI(µ)}2 +O

(
g3
)
, (5.7)

where ∆I is the scaling dimension of OI , c is the central charge, and CI is the structure
constant. Solving eq. (5.7), we can compute gI(µ). Once gI = gI(φJ) and t = t(µ) are
determined, gI(µ) gives the time evolution of the scalar fields φI in the bulk.

Assuming the relation gI = κφI and eq. (5.6) leads to βIg = βI , where βI is defined

in eq. (2.17). In this case, one can compute the primordial power spectra of ζI from the
boundary QFT whose RG flow is separable. Under these assumptions, one finds [26]

P(IJ)
ζ (k) =

δIJ[
βIg (k)

]2PφI (k) , (5.8)

where PφI (k) is the power spectrum of δφI in the flat gauge, computed from the two-point

function of the boundary operator OI . Since βIg = βI , this result agrees with eq. (4.19).

Moreover, in holography the power spectra of ζ and SIJ are related to those of ζIs by
eqs. (4.25)–(4.27) with βIg = βI . Hence, the power spectra of ζ and SIJ computed from
the boundary QFT agree with those computed from cosmological perturbation theory in the
bulk. Notice that, in the case of separable trajectories, the conserved power spectrum of ζI

can be computed in the same way as in single field inflation. Therefore, the fact that both
calculations agree on the conservation of PIJζ (k) directly follows from the fact that they agree
in the single field case [24, 25].

Finally, we note that instead of using the simple relation gI = κφI , one may identify
the couplings gI in the boundary with the scalar fields φI in the bulk by more non-trivial
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relations gI = gI(φJ). In this case, the relation between the spectra of ζI and those of the
boundary operators may become more complicated, due to the Jacobian ||∂gI/∂φJ ||. Yet,
changing the identification gI = gI(φJ) can be simply understood as a field redefinition.

6 Case studies

In this section, we compute the primordial spectra for D canonical scalar fields, using the
formula derived in section 4.2. For our purposes, we consider a separable superpotential as
a product of exponential superpotentials, i.e.,

W
(
φI
)

= W0 exp

[
−

D∑
I=1

f I
(
φI
)]
, (6.1)

where W0 is constant. Since the superpotential W (φI) directly gives the Hubble parameter
as H = 2W , the summation of f I over all I = 1, · · · , D should increase in time so that H
decreases in time.

It is instructive to consider the case where this superpotential describes D scalar fields
with canonical Lagrangian,

P
(
X,φI

)
= X − V

(
φI
)
, X ≡ −1

2

D∑
I=1

∂µφ
I∂µφI . (6.2)

In this case eqs. (2.7) and (2.12) become

H2 =
2κ2

d(d− 1)

[
X + V

(
φI
)]
, (6.3)

and

φ̇I = −2(d− 1)

κ2

∂W
(
φI
)

∂φI
, H = 2W

(
φI
)
. (6.4)

Using these equations we can compute the potential V (φI), which is given by

V
(
φI
)

= V0

1− d− 1

dκ2

D∑
I=1

(
df I

(
φI
)

dφI

)2
 exp

[
−2

D∑
I=1

f I
(
φI
)]
, V0 ≡

2d(d− 1)W 2
0

κ2
.

(6.5)
Note that the potential is not, in general, separable. The beta function βI(φI) is given by

βI
(
φI
)

= κ
dφI

dN
=
d− 1

κ

df I

dφI
. (6.6)

In terms of f I(φI), the slow-roll parameter εI is given by

εI1 =
d− 1

κ2

(
df I

dφI

)2

. (6.7)

– 21 –



J
C
A
P
0
2
(
2
0
1
6
)
0
3
6

6.1 Constant βI : power-law inflation

First, we consider the case where f I(φI) is linear in φI ,

f I
(
φI
)

=
1

d− 1
pIκφ

I , (6.8)

where pI is a dimensionless constant parameter. Then, the potential V (φI) becomes a sepa-
rable product of exponential potentials for each φI ,9

V
(
φI
)

= V0

(
1− 1

d(d− 1)

D∑
I=1

p2
I

)
exp

(
− 2

d− 1

D∑
I=1

κpIφ
I

)
. (6.9)

In the single field case, this is known as power-law inflation [75]. Using eq. (6.8) in eqs. (6.6)
and (6.7) one finds that βI and the slow-roll parameters εI become constant,

βI = pI , εI1 =
p2
I

d− 1
. (6.10)

In this case, the coupling constant of the dual boundary theory gI with βI = βIg blows up
both at the IR and UV limits except for the trivial case with pI = 0.

