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Abstract

Amplitude models are applied to studies of resonance structure in D0→ K0
SK−π+

and D0→ K0
SK+π− decays using pp collision data corresponding to an integrated

luminosity of 3.0 fb−1 collected by the LHCb experiment. Relative magnitude and
phase information is determined, and coherence factors and related observables are
computed for both the whole phase space and a restricted region of 100 MeV/c2

around the K∗(892)± resonance. Two formulations for the Kπ S-wave are used, both
of which give a good description of the data. The ratio of branching fractions B(D0→
K0

SK+π−)/B(D0→ K0
SK−π+) is measured to be 0.655 ± 0.004 (stat) ± 0.006 (syst)

over the full phase space and 0.370 ± 0.003 (stat) ± 0.012 (syst) in the restricted
region. A search for CP violation is performed using the amplitude models and no
significant effect is found. Predictions from SU(3) flavor symmetry for K∗(892)K
amplitudes of different charges are compared with the amplitude model results.
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1 Introduction

A large variety of physics can be accessed by studying the decays1 D0→ K0
SK
−π+ and

D0→ K0
SK

+π−. Analysis of the relative amplitudes of intermediate resonances contributing
to these decays can help in understanding the behavior of the strong interaction at low
energies. These modes are also of interest for improving knowledge of the Cabibbo-
Kobayashi-Maskawa (CKM) [1, 2] matrix, and CP -violation measurements and mixing
studies in the D0–D0 system. Both modes are singly Cabibbo-suppressed (SCS), with
the K0

SK
−π+ final state favored by approximately ×1.7 with respect to its K0

SK
+π−

counterpart [3]. The main classes of Feynman diagrams, and the sub-decays to which they
contribute, are shown in Fig. 1.

Flavor symmetries are an important phenomenological tool in the study of hadronic
decays, and the presence of both charged and neutral K∗ resonances in each D0→ K0

SK
±π∓

mode allows several tests of SU(3) flavor symmetry to be carried out [4, 5]. The K0
SK
±π∓

final states also provide opportunities to study the incompletely understood Kπ S-wave
systems [6], and to probe several resonances in the K0

SK
± decay channels that are poorly

established.
An important goal of flavor physics is to make a precise determination of the CKM

unitarity-triangle angle γ ≡ arg(−VudV
∗

ub/VcdV
∗

cb). Information on this parameter2 can

be obtained by studying CP -violating observables in the decays B−→ ( )

D 0K−, where the
D0 and D0 are reconstructed in a set of common final states [7, 8], such as the modes
D0→ K0

SK
−π+ and D0→ K0

SK
+π− [9]. Optimum statistical power is achieved by studying

the dependence of the CP asymmetry on where in three-body phase space the D-meson
decay occurs, provided that the decay amplitude from the intermediate resonances is
sufficiently well described. Alternatively, an inclusive analysis may be pursued, as in
Ref. [10], with a ‘coherence factor’ [11] parameterizing the net effect of these resonances.
The coherence factor of these decays has been measured by the CLEO collaboration
using quantum-correlated D0 decays at the open-charm threshold [12], but it may also be
calculated from knowledge of the contributing resonances. In both cases, therefore, it is
valuable to be able to model the variation of the magnitude and phase of the D0-decay
amplitudes across phase space.

The search for CP violation in the charm system is motivated by the fact that several
theories of physics beyond the Standard Model (SM) predict enhancements above the
very small effects expected in the SM [13–15]. Singly Cabibbo-suppressed decays provide
a promising laboratory in which to perform this search for direct CP violation because
of the significant role that loop diagrams play in these processes [16]. Multi-body SCS
decays, such as D0→ K0

SK
−π+ and D0→ K0

SK
+π−, have in addition the attractive feature

that the interfering resonances may lead to CP violation in local regions of phase space,
again motivating a good understanding of the resonant substructure. The same modes
may also be exploited to perform a D0–D0 mixing measurement, or to probe indirect CP
violation, either through a time-dependent measurement of the evolution of the phase

1The inclusion of charge-conjugate processes is implied, except in the definition of CP asymmetries.
2Another notation, φ3 ≡ γ, exists in the literature.
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Figure 1: SCS classes of diagrams contributing to the decays D0→ K0
SK±π∓. The color-favored

(tree) diagrams (a) contribute to the K∗±0,1,2→ K0
Sπ
± and (a0,2, ρ)±→ K0

SK± channels, while the

color-suppressed exchange diagrams (b) contribute to the (a0,2, ρ)±→ K0
SK±, K∗00,1,2→ K+π−

and K
∗0
0,1,2 → K−π+ channels. Second-order loop (penguin) diagrams (c) contribute to the

(a0,2, ρ)±→ K0
SK± and K∗±0,1,2→ K0

Sπ
± channels, and, finally, OZI-suppressed penguin annihilation

diagrams (d) contribute to all decay channels.

space of the decays, or the inclusive K0
SK
−π+ and K0

SK
+π− final states [17].

In this paper time-integrated amplitude models of these decays are constructed and
used to test SU(3) flavor symmetry predictions, search for local CP violation, and compute
coherence factors and associated parameters. In addition, a precise measurement is
performed of the ratio of branching fractions of the two decays. The data sample is
obtained from pp collisions corresponding to an integrated luminosity of 3.0 fb−1 collected
by the LHCb detector [18,19] during 2011 and 2012 at center-of-mass energies

√
s = 7 TeV

and 8 TeV, respectively. The sample contains around one hundred times more signal decays
than were analyzed in a previous amplitude study of the same modes performed by the
CLEO collaboration [12].

The paper is organized as follows. In Sect. 2, the detector, data and simulation samples
are described, and in Sect. 3 the signal selection and backgrounds are discussed. The
analysis formalism, including the definition of the coherence factor, is presented in Sect. 4.
The method for choosing the composition of the amplitude models, fit results and their
systematic uncertainties are described in Sect. 5. The ratio of branching fractions, coherence
factors, SU(3) flavor symmetry tests and CP violation search results are presented in
Sect. 6. Finally, conclusions are drawn in Sect. 7.