Solving eq. (6.6), we can compute the evolution of φI and H as

κφI(N) = κφI∗ + pI(N −N∗) , (6.11)

H(N) ∝ e−ε1N , (6.12)

where N∗ is an integration constant and we remind the reader that ε1 ≡
∑

I ε
I
1. As expected,

integrating eq. (6.12) in time we obtain the power law evolution

a(t) ∝ t1/ε1 . (6.13)

Inflation requires ε1 � 1.
Using eqs. (4.25)–(4.27) and assuming that all fields have the same power spectrum

Pφ∗(k), the power spectra of ζ and SIJ are given by

Pζζ(k) =
κ2

(d− 1)ε
Pφ∗(k) , (6.14)

PζSIJ (k) = 0 , (6.15)

PSIJSIJ (k) =
(dκ)2

d− 1

(
1

εI1
+

1

εJ1

)
Pφ∗(k) , (6.16)

where we used β2 = (d− 1)ε1. The power spectrum of ζ is given by the same expression as
the one for the single field case and the amplitude is frozen after t = t∗. For scale invariant
field fluctuations in three dimensions Pφ∗(k) = H2

∗/(2k
3) and the spectral index is given by

ns − 1 = − 4ε1

1− 2ε1
. (6.17)

In this case, the bispectrum B
(I1I2I3)
ζ,super vanishes.

9The case where the potential is given by a separable sum of exponential potentials is known as assisted
inflation, see for instance [73, 74].
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6.2 Linear βI(φI)

Next, we consider the superpotential where f I(φI) also includes the quadratic term,

f I
(
φI
)

=
1

d− 1

[
pIκφ

I + qI
(
κφI

)2]
, (6.18)

where pI and qI are constant parameters. In this case, the beta function βI(φI) is given by
the linear function as

βI
(
φI
)

= pI + 2qIκφ
I , (6.19)

and V (φI) is given by

V (φI) = V0

[
1− 1

d(d− 1)

D∑
I=1

(
pI + 2qIκφ

I
)2]

exp

{
− 2

d− 1

D∑
I=1

[
pIκφ

I + qI
(
κφI

)2]}
.

(6.20)

For qI 6= 0, the potential V (φI) is not a separable product and it is not easy to an-
alytically solve the Klein-Gordon equations, which are not separable. However, since the
superpotential is a separable product, eq. (6.6) can be easily solved, which gives

κφI(N) = κφI∗ +

(
κφI∗ +

pI
2qI

)(
e2qI(N−N∗) − 1

)
. (6.21)

As expected, in the limit qI → 0 we recover eq. (6.11). Using eq. (6.21), we obtain the beta
function βI ,

βI(N) = βI∗ e
2qI(N−N∗) . (6.22)

At late times, the beta function blows up for qI > 0 and approaches 0 for qI < 0. In the
perspective of holography, where the late time in cosmology corresponds to the UV limit in
the boundary QFT, the boundary theory dual to the latter case has the FP in the UV limit
µ→∞. During slow-roll inflation, βI should be kept much smaller than 1, requiring

βI∗ e
2qI(N−N∗) � 1 . (6.23)

Using eq. (6.21) in eq. (6.7) we find

εI1(N) = εI1∗ e
4qI(N−N∗) , εI1∗ ≡

1

d− 1

(
pI + 2qIκφ

I
∗
)2

, (6.24)

using which we have fI = [(d− 1)εI1 − p2
I ]/[4(d− 1)qI ]. Using this in eqs. (6.1) and (6.4), we

can give the following expression for the Hubble parameter

H(N) = 2W0 exp

[∑
I

p2
I − (d− 1)εI1(N)

4(d− 1)qI

]
. (6.25)

For arbitrary values of qI with qI 6= 0, the Hubble parameter H decreases in time, which is
simply because ε1 > 0.

Since βI varies in time for qI 6= 0, the power spectrum of ζ varies also after t = t∗. Given
that the scalar fields take values φIe at t = te (more precisely, for each separable trajectory
of φI , the final time te is specified by a value of each field, φIe), the power spectrum for ζ is
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given by the summation of the conserved power spectra for ζI as in eq. (4.29) with the ratio
RI given by

RI =

(
pI + 2qIκφ

I
e

)4[∑D
J=1 (pJ + 2qJκφJe )2

]2 . (6.26)

Similarly, using eqs. (4.26) and (4.27), we can compute the cross-correlation between ζ and
SIJ and the auto-correlation of SIJ . In this case, since the beta function varies in time,

B
(I1I2I3)
ζ,super , given in eq. (4.33), takes a non-vanishing value.

6.3 Quadratic βI(φI)

Next, we consider f I(φI) which includes a cubic term as

f I(φI) =
1

d− 1

[
pIκφ

I + qI
(
κφI

)2
+ rI

(
κφI

)3]
, (6.27)

where pI , qI , and rI are constant parameters. Now, the beta function βI(φI) and the potential
V (φI) are given by

βI
(
φI
)

= pI + 2qIκφ
I + 3rI

(
κφI

)2
, (6.28)

V
(
φI
)

= V0

{
1− 1

d(d− 1)

D∑
I=1

[
pI + 2qIκφ

I + 3rI
(
κφI

)2]2
}

× exp

{
− 2

d− 1

D∑
I=1

[
pIκφ

I + qI
(
κφI

)2
+ rI

(
κφI

)3]}
. (6.29)

For later use, we introduce
DI ≡ q2

I − 3rIpI . (6.30)

For DI > 0, the beta function βI vanishes at two different values of φI , i.e., the dual boundary
theory has two FPs. For DI = 0, βI vanishes at one value of φI , i.e., the boundary theory
has one FP. For DI < 0, the beta function βI does not vanish at any values of φI , i.e., the
boundary theory has no FPs. Using the beta function, given in eq. (6.28), we obtain the
power spectrum of ζ as in eq. (4.29) with

RI =

[
pI + 2qIκφ

I
e + 3rI

(
κφIe

)2]4

{∑D
J=1

[
pJ + 2qJκφJe + 3rJ (κφJe )2

]2
}2 . (6.31)

In the following, we study the background evolution of these three cases in turn.

6.3.1 DI < 0: RG flow with no fixed point

First, we consider the case where βI(φI) does not vanish. Solving eq. (6.6), we obtain

κφI(N) = − qI
3rI

+

√
−DI

3rI
tan θI(N) (6.32)

with

θI(N) ≡
√
−DI(N −N∗) + tan−1

(
EI√
−DI

)
, EI ≡ qI + 3rIκφ

I
∗ . (6.33)

– 24 –



J
C
A
P
0
2
(
2
0
1
6
)
0
3
6

Inserting this solution into eq. (6.28), we can compute the time evolution of the beta function
βI as

βI(N) = −DI

3rI

[
1 + tan2 θI(N)

]
. (6.34)

The beta function starts to grow rapidly, when tan θI(N) becomes O(1). Now, the Hubble
parameter, given by

H(N) = H0 exp

[
−

D∑
I=1

(−DI)
3/2

27(d− 1)r2
I

tan θI(N)
(
tan2 θI(N)− 3

)]
(6.35)

with

H0 ≡ 2W0 exp

[
D∑
I=1

qI
27(d− 1)r2

I

(
9rIpI − 2q2

I

)]
, (6.36)

decreases monotonically in time.

In this case, after the slow-roll time evolution, inflation ends when θI(N) ' π/4 for at
least one of the Is and, afterwards, the Hubble parameter starts to decrease more rapidly.
Therefore, this case can provide a graceful exit to inflation. Meanwhile, in the boundary
side, the dual QFT does not have any FPs and the RG flow is dominated by irrelevant
deformations in UV. It may be interesting to study such boundary QFT.