2 Detector and simulation

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
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surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the magnet. The tracking system
provides a measurement of momentum, p, of charged particles with a relative uncertainty
that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of
a track to a primary pp interaction vertex (PV), the impact parameter, is measured with a
resolution of (15 + 29/pT)µm, where pT is the component of the momentum transverse to
the beam, in GeV/c. Different types of charged hadrons are distinguished using information
from two ring-imaging Cherenkov (RICH) detectors. Photons, electrons and hadrons are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter.

The trigger [20] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, in which all charged particles with
pT > 500 (300) MeV/c are reconstructed for 2011 (2012) data. At the hardware trigger
stage, events are required to have a muon with high pT or a hadron, photon or electron with
high transverse energy in the calorimeters. For hadrons, the transverse energy threshold
is 3.5 GeV. Two software trigger selections are combined for this analysis. The first
reconstructs the decay chain D∗(2010)+→ D0π+

slow with D0→ h+h−X, where h± represents
a pion or a kaon and X refers to any number of additional particles. The charged pion
originating in the D∗(2010)+ decay is referred to as ‘slow’ due to the small Q-value of the
decay. The second selection fully reconstructs the decay D0→ K0

SK
±π∓, without flavor

tagging. In both cases at least one charged particle in the decay chain is required to have
a significant impact parameter with respect to any PV.

In the offline selection, trigger signals are associated with reconstructed particles.
Selection requirements can therefore be made on the trigger selection itself and on whether
the decision was due to the signal candidate, other particles produced in the pp collision,
or both. It is required that the hardware hadronic trigger decision is due to the signal
candidate, or that the hardware trigger decision is due solely to other particles produced
in the pp collision.

Decays K0
S→ π+π− are reconstructed in two different categories: the first involves K0

S

mesons that decay early enough for the pions to be reconstructed in the vertex detector;
the second contains K0

S mesons that decay later such that track segments of the pions
cannot be formed in the vertex detector. These categories are referred to as long and
downstream, respectively. The long category has better mass, momentum and vertex
resolution than the downstream category, and in 2011 was the only category available in
the software trigger.

In the simulation, pp collisions are generated using Pythia [21] with a specific LHCb
configuration [22]. Decays of hadronic particles are described by EvtGen [23], in which
final-state radiation is generated using Photos [24]. The interaction of the generated
particles with the detector, and its response, are implemented using the Geant4 toolkit [25]
as described in Ref. [26].
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3 Signal selection and backgrounds

The offline selection used in this analysis reconstructs the decay chain D∗(2010)+→ D0π+
slow

with D0→ K0
SK
±π∓, where the charged pion π+

slow from the D∗(2010)+ decay tags the flavor
of the neutral D meson. Candidates are required to pass one of the two software trigger
selections described in Sect. 2, as well as several offline requirements. These use information
from the RICH detectors to ensure that the charged kaon is well-identified, which reduces
the background contribution from the decays D0→ K0

Sπ
+π−π0 and D0→ K0

Sπ
−µ+νµ. In

addition the K0
S decay vertex is required to be well-separated from the D0 decay vertex

in order to suppress the D0→ K−π+π+π− background, where a π+π− combination is
close to the K0

S mass. D0 candidates are required to have decay vertices well-separated
from any PV, and to be consistent with originating from a PV. This selection suppresses
the semileptonic and D0→ K−π+π+π− backgrounds to negligible levels, while a small
contribution from D0 → K0

Sπ
+π−π0 remains in the ∆m ≡ m(K0

SKππslow) − m(K0
SKπ)

distribution. A kinematic fit [27] is applied to the reconstructed D∗(2010)+ decay chain
to enhance the resolution in m(K0

SKπ), ∆m and the two-body invariant masses m(K0
SK),

m(K0
Sπ) and m(Kπ) that are used to probe the resonant structure of these decays. This fit

constrains the D∗(2010)+ decay vertex to coincide with the closest PV with respect to the
D∗(2010)+ candidate, fixes the K0

S candidate mass to its nominal value, and is required to
be of good quality.

Signal yields and estimates of the various background contributions in the signal window
are determined using maximum likelihood fits to the m(K0

SKπ) and ∆m distributions.
The signal window is defined as the region less than 18 MeV/c2 (0.8 MeV/c2) from the peak
value of m(K0

SKπ) (∆m), corresponding to approximately three standard deviations of
each signal distribution. The three categories of interest are: signal decays, mistagged
background where a correctly reconstructed D0 meson is combined with a charged pion that
incorrectly tags the D0 flavor, and a combinatorial background category, which also includes
a small peaking contribution in ∆m from the decay D0→ K0

Sπ
+π−π0. These fits use

candidates in the ranges 139 < ∆m < 153 MeV/c2 and 1.805 < m(K0
SKπ) < 1.925 GeV/c2.

The sidebands of the m(K0
SKπ) distribution are defined as those parts of the fit range where

m(K0
SKπ) is more than 30 MeV/c2 from the peak value. The ∆m (m(K0

SKπ)) distribution in
the signal region of m(K0

SKπ) (∆m) is fitted to determine the D∗(2010)+ (D0) yield in the
two-dimensional signal region [28]. The D∗(2010)+ (D0) signal shape in the ∆m (m(K0

SKπ))
distribution is modeled using a Johnson SU [29] (Cruijff [30]) function. In the m(K0

SKπ)
distribution the combinatorial background is modeled with an exponential function, while
in ∆m a power law function is used, f(∆m;mπ, p, P, b) = (∆m−mπ

mπ
)p − bp−P (∆m−mπ

mπ
)P ,

with the parameters p, P and b determined by a fit in the m(K0
SKπ) sidebands. The small

D0→ K0
Sπ

+π−π0 contribution in the ∆m distribution is described by a Gaussian function,
and the component corresponding to D0 mesons associated with a random slow pion is
the sum of an exponential function and a linear term. These fits are shown in Fig. 2. The
results of the fits are used to determine the yields of interest in the two-dimensional signal
region. These yields are given in Table 1 for both decay modes, together with the fractions
of backgrounds.
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Table 1: Signal yields and estimated background rates in the two-dimensional signal region. The
larger mistag rate in the D0→ K0

SK+π− mode is due to the different branching fractions for the
two modes. Only statistical uncertainties are quoted.

Mistag Combinatorial
Mode Signal yield background [%] background [%]

D0→ K0
SK
−π+ 113 290± 130 0.89± 0.09 3.04± 0.14

D0→ K0
SK

+π− 76 380± 120 1.93± 0.16 2.18± 0.15

A second kinematic fit that also constrains the D0 mass to its known value is performed
and used for all subsequent parts of this analysis. This fit further improves the resolution
in the two-body invariant mass coordinates and forces all candidates to lie within the
kinematically allowed region of the Dalitz plot. The Dalitz plots [31] for data in the
two-dimensional signal region are shown in Fig. 3. Both decays are dominated by a
K∗(892)± structure. The K∗(892)0 is also visible as a destructively interfering contribution
in the D0→ K0

SK
−π+ mode and the low-m2

K0
Sπ

region of the D0→ K0
SK

+π− mode, while a

clear excess is seen in the high-m2
K0

Sπ
region. Finally, a veto is applied to candidates close

to the kinematic boundaries; this is detailed in Sect. 4.3.

4 Analysis formalism

The dynamics of a decay D0→ ABC, where D0, A, B and C are all pseudoscalar mesons,
can be completely described by two variables, where the conventional choice is to use a pair
of squared invariant masses. This paper will use m2

K0
Sπ
≡ m2(K0

Sπ) and m2
Kπ ≡ m2(Kπ) as

this choice highlights the dominant resonant structure of the D0→ K0
SK
±π∓ decay modes.

4.1 Isobar models for D0→ K0
S
K±π∓

The signal isobar models decompose the decay chain into D0→ (R→ (AB)J)C contri-
butions, where R is a resonance with spin J equal to 0, 1 or 2. Resonances with spin
greater than 2 should not contribute significantly to the D0→ K0

SK
±π∓ decays. The

corresponding 4-momenta are denoted pD0 , pA, pB and pC. The reconstructed invariant
mass of the resonance is denoted mAB, and the nominal mass mR. The matrix element for
the D0→ K0

SK
±π∓ decay is given by

MK0
SK±π∓(m2

K0
Sπ
,m2

Kπ) =
∑

R

aRe
iφRMR(m2

AB,m
2
AC), (1)
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Figure 2: Mass (left) and ∆m (right) distributions for the D0 → K0
SK−π+ (top) and D0 →

K0
SK+π− (bottom) samples with fit results superimposed. The long-dashed (blue) curve represents

the D∗(2010)+ signal, the dash-dotted (green) curve represents the contribution of real D0 mesons
combined with incorrect π+

slow and the dotted (red) curve represents the combined combinatorial
and D0→ K0

Sπ
+π−π0 background contribution. The vertical solid lines show the signal region

boundaries, and the vertical dotted lines show the sideband region boundaries.

where aRe
iφR is the complex amplitude for R and the contributions MR from each

intermediate state are given by

MR(m2
AB,m

2
AC) = BD0

J (p, |p0|, dD0)ΩJ(m2
AB,m

2
AC)TR(m2

AB)BR
J (q, q0, dR), (2)

where BD0

J (p, |p0|, dD0) and BR
J (q, q0, dR) are the Blatt-Weisskopf centrifugal barrier factors

for the production and decay, respectively, of the resonance R [32]. The parameter p (q)
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Figure 3: Dalitz plots of the D0→ K0
SK−π+ (left) and D0→ K0

SK+π− (right) candidates in the
two-dimensional signal region.

Table 2: Blatt-Weisskopf centrifugal barrier penetration factors, BJ(q, q0, d) [32].

J BJ(q, q0, d)

0 1

1
√

1+(q0d)2

1+(qd)2

2
√

9+3(q0d)2+(q0d)4

9+3(qd)2+(qd)4

is the momentum of C (A or B) in the R rest frame, and p0 (q0) is the same quantity
calculated using the nominal resonance mass, mR. The meson radius parameters are set
to dD0 = 5.0 (GeV/c)−1 and dR = 1.5 (GeV/c)−1 consistent with the literature [12, 33]; the
systematic uncertainty due to these choices is discussed in Sect. 5.2. Finally, ΩJ(m2

AB,m
2
AC)

is the spin factor for a resonance with spin J and TR is the dynamical function describing
the resonance R. The functional forms for BJ(q, q0, d) are given in Table 2 and those
for ΩJ(m2

AB,m
2
AC) in Table 3 for J = 0, 1, 2. As the form for Ω1 is antisymmetric in the

indices A and B, it is necessary to define the particle ordering convention used in the
analysis; this is done in Table 4. The dynamical function TR chosen depends on the
resonance R in question. A relativistic Breit-Wigner form is used unless otherwise noted

TR(mAB) =
1

(m2
R −m2

AB)− imRΓR(mAB)
, (3)
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Table 3: Angular distribution factors, ΩJ(pD0 + pC, pB − pA). These are expressed in terms of

the tensors Tµν = −gµν +
pµABp

ν
AB

m2
R

and Tµναβ = 1
2(TµαT νβ + TµβT να)− 1

3T
µνTαβ.

J ΩJ(pD0 + pC, pB − pA)

0 1
1 (pµD0 + pµC)Tµν(p

ν
B − pνA)/(GeV/c)2

2 (pµD0 + pµC)(pνD0 + pνC)Tµναβ(pαA − pαB)(pβA − pβB)/(GeV/c)4

Table 4: Particle ordering conventions used in this analysis.