6.3.2 DI = 0: RG flow with one fixed point

Next, we consider the case where the beta function βI vanishes only at κφI = −qI/3rI . In
this case, the time evolution of φI(N) and βI(N) are given by

κφI(N) = − qI
3rI
− 1

3rI
(
N −N∗ − E−1

I

) , (6.37)

and

βI(N) =
1

3rI

1(
N −N∗ − E−1

I

)2 . (6.38)

At late times with (N −N∗ − E−1
I ) � 1, φI approaches the constant value −qI/3rI , where

the beta function βI vanishes. In this case, the boundary theory has one FP in the UV.
When all components satisfy DI = 0, the Hubble parameter becomes constant at late times
and the universe becomes the de Sitter spacetime. This solution does not provide a realistic
model of inflation because there is no graceful exit.

6.3.3 DI > 0: RG flow with two fixed points

Finally, we consider the case where the beta function βI vanishes at two different values:

κφI± =
−qI ±

√
DI

3rI
. (6.39)

In this case, solving eq. (6.28), we obtain

φI(N) =
φI+ + φI−e

2θI(N)

1 + e2θI(N)
, (6.40)
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and

βI(N) = −4DI

3rI

e2θI(N)[
1 + e2θI(N)

]2 (6.41)

with

θI(N) ≡
√
DI(N −N∗)− tanh−1

(
EI√
DI

)
, EI ≡ qI + 3rIκφ

I
∗ . (6.42)

Notice that both in the early time and late time limits, where θ → ±∞, the beta function
βI(N) vanishes, approaching the de Sitter spacetime. In this solution, φI takes the constant
values φI− and φI+ in the limits N → −∞ and N → ∞, respectively. If all components of
the scalar fields satisfy DI > 0, the solution describes the transition from one de Sitter to
another de Sitter. In this case, the dual boundary theory has 2 FPs both in the IR and UV
and its RG flow is driven only by relevant deformations. Such boundary theory was studied
by means of the conformal perturbation theory in refs. [24–26]

If all components satisfy DI ≥ 0, the universe becomes the de Sitter spacetime at late
times. Only if there exists at least one component Ī with DĪ < 0, inflation can terminate as
discussed in section 6.3.1. Notice that the components with DI ≥ 0, whose βI decrease in
time, will satisfy |βIe| � |βĪe| at sufficiently late times. Then, RIs become negligibly small
for I 6= Ī and hence they do not explicitly contribute to the spectra of ζ, while they can
still contribute implicitly through the Hubble parameter and the slow-roll parameters at the
Hubble crossing time.

7 Conclusion

In this paper, we reviewed the superpotential formalism for multi-field inflation, and extended
it to include the case of non-minimal kinetic terms. The superpotential is useful in charac-
terizing the attractor behaviour of inflationary trajectories, as well as to assess the validity
of the separate universe approximation. Furthermore, the logarithm of the superpotential
plays an interesting role in the dual description of inflation, as the c-function for the RG flow
in the boundary theory, whose gradient is related to the beta functions.

Using the δN formalism, we obtain simple expressions for the power spectra for adiabatic
and entropy perturbations in the case when the superpotential is given as a separable product.
In that case, the trajectory for each field is convergent even when the whole trajectory is not,
and the power spectra can easily be found by solving the corresponding separable background
trajectories.

The bulk solution for the separable product superpotential corresponds to a boundary
QFT with a separable RG flow, where the deformation operators are mutually uncorrelated.
In such case, we showed that the power spectra of the adiabatic and entropy perturbations
computed from the δN formalism agree with the ones computed by solving the RG flow of
the dual boundary theory.

The separable case we addressed in this paper is described by D copies of the single
field case. The power spectra of the adiabatic and entropy perturbations can be expressed in
terms of such single field power spectra by linear relations. Because of that, the agreement of
the bulk and boundary computations for the curvature perturbation in the single field model
directly implies the agreement for the adiabatic and entropy perturbations. It would be very
interesting to check the agreement in more non-trivial multi field models.

Finally, with a view to phenomenological applications, we have considered some case
studies of RG flows with a polynomial c-function, with terms up to quadratic order in the
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fields. These contain a range of possible behaviours from the infrared to the UV, which may
hopefully illustrate the results which should be expected in more realistic scenarios.
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A Second order equations of motion from the superpotential

Here, we show that the usual second order equations of motion (2.5) and (2.7) follow from
the first order equation of motion (2.12) with (2.11), for any superpotential W which satisfies
the H-J equation (2.13).