Decay A B C

D0→ K0
S

( )

K∗0,
( )

K∗0→ K±π∓ π K K0
S

D0→ K∓K∗±, K∗±→ K0
Sπ
± K0

S π K
D0→ π∓(ρ±, a±), ρ±, a±→ K0

SK
± K K0

S π

where the mass-dependent width is

ΓR(mAB) = ΓR

[
BR
J (q, q0, dR)

]2 mR

mAB

(
q

q0

)2J+1

. (4)

Several alternative forms are used for specialized cases. The Flatté [34] form is a coupled-
channel function used to describe the a0(980)± resonance [12,35–38],

TR =
1

(m2
a0(980)± −m2

KK
)− i[ρKKg

2
KK

+ ρηπg2
ηπ]
, (5)

where the phase space factor is given by

ρAB =
1

m2
KK

√
(m2

KK
− (mA +mB)2)(m2

KK
− (mA −mB)2), (6)

and the coupling constants gKK and gηπ are taken from Ref. [35], fixed in the isobar model
fits and tabulated in Appendix A. The Gounaris-Sakurai [39] parameterization is used to
describe the ρ(1450)± and ρ(1700)± states [37, 40–43],

TR =
1 + d(mρ)

Γρ

mρ

(m2
ρ −m2

KK
) + f(m2

KK
,m2

ρ,Γρ)− imρΓρ(mKK)
, (7)

where

d(mρ) =
3m2

K

πq2
0

log

(
mρ + 2q0

2mK

)
+

mρ

2πq0

− m2
Kmρ

πq3
0

, (8)

8



and

f(m2
KK
,m2

ρ,Γρ) = Γρ
m2
ρ

q3
0

{
q2

0

[
h(m2

KK
)− h(m2

ρ)
]

+ q2
0h
′(m2

ρ)(m
2
ρ −m2

KK
)
}
. (9)

The parameter mK is taken as the mean of mK0
S

and mK± , and h′(m2
ρ) ≡

dh(m2
ρ)

dm2
ρ

is calculated

from

h(m2) =
2q(m2)

πm
log

(
m+ 2q(m2)

2mK

)
, (10)

in the limit that mK = mK± = mK0
S
. Parameters for the ρ resonances ρ(1450)± and

ρ(1700)± are taken from Ref. [44] and tabulated in Appendix A.
This analysis uses two different parameterizations for the Kπ S-wave contributions,

dubbed GLASS and LASS, with different motivations. These forms include both K∗0(1430)
resonance and nonresonant Kπ S-wave contributions. The LASS parameterization takes
the form

TR = f

(
mKπ

mK∗0(1430)

)
mKπ

q
sin(δS + δF )ei(δS+δF ), (11)

where f(x) = A exp (b1x+ b2x
2 + b3x

3) is an empirical real production form factor, and
the phases are defined by

tan δF =
2aq

2 + arq2
, tan δS =

mRΓR(mKπ)

m2
K∗0(1430) −m2

Kπ

. (12)

The scattering length a, effective range r and K∗0(1430) mass and width are taken from
measurements [45] at the LASS experiment [46] and are tabulated in Appendix A. With
the choice f(x) = 1 this form has been used in previous analyses e.g. Refs. [47–49], and if
δF is additionally set to zero the relativistic S-wave Breit-Wigner form is recovered. The
Watson theorem [50] states that the phase motion, as a function of Kπ invariant mass, is
the same in elastic scattering and decay processes, in the absence of final-state interactions
(i.e. in the isobar model). Studies of Kπ scattering data indicate that the S-wave remains
elastic up to the Kη′ threshold [45]. The magnitude behavior is not constrained by the
Watson theorem, which motivates the inclusion of the form factor f(x), but the LASS

parameterization preserves the phase behavior measured in Kπ scattering. The real form
factor parameters are allowed to take different values for the neutral and charged K∗0(1430)
resonances, as the production processes are not the same, but the parameters taken from
LASS measurements, which specify the phase behavior, are shared between both Kπ
channels. A transformed set b′ = U−1b of the parameters b = (b1, b2, b3) are also defined
for use in the isobar model fit, which is described in detail in Sect. 5. The constant matrix
U is chosen to minimize fit correlations, and the form factor is normalized to unity at the
center of the accessible kinematic range, e.g. 1

2
(mK0

S
+mπ± +mD0 −mK±) for the charged

Kπ S-wave.
The GLASS (Generalized LASS) parameterization has been used by several recent

amplitude analyses, e.g. Refs. [12, 37,38],

TR =
[
F sin(δF + φF )ei(δF+φF ) + sin(δS)ei(δS+φS)e2i(δF+φF )

] mKπ

q
, (13)

9



where δF and δS are defined as before, and F , φF and φS are free parameters in the fit.
It should be noted that this functional form can result in phase behavior significantly
different to that measured in LASS scattering data when its parameters are allowed to
vary freely. This is illustrated in Fig. 10 in Sect. 5.3.

4.2 Coherence factor and CP -even fraction

The coherence factor Rf and mean strong-phase difference δf for the multi-body decays
D→ f and D→ f quantify the similarity of the two decay structures [11]. In the limit
Rf → 1 the matrix elements for the two decays are identical. For D0→ K0

SK
±π∓ the

coherence factor and mean strong-phase difference are defined by [10,12]

RK0
SKπe

−iδ
K0
S
Kπ ≡

∫
MK0

SK+π−(m2
K0

Sπ
,m2

Kπ)M∗
K0

SK−π+
(m2

K0
Sπ
,m2

Kπ)dm
2
K0

Sπ
dm2

Kπ

MK0
SK+π−MK0

SK−π+
, (14)

where

M2
K0

SK±π∓ ≡
∫
|MK0

SK±π∓(m2
K0

Sπ
,m2

Kπ)|2dm2
K0

Sπ
dm2

Kπ, (15)

and the integrals are over the entire available phase space. The restricted phase space
coherence factor RK∗Ke

−iδK∗K is defined analogously but with all integrals restricted to
an area of phase space close to the K∗(892)± resonance. The restricted area is defined
by Ref. [12] as the region where the K0

Sπ
± invariant mass is within 100 MeV/c2 of the

K∗(892)± mass. The four observables RK0
SKπ, δK0

SKπ, RK∗K and δK∗K were measured using

quantum-correlated ψ(3770)→ D0D0 decays by the CLEO collaboration [12], and the
coherence was found to be large for both the full and the restricted regions. This analysis
is not sensitive to the overall phase difference between D0→ K0

SK
+π− and D0→ K0

SK
+π−.

However, since it cancels in δK0
SKπ − δK∗K, this combination, as well as RK0

SKπ and RK∗K,
can be calculated from isobar models and compared to the respective CLEO results.

An associated parameter that it is interesting to consider is the CP -even fraction [51],

F+ ≡
|〈D+|K0

SK
±π∓〉|2

|〈D+|K0
SK
±π∓〉|2 + |〈D−|K0

SK
±π∓〉|2

=
1

2

[
1 + 2RK0

SKπ cos(δK0
SKπ)

√
BK0

SKπ(1 + BK0
SKπ)

−1
]
,

(16)

where the CP eigenstates |D±〉 are given by 1√
2

[
|D0〉 ± |D0〉

]
and BK0

SKπ is the ratio of

branching fractions of the two D0→ K0
SK
±π∓ modes. As stated above, the relative strong

phase δK0
SKπ is not predicted by the amplitude models and requires external input.

4.3 Efficiency modeling

The trigger strategy described in Sect. 2, and to a lesser extent the offline selection,
includes requirements on variables such as the impact parameter and pT of the various
charged particles correlated with the 2-body invariant masses m2

K0
Sπ

and m2
Kπ. There is,
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Figure 4: Efficiency function used in the isobar model fits, corresponding to the average efficiency
over the full dataset. The coordinates m2

K0
Sπ

and m2
K0

SK
are used to highlight the approximate

symmetry of the efficiency function. The z units are arbitrary.

therefore, a significant variation in reconstruction efficiency as a function of m2
K0

Sπ
and

m2
Kπ. This efficiency variation is modeled using simulated events generated with a uniform

distribution in these variables and propagated through the full LHCb detector simulation,
trigger emulation and offline selection. Weights are applied to the simulated events to
ensure that various subsamples are present in the correct proportions. These weights
correct for known discrepancies between the simulation and real data in the relative
reconstruction efficiency for long and downstream tracks, and take into account the ratios
of
√
s = 7 TeV to

√
s = 8 TeV and D0→ K0

SK
−π+ to D0→ K0

SK
+π− simulated events to

improve the description of the data. The efficiencies of offline selection requirements based
on information from the RICH detectors are calculated using a data-driven method based
on calibration samples [52] of D∗(2010)+→ D0π+

slow decays, where D0→ K−π+. These
efficiencies are included as additional weights. A non-parametric kernel estimator [53]
is used to produce a smooth function ε(m2

K0
Sπ
,m2

Kπ) describing the efficiency variation in

the isobar model fits. The average model corresponding to the full dataset recorded in
2011 and 2012, which is used unless otherwise noted, is shown in Fig. 4. Candidates very
near to the boundary of the allowed kinematic region of the Dalitz plot are excluded, as
the kinematics in this region lead to variations in efficiency that are difficult to model. It
is required that max(| cos(θK0

Sπ
)|, | cos(θπK)|, | cos(θKK0

S
)|) < 0.98, where θAB is the angle

between the A and B momenta in the AC rest frame. This criterion removes 5% of the
candidates. The simulated events are also used to verify that the resolution in m2

K0
Sπ

and m2
Kπ is around 0.004 GeV2/c4, corresponding to O(2 MeV/c2) resolution in m(K0

Sπ
±).

Although this is not explicitly accounted for in the isobar model fits, it has a small effect
which is measurable only on the parameters of the K∗(892)± resonance and is accounted
for in the systematic uncertainties.
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4.4 Fit components

There are three event categories described in Sect. 3 that must be treated separately
in the isobar model fits. The signal and mistagged components are described by terms
proportional to ε(m2

K0
Sπ
,m2

Kπ)|MK0
SK±π∓(m2

K0
Sπ
,m2

Kπ)|2, while the combinatorial component

is described by a smooth function, cK0
SK±π∓(m2

K0
Sπ
,m2

Kπ), obtained by applying to data

in the m(K0
SKπ) sidebands the same non-parametric kernel estimator used to model the

efficiency variation. The same combinatorial background model is used for both D0 flavors,
and the same efficiency function is used for both modes and D0 flavors. The overall
function used in the fit to D0→ K0

SK
±π∓ decays is therefore

PK0
SK±π∓(m2

K0
Sπ
,m2

Kπ) = (1− fm − fc)ε(m
2
K0

Sπ
,m2

Kπ)|MK0
SK±π∓(m2

K0
Sπ
,m2

Kπ)|2

+ fmε(m
2
K0

Sπ
,m2

Kπ)|MK0
SK±π∓(m2

K0
Sπ
,m2

Kπ)|2 (17)

+ fccK0
SK±π∓(m2

K0
Sπ
,m2

Kπ),

where the mistagged contribution consists of D0→ K0
SK
±π∓ decays and fm (fc) denotes

the mistagged (combinatorial) fraction tabulated in Table 1.
All parameters except the complex amplitudes aRe

iφR are shared between the PDFs
for both modes and both D0 flavors. For the other parameters, Gaussian constraints are
included unless stated otherwise. The nominal values used in the constraints are tabulated
in Appendix A. No constraints are applied for the Kπ S-wave parameters b1..3, F , φS and
φF , as these have no suitable nominal values. The Kπ S-wave parameters a and r are
treated differently in the GLASS and LASS models. In the LASS case these parameters are
shared between the neutral and charged Kπ channels and a Gaussian constraint to the
LASS measurements [45] is included. In the GLASS case these are allowed to vary freely
and take different values for the two channels.

5 Isobar model fits

This section summarizes the procedure by which the amplitude models are constructed,
describes the various systematic uncertainties considered for the models and finally discusses
the models and the coherence information that can be calculated from them.

Amplitude models are fitted using the isobar formalism and an unbinned maximum-
likelihood method, using the GooFit [54] package to exploit massively-parallel Graphics
Processing Unit (GPU) architectures. Where χ2/bin values are quoted these are simply
to indicate the fit quality. Statistical uncertainties on derived quantities, such as the
resonance fit fractions, are calculated using a pseudoexperiment method based on the fit
covariance matrix.