First, we square (2.12) to obtain

PIJPKLX
JL =

2(d− 1)2

κ4
WIWK . (A.1)

Here, we are using the notation

WI ≡
∂W

∂φI
. (A.2)

In what follows, we assume that PIJ is an invertible matrix and we shall denote its inverse
as P IJ . We use these matrices to raise and lower the field indices. In particular

XIK ≡ PIJPKLXJL =
2(d− 1)2

κ2
WIWK , (A.3)

and we define
X ≡ PIJXIJ = P IJXIJ . (A.4)

The H-J equation (2.13) can then be written as

2d(d− 1)

κ2
W 2 = 2X − P, (A.5)

where it is understood that any occurrence of φ̇I is replaced by its expression in terms of φJ

and WI(φ
J) through eqs. (2.10) and (2.12).

Taking the total derivative of (A.5) with respect to φI , and using (2.12), we have

− dHPIJ φ̇J = 2
dX

dφI
− ∂P

∂φI
− PKL

dXKL

dφI
, (A.6)

where the φI dependence of P (φI , XIJ) has been separated into its explicit dependence and
its dependence through field velocities contained in XIJ . Using

PKL
dXKL

dφI
=

dX

dφI
−XKLdPKL

dφI
=

dX

dφI
+XKL

dPKL

dφI
, (A.7)
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and
dX

dφI
= PKL

dXKL

dφI
+

dPKL

dφI
XKL, (A.8)

we have
∂P

∂φI
= dHPIJ φ̇

J + PKL
dXKL

dφI
. (A.9)

We can evaluate the last term as follows:

PKL
dXKL

dφI
= PKL

4(d− 1)2

κ4

∂2W

∂φK∂φI
WL =

−2(d− 1)

κ2

dWI

dt
=

d

dt

(
PIJ φ̇

J
)
. (A.10)

With this, eq. (A.9) coincides with the second order equation of motion for φI , eq. (2.5),
while the Friedmann equation (2.7) is also satisfied because W solves (A.5).

B Dilution of ∂W/∂cK with cosmic expansion

In this appendix, we find the time dependence of the derivative of the complete solution of
the H-J equation, W (φK , cK), with respect to the integration constants. From the Friedmann
equation (2.7), we have

4d(d− 1)

κ2
W
∂W

∂cJ
= ρKL

∂XKL

∂cJ
, (B.1)

where we note that ρ only depends on cK through the kinetic variablesXKL. Now, from (A.3),
we have

PKIPLJX
KL =

2(d− 1)2

κ4
WIWJ , (B.2)

where, again, we are using the notation (A.2). Taking derivative of (B.2) with respect to cK ,
and then contracting with the “inverse metric” P IJ , we immediately find(

2PIJ,LMX
IJ + PLM

) ∂XLM

∂cK
=

4(d− 1)2

κ4
P IJWI

∂WJ

∂cK
. (B.3)

Noting that ρ = 2PIJX
IJ − P , eq. (B.3) can be rewritten as

ρLM
∂XLM

∂cK
= −2

(d− 1)

κ2

d

dt

∂W

∂cK
, (B.4)

where we used (2.12) to express the right hand side as a total time derivative. Here ρLM
denotes the symmetrized derivative of ρ with respect to XLM .

Substituting eq. (B.4) in eq. (B.1) we obtain

W
∂W

∂cJ
= − 1

2d

d

dt

∂W

∂cJ
, (B.5)

and using H = 2W , we have
d

dt

(
ln
∂W

∂cJ

)
= −dH, (B.6)

which leads to
∂W

∂cJ
= AJe−d

∫
Hdt = AJa−d, (B.7)

where AJ are integration constants. Hence, the dependence of W on the integration constants
becomes smaller in time along the dynamical trajectories, diluting with volume.
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C Alternative way to compute δN

In this appendix, we derive the primordial spectra of ζ in an alternative way, following
refs. [62–64]. When several scalar fields contribute to the background evolution, the back-
ground equations of motion can be solved analytically only for some special cases, e.g., the
case where the background evolution can be described by separable equations [62–64]. In
ref. [62], Garcia-Bellido and Wands computed the power spectrum of ζ for the two-field
model whose potential is given by a separable product as V (φ1, φ2) = V1(φ1)V (φ2) under
the slow-roll assumption. In ref. [63], it was shown that a similar analysis can be done also
for a separable summation potential V (φ1, φ2) = V1(φ1)+V (φ2). This analysis was extended
to the case with arbitrary number of the scalar fields [64] (see also ref. [76]). In these discus-
sions, it’s crucial that the Klein-Gordon equations for the scalar fields can be recast into the
first order equation by employing the slow-roll approximation.

With the use of the superpotential W (φI), which is related to the Hubble parameter
as H(φI) = 2W (φI), the field equations for the scalar fields can be recast into the first
order equations without employing the slow-roll approximation. In refs. [66, 67], under the
assumption that the Hubble parameter is given by the separable summation as H(φI) =∑D

I=1HI(φ
I), Byrnes and Tasinato computed δN , following the method by Garcia-Bellido

and Wands [62]. This analysis was extended to a non-canonical scalar field in ref. [68] and to
the case with the separable summation superpotential (or the Hubble parameter) in ref. [69].
In appendix, we summarize the computation of δN in the method by Garcia-Bellido and
Wands [62] for the separable product W (φI). The overlapped part with ref. [69] agrees.

When the superpotential W (φI) is given by the separable product as in eq. (4.9) and
PIJ becomes diagonal as in eq. (4.8), the beta function βI is given by a functional of φI as

κ
dφI

dN
= βI(φI) . (C.1)

To solve the background trajectory, we introduce the integrals of motion Ci as

Ci ≡
∫

dφi

βi(φi)
−
∫

dφi+1

βi+1(φi+1)
(C.2)

with i = 1, · · · , D − 1. Using eq. (C.1), we can verify that Ci actually stays constant along
the trajectory. With the aid of the constant parameters Ci, the change of the e-folding along
the trajectory can be expressed only by one of the fields, say φ1, as

N
(
te, t∗, {Ci}N−1

i=1

)
=

∫ te

t∗

Hdt =

∫ φ1e

φ1∗

κdφ1

β1(φ1)
. (C.3)

On the second equality, we used dt = dφ1/φ̇1 and eqs. (2.11) and (C.1). Unlike δN I , which is
determined only by δφI∗ for the separable product case, the e-folding number (C.3) depends
also on φI∗ with I 6= 1, since φ1

e depends on Cis, which are determined by using φI∗ with
I = 1, · · · , D. Now, taking the variance with respect to φI∗, we obtain

dN = −κdφ1
∗

β1
∗

+
1

β1
e

N∑
I=1

∂φ1
e

∂φI∗
κdφI∗ . (C.4)
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In the following, we compute ∂φ1
e/∂φ

I
∗. The integrals of motion Ci can be expressed in

terms of φI∗ and hence we obtain

∂φIe
∂φJ∗

=

D−1∑
i=1

∂φIe
∂Ci

∂Ci
∂φJ∗

, (C.5)

Using eq. (C.2), we obtain
∂Ci
∂φJ∗

=
1

βJ∗
(δi J − δi J−1) . (C.6)

Choosing the uniform Hubble slicing, we specify the final time te as the time when the Hubble
parameter takes a particular value as

He = 2W
(
φIe
)

= 2

D∏
I=1

W (I)
(
φIe
)
. (C.7)

Taking the derivative of He with respect to Ci and dividing it by He, we obtain

0 =

D∑
I=1

βIe
∂φIe
∂Ci

. (C.8)

Next, introducing

C̃I ≡
I−1∑
i=1

Ci =

∫
dφ1

β1 (φ1)
−
∫

dφI

βI (φI)
(C.9)

with I = 1, · · · , D, we compute ∂φIe/∂Ci. Taking the derivative of C̃I with respect to Ci,
we obtain

∂C̃I
∂Ci

=
1

β1
e

∂φ1
e

∂Ci
− 1

βIe

∂φIe
∂Ci

, (C.10)

where we noted that values of φIe depend on Ci chosen for each trajectory. Equation (C.10)
is recast into