5.1 Model composition

Initially, 15 resonances are considered for inclusion in each of the isobar models:
K∗(892, 1410, 1680)0,±, K∗0,2(1430)0,±, a0(980, 1450)±, a2(1320)± and ρ(1450, 1700)±. Pre-
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liminary studies showed that models containing the K∗(1680) resonances tend to include
large interference terms, which are cancelled by other large components. Such fine-tuned
interference effects are in general unphysical, and are therefore disfavored in the model
building [36, 55]. The K∗(1680) resonances are not considered further, and additionally
the absolute value of the sum of interference fractions [56] is required to be less than
30% in all models. In the absence of the K∗(1680) resonances, large interference terms
are typically generated by the Kπ S-wave contributions. The requirement on the sum of
interference fractions, while arbitrary, allows an iterative procedure to be used to search
for the best amplitude models. This procedure explores a large number of possible starting
configurations and sets of resonances; it begins with the most general models containing
all 13 resonances and considers progressively simpler configurations, trying a large number
of initial fit configurations for each set of resonances, until no further improvement in fit
quality is found among models simple enough to satisfy the interference fraction limit.
Higher values of this limit lead to a large number of candidate models with similar fit
quality.

A second procedure iteratively removes resonances from the models if they do not
significantly improve the fit quality. In this step a resonance must improve the value of
−2 logL, where L is the likelihood of the full dataset, by at least 16 units in order to
be retained. Up to this point, the K∗(892) mass and width parameters and Kπ S-wave
parameters have been allowed to vary in the fit, but mass and width parameters for other
resonances have been fixed. To improve the quality of fit further, in a third step, S and
P -wave resonance parameters are allowed to vary. The tensor resonance parameters are
known precisely [3], so remain fixed. At this stage, resonances that no longer significantly
improve the fit quality are removed, with the threshold tightened so that each resonance
must increase −2 logL by 25 units in order to be retained.

Finally, parameters that are consistent with their nominal values to within 1σ are fixed
to the nominal value. The nominal values used are tabulated in Appendix A. The entire
procedure is performed in parallel using the GLASS and LASS parameterizations of the
Kπ S-wave. The data are found to prefer a solution where the GLASS parameterization
of the charged Kπ S-wave has a poorly constrained degree of freedom. The final change
to the GLASS models is, therefore, to fix the charged Kπ S-wave F parameter in order to
stabilize the uncertainty calculation for the two corresponding aR parameters by reducing
the correlations among the free parameters.

5.2 Systematic uncertainties

Several sources of systematic uncertainty are considered. Those due to experimental issues
are described first, followed by uncertainties related to the amplitude model formalism.
Unless otherwise stated, the uncertainty assigned to each parameter using an alternative
fit is the absolute difference in its value between the nominal and alternative fit.

As mentioned in Sect. 4.3, candidates extremely close to the edges of the allowed
kinematic region of the Dalitz plot are excluded. The requirement made is that the largest
of the three | cos(θAB)| values is less than 0.98. A systematic uncertainty due to this
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process is estimated by changing the threshold to 0.96, as this excludes a similar additional
area of the Dalitz plot as the original requirement.

The systematic uncertainty related to the efficiency model ε(m2
K0

Sπ
,m2

Kπ) is evaluated

in four ways. The first probes the process by which a smooth curve is produced from
simulated events; this uncertainty is evaluated using an alternative fit that substitutes the
non-parametric estimator with a polynomial parameterization. The second uncertainty
is due to the limited sample size of simulated events. This is evaluated by generating
several alternative polynomial efficiency models according to the covariance matrix of
the polynomial model parameters; the spread in parameter values from this ensemble
is assigned as the uncertainty due to the limited sample size. The third contribution
is due to possible imperfections in the description of the data by the simulation. This
uncertainty is assigned using an alternative simultaneous fit that separates the sample into
three categories according to the year in which the data were collected and the type of K0

S

candidate used. As noted in Sect. 2, the sample recorded during 2011 does not include
downstream K0

S candidates. These sub-samples have different kinematic distributions
and ε(m2

K0
Sπ
,m2

Kπ) behavior, so this procedure tests the ability of the simulation process

to reproduce the variation seen in the data. The final contribution is due to the re-
weighting procedures used to include the effect of offline selection requirements based on
information from the RICH detectors, and to correct for discrepancies between data and
simulation in the reconstruction efficiencies of long and downstream K0

S candidates. This
is evaluated using alternative efficiency models where the relative proportion of the track
types is altered, and the weights describing the efficiency of selection requirements using
information from the RICH detectors are modified to account for the limited calibration
sample size. Additional robustness checks have been performed to probe the description
of the efficiency function by the simulated events. In these checks the data are divided
into two equally populated bins of the D0 meson p, pT or η and the amplitude models are
re-fitted using each bin separately. The fit results in each pair of bins are found to be
compatible within the assigned uncertainties, indicating that the simulated D0 kinematics
adequately match the data.

An uncertainty is assigned due to the description of the hardware trigger efficiency in
simulated events. Because the hardware trigger is not only required to fire on the signal
decay, it is important that the underlying pp interaction is well described, and a systematic
uncertainty is assigned due to possible imperfections. This uncertainty is obtained using
an alternative efficiency model generated from simulated events that have been weighted
to adjust the fraction where the hardware trigger was fired by the signal candidate.

The uncertainty due to the description of the combinatorial background is evaluated
by recomputing the cK0

SK±π∓(m2
K0

Sπ
,m2

Kπ) function using mD0 sideband events to which

an alternative kinematic fit has been applied, without a constraint on the D0 mass. The
alternative model is expected to describe the edges of the phase space less accurately,
while providing an improved description of peaking features.

An alternative set of models is produced using a threshold of 9 units in the value of
−2 logL instead of the thresholds of 16 and 25 used for the model building procedure.
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These models contain more resonances, as fewer are removed during the model building
process. A systematic uncertainty is assigned using these alternative models for those
parameters which are common between the two sets of models.

Two parameters of the Flatté dynamical function, which is used to describe the
a0(980)± resonance, are fixed to nominal values in the isobar model fits. Alternative
fits are performed, where these parameters are fixed to different values according to
their quoted uncertainties, and the largest changes to the fit parameters are assigned as
systematic uncertainties.