∂φIe
∂Ci

= βIe

(
1

β1
e

∂φ1
e

∂Ci
−Θi I

)
, (C.11)

with

Θi I ≡
∂C̃I
∂Ci

=

{
1 (i ≤ I − 1)
0 (i > I − 1)

. (C.12)

Using eqs. (C.8) and (C.11), we obtain

∂φIe
∂Ci

= βIe

[∑D
J=i+1 βIeβ

I
e

β2
e

−ΘiI

]
(C.13)

with

β2
e ≡

N∑
I=1

βIeβ
I
e . (C.14)
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Using eqs. (C.6) and (C.13), we obtain

∂φ1
e

∂φI∗
= −β

1
e

βI∗

[
βIeβ

I
e

β2
e

− δ1I

]
, (C.15)

Inserting eq. (C.15) into eq. (C.4), we arrive at the compact expression:

dN = −
D∑
I=1

βIeβ
I
e

β2
e

κdφI∗
βI∗

. (C.16)

Using eq. (C.16), we can obtain

NI =
∂N

∂φI∗
= −βIeβ

I
e

β2
e

κ

βI∗
, (C.17)

NIJ =
∂2N

∂φI∗∂φ
J
∗

= δIJ
βIeβ

I
e

β2
e

κ2

(βI∗)
3

dβI∗
dN∗

, (C.18)

and so on. As in the case with the separable summation W (φI), NI1···In can be immediately
computed for a given WI(φ

I) and take non-vanishing values only if I1 = · · · = In. The power
spectrum of the curvature perturbation computed from eq. (C.17) agrees with eq. (4.25).
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[62] J. Garćıa-Bellido and D. Wands, Metric perturbations in two field inflation, Phys. Rev. D 53
(1996) 5437 [astro-ph/9511029] [INSPIRE].

[63] F. Vernizzi and D. Wands, Non-Gaussianities in two-field inflation, JCAP 05 (2006) 019
[astro-ph/0603799] [INSPIRE].

[64] T. Battefeld and R. Easther, Non-Gaussianities in Multi-field Inflation, JCAP 03 (2007) 020
[astro-ph/0610296] [INSPIRE].

[65] S. Yokoyama, T. Suyama and T. Tanaka, Primordial Non-Gaussianity in Multi-Scalar
Inflation, Phys. Rev. D 77 (2008) 083511 [arXiv:0711.2920] [INSPIRE].

[66] C.T. Byrnes and G. Tasinato, Non-Gaussianity beyond slow roll in multi-field inflation, JCAP
08 (2009) 016 [arXiv:0906.0767] [INSPIRE].

[67] D. Battefeld and T. Battefeld, On Non-Gaussianities in Multi-Field Inflation (N fields): Bi
and Tri-spectra beyond Slow-Roll, JCAP 11 (2009) 010 [arXiv:0908.4269] [INSPIRE].

[68] J. Emery, G. Tasinato and D. Wands, Local non-Gaussianity from rapidly varying sound
speeds, JCAP 08 (2012) 005 [arXiv:1203.6625] [INSPIRE].

[69] P.M. Saffin, The covariance of multi-field perturbations, pseudo-susy and fNL, JCAP 09 (2012)
002 [arXiv:1203.0397] [INSPIRE].

[70] J. Garriga and A. Vilenkin, Holographic Multiverse, JCAP 01 (2009) 021 [arXiv:0809.4257]
[INSPIRE].

[71] J. Garriga and A. Vilenkin, Holographic multiverse and conformal invariance, JCAP 11 (2009)
020 [arXiv:0905.1509] [INSPIRE].

[72] A. Vilenkin, Holographic multiverse and the measure problem, JCAP 06 (2011) 032
[arXiv:1103.1132] [INSPIRE].

[73] A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev. D 58 (1998)
061301 [astro-ph/9804177] [INSPIRE].

[74] K.A. Malik and D. Wands, Dynamics of assisted inflation, Phys. Rev. D 59 (1999) 123501
[astro-ph/9812204] [INSPIRE].

[75] F. Lucchin and S. Matarrese, Power Law Inflation, Phys. Rev. D 32 (1985) 1316 [INSPIRE].

[76] T. Wang, Note on Non-Gaussianities in Two-field Inflation, Phys. Rev. D 82 (2010) 123515
[arXiv:1008.3198] [INSPIRE].

– 34 –

http://dx.doi.org/10.1103/PhysRevD.88.083518
http://dx.doi.org/10.1103/PhysRevD.88.083518
http://arxiv.org/abs/1309.2611
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2611
http://dx.doi.org/10.1103/PhysRevD.78.063523
http://arxiv.org/abs/0806.0336
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0336
http://dx.doi.org/10.1016/S0370-2693(99)00602-4
http://arxiv.org/abs/hep-th/9904176
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904176
http://dx.doi.org/10.1103/PhysRevD.87.023530
http://arxiv.org/abs/1208.1073
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1073
http://dx.doi.org/10.1093/ptep/ptt008
http://arxiv.org/abs/1210.6525
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6525
http://dx.doi.org/10.1088/1475-7516/2011/01/008
http://arxiv.org/abs/1007.5498
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5498
http://dx.doi.org/10.1103/PhysRevD.53.5437
http://dx.doi.org/10.1103/PhysRevD.53.5437
http://arxiv.org/abs/astro-ph/9511029
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9511029
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://arxiv.org/abs/astro-ph/0603799
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0603799
http://dx.doi.org/10.1088/1475-7516/2007/03/020
http://arxiv.org/abs/astro-ph/0610296
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0610296
http://dx.doi.org/10.1103/PhysRevD.77.083511
http://arxiv.org/abs/0711.2920
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2920
http://dx.doi.org/10.1088/1475-7516/2009/08/016
http://dx.doi.org/10.1088/1475-7516/2009/08/016
http://arxiv.org/abs/0906.0767
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0767
http://dx.doi.org/10.1088/1475-7516/2009/11/010
http://arxiv.org/abs/0908.4269
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4269
http://dx.doi.org/10.1088/1475-7516/2012/08/005
http://arxiv.org/abs/1203.6625
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6625
http://dx.doi.org/10.1088/1475-7516/2012/09/002
http://dx.doi.org/10.1088/1475-7516/2012/09/002
http://arxiv.org/abs/1203.0397
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0397
http://dx.doi.org/10.1088/1475-7516/2009/01/021
http://arxiv.org/abs/0809.4257
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4257
http://dx.doi.org/10.1088/1475-7516/2009/11/020
http://dx.doi.org/10.1088/1475-7516/2009/11/020
http://arxiv.org/abs/0905.1509
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1509
http://dx.doi.org/10.1088/1475-7516/2011/06/032
http://arxiv.org/abs/1103.1132
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1132
http://dx.doi.org/10.1103/PhysRevD.58.061301
http://dx.doi.org/10.1103/PhysRevD.58.061301
http://arxiv.org/abs/astro-ph/9804177
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9804177
http://dx.doi.org/10.1103/PhysRevD.59.123501
http://arxiv.org/abs/astro-ph/9812204
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9812204
http://dx.doi.org/10.1103/PhysRevD.32.1316
http://inspirehep.net/search?p=find+J+Phys.Rev.,D32,1316
http://dx.doi.org/10.1103/PhysRevD.82.123515
http://arxiv.org/abs/1008.3198
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.3198

	Introduction
	Superpotential and background evolution
	Cosmological evolution as a gradient flow
	Attractor behaviour

	Separate universe approximation and delta N formalism
	Separate universe approximation
	Momentum constraint
	delta N formalism
	Linearized perturbations in one field models

	Primordial spectra from superpotential
	Separable product superpotential
	Primordial spectra

	delta N and holographic inflation
	Inflation from holography
	Comparison of the bulk and boundary computations

	Case studies
	Constant beta**I: power-law inflation
	Linear beta**I (phi**I)
	Quadratic beta**I (phi**I)
	D(I) < 0: RG flow with no fixed point
	D(I)=0: RG flow with one fixed point
	D(I) > 0: RG flow with two fixed points


	Conclusion
	Second order equations of motion from the superpotential
	Dilution of partial W/partial c(k) with cosmic expansion
	Alternative way to compute delta N