The effect of resolution in the m2
K0

Sπ
and m2

Kπ coordinates is neglected in the isobar

model fits, and this is expected to have an effect on the measured K∗(892)± decay width.
An uncertainty is calculated using a pseudoexperiment method, and is found to be small.

The uncertainty due to the yield determination process described in Sect. 3 is measured
by changing the fractions fm and fc in the isobar model fit according to their statistical
uncertainties, and taking the largest changes with respect to the nominal result as the
systematic uncertainty.

There are two sources of systematic uncertainty due to the amplitude model formalism
considered. The first is that due to varying the meson radius parameters dD0 and dR, defined
in Sect. 4.1. These are changed from dD0 = 5.0 (GeV/c)−1 and dR = 1.5 (GeV/c)−1 to
2.5 (GeV/c)−1 and 1.0 (GeV/c)−1, respectively. The second is due to the dynamical function
TR used to describe the ρ(1450, 1700)± resonances. These resonances are described by
the Gounaris-Sakurai functional form in the nominal models, which is replaced with a
relativistic P -wave Breit-Wigner function to calculate a systematic uncertainty due to this
choice.

The uncertainties described above are added in quadrature to produce the total
systematic uncertainty quoted for the various results. For most quantities the dominant
systematic uncertainty is due to the meson radius parameters dD0 and dR. The largest
sources of experimental uncertainty relate to the description of the efficiency variation
across the Dalitz plot. The fit procedure and statistical uncertainty calculation have been
validated using pseudoexperiments and no bias was found.

Tables summarizing the various sources of systematic uncertainty and their relative
contributions are included in Appendix C.

5.3 Isobar model results

The fit results for the best isobar models using the GLASS and LASS parameterizations of the
Kπ S-wave are given in Tables 5 and 6. Distributions of m2

Kπ, m
2
K0

Sπ
and m2

K0
SK

are shown

alongside the best model of the D0→ K0
SK
−π+ mode using the GLASS parameterization in

Fig. 5. In Fig. 5 and elsewhere the nomenclature R1 ×R2 denotes interference terms. The
corresponding distributions showing the best model using the LASS parameterization are
shown in Fig. 6. Distributions for the D0→ K0

SK
+π− mode are shown in Figs. 7 and 8.

Figure 9 shows the GLASS isobar models in two dimensions, and demonstrates that the
GLASS and LASS choices of Kπ S-wave parameterization both lead to similar descriptions
of the overall phase variation. Figures 5–8 show distributions distorted by efficiency effects,
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Figure 5: Distributions of m2
Kπ (upper left), m2

K0
Sπ

(upper right) and m2
K0

SK
(lower left) in the

D0→ K0
SK−π+ mode with fit curves from the best GLASS model. The solid (blue) curve shows

the full PDF PK0
SK−π+(m2

K0
Sπ
,m2

Kπ), while the other curves show the components with the largest

integrated fractions.

while Fig. 9 shows the decay rate without distortion. Lookup tables for the complex
amplitude variation across the Dalitz plot in all four isobar models are available in the
supplemental material.

The data are found to favor solutions that have a significant neutral Kπ S-wave
contribution, even though the exchange (Fig. 1b) and penguin annihilation (Fig. 1d)
processes that contribute to the neutral channel are expected to be suppressed. The
expected suppression is observed for the P -wave K∗(892) resonances, with the neutral mode
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full PDF PK0
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integrated fractions.

fit fractions substantially lower. The models using the LASS parameterization additionally
show this pattern for the K∗(1410) states. The sums of the fit fractions [56], excluding
interference terms, in the D0→ K0

SK
−π+ and D0→ K0

SK
+π− models are, respectively,

103% (109%) and 81% (99%) using the GLASS (LASS) Kπ S-wave parameterization.
Using measurements of the mean strong-phase difference between the D0→ K0

SK
±π∓

modes available from ψ(3770) decays [12], the relative complex amplitudes between each
resonance in one D0 decay mode and its conjugate contribution to the other D0 decay
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the full PDF PK0
SK+π−(m2

K0
Sπ
,m2
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integrated fractions.

mode are computed. These values are summarized in Table 7.
Additional information about the models is listed in Appendices B and C, including

the interference fractions and decomposition of the systematic uncertainties. The best
models also contain contributions from the ρ(1450)± and ρ(1700)± resonances in the
K0

SK
± channels, supporting evidence in Ref. [44] of the KK decay modes for these states.

Alternative models are fitted where one ρ± contribution is removed from the best models;
in these the value of −2 logL is found to degrade by at least 162 units. Detailed results
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are tabulated in Appendix B.
The Kπ S-wave systems are poorly understood [6], and there is no clear theoretical

guidance regarding the correct description of these systems in an isobar model. As
introduced in Sect. 4.1, the LASS parameterization is motivated by the Watson theorem,
but this assumes that three-body interactions are negligible and is not, therefore, expected
to be precisely obeyed in nature. The isobar models using the GLASS parameterization favor
solutions with qualitatively similar phase behavior to those using the LASS parameterization.
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Figure 9: Decay rate and phase variation across the Dalitz plot. The top row shows
|MK0

SK±π∓(m2
K0

Sπ
,m2

Kπ)|2 in the best GLASS isobar models, the center row shows the phase

behavior of the same models and the bottom row shows the same function subtracted from the
phase behavior in the best LASS isobar models. The left column shows the D0→ K0

SK−π+ mode
with D0→ K0

SK+π− on the right. The small inhomogeneities that are visible in the bottom row
relate to the GLASS and LASS models preferring slightly different values of the K∗(892)± mass
and width.
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Table 7: Modulus and phase of the relative amplitudes between resonances that appear in both
the D0→ K0

SK−π+ and D0→ K0
SK+π− modes. Relative phases are calculated using the value

of δK0
SKπ measured in ψ(3770) decays [12], and the uncertainty on this value is included in the

statistical uncertainty. The first uncertainties are statistical and the second systematic.

Relative
amplitude GLASS LASS

A(K∗(892)−)
A(K∗(892)+)

mod 0.582± 0.007± 0.008 0.576± 0.005± 0.010
arg (◦) −2± 15± 2 −2± 15± 1

A(K∗(1410)−)
A(K∗(1410)+)

mod 0.64± 0.08± 0.22 0.90± 0.08± 0.15
arg (◦) 52± 17± 20 62± 16± 6

A((K0
Sπ)−S−wave)

A((K0
Sπ)+S−wave)

mod 0.54± 0.06± 0.26 0.59± 0.05± 0.08
arg (◦) −100± 20± 40 −44± 17± 10

A(K∗(892)0)

A(K
∗
(892)0)

mod 1.12± 0.05± 0.11 1.17± 0.04± 0.05
arg (◦) −78± 16± 10 −75± 15± 2

A(K∗(1410)0)

A(K
∗
(1410)0)

mod 0.60± 0.05± 0.12 0.62± 0.09± 0.12
arg (◦) −9± 16± 14 −23± 17± 11

A(K∗2(1430)0)

A(K
∗
2(1430)0)

mod 1.1± 0.1± 0.5 —
arg (◦) 31± 17± 12 —

A((K+π−)S−wave)

A((K−π+)S−wave)

mod 0.87± 0.08± 0.14 0.78± 0.06± 0.18
arg (◦) 49± 25± 16 68± 16± 6

A(a0(980)+)
A(a0(980)−)

mod — 2.1± 0.2± 0.6
arg (◦) — 42± 16± 5

A(a0(1450)+)
A(a0(1450)−)

mod 0.49± 0.06± 0.28 1.14± 0.16± 0.30
arg (◦) −60± 19± 34 −63± 20± 19

A(ρ(1450)+)
A(ρ(1450)−)

mod 0.86± 0.16± 0.26 —
arg (◦) 110± 20± 50 —

A(ρ(1700)+)
A(ρ(1700)−)

mod 1.6± 0.4± 0.4 —
arg (◦) 70± 20± 70 —

This is illustrated in Fig. 10, which also shows the GLASS forms obtained in fits to
D0→ K0

Sπ
+π− decays by the BaBar collaboration [37,38] and previously used in fits to the

D0→ K0
SK
±π∓ decay modes [12]. This figure shows that the GLASS functional form has

substantial freedom to produce different phase behavior to the LASS form, but that this is
not strongly favored in the D0→ K0

SK
±π∓ decays. The good quality of fit obtained using

the LASS parameterization indicates that large differences in phase behavior with respect
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Figure 10: Comparison of the phase behavior of the various Kπ S-wave parameterizations used.
The solid (red) curve shows the LASS parameterization, while the dashed (blue) and dash-dotted
(green) curves show, respectively, the GLASS functional form fitted to the charged and neutral
S-wave channels. The final two curves show the GLASS forms fitted to the charged Kπ S-wave
in D0→ K0

Sπ
+π− decays in Ref. [37] (triangular markers, purple) and Ref. [38] (dotted curve,

black). The latter of these was used in the analysis of D0→ K0
SK±π∓ decays by the CLEO

collaboration [12].

to Kπ scattering data [45, 46] are not required in order to describe the D0→ K0
SK
±π∓

decays. A similar conclusion was drawn in Ref. [57] for the decay D+→ K−π+π+, while
Ref. [58] found behavior inconsistent with scattering data using the same D+ decay mode
but a slightly different technique. Ref. [59] studied the Kπ S-wave in τ−→ K0

Sπ
−ντ decays

and found that a parameterization based on the LASS Kπ scattering data, but without a
real production form factor, gave a poor description of the τ− decay data.

The quality of fit for each model is quantified by calculating χ2 using a dynamic
binning scheme. The values are summarized in Table 8, while the binning scheme and
two-dimensional quality of fit are shown in Appendix B. This binning scheme is generated
by iteratively sub-dividing the Dalitz plot to produce new bins of approximately equal
population until further sub-division would result in a bin population of fewer than 15
candidates, or a bin dimension smaller than 0.02 GeV2/c4 in m2

K0
Sπ

or m2
Kπ. This minimum

size corresponds to five times the average resolution in these variables.
The overall fit quality is slightly better in the isobar models using the GLASS Kπ S-wave

parameterization, but this is not a significant effect and it should be noted that these
models contain more degrees of freedom, with 57 parameters fitted in the final GLASS
model compared to 50 when using the LASS parameterization.
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Table 8: Values of χ2/bin indicating the fit quality obtained using both Kπ S-wave parameteri-
zations in the two decay modes. The binning scheme for the D0→ K0

SK−π+ (D0→ K0
SK+π−)

mode contains 2191 (2573) bins.

Isobar model
GLASS LASS

D0→ K0
SK
−π+ 1.12 1.10

D0→ K0
SK

+π− 1.07 1.09

6 Additional measurements

In this section, several additional results, including those derived from the amplitude
models, are presented.

6.1 Ratio of branching fractions measurement

The ratio of branching fractions

BK0
SKπ ≡

B(D0→ K0
SK

+π−)

B(D0→ K0
SK
−π+)

, (18)

and the restricted region ratio BK∗K, defined in the same region near the K∗(892)± resonance
as the coherence factor RK∗K (Sect. 4.2), are also measured. The efficiency correction due
to the reconstruction efficiency ε(m2

K0
Sπ
,m2

Kπ) is evaluated using the best isobar models,

and the difference between the results obtained with the two Kπ S-wave parameterizations
is taken as a systematic uncertainty in addition to those effects described in Sect. 5.2. This
efficiency correction modifies the ratio of yields quoted in Table 1 by approximately 3%.

The two ratios are measured to be

BK0
SKπ = 0.655± 0.004 (stat)± 0.006 (syst),

BK∗K = 0.370± 0.003 (stat)± 0.012 (syst).

These are the most precise measurements to date.

6.2 Coherence factor and CP -even fraction results

The amplitude models are used to calculate the coherence factors RK0
SKπ and RK∗K, and the

strong-phase difference δK0
SKπ− δK∗K, as described in Sect. 4.2. The results are summarized

in Table 9, alongside the corresponding values measured in ψ(3770) decays by the CLEO
collaboration. Lower, but compatible, coherence is calculated using the isobar models than
was measured at CLEO, with the discrepancy larger for the coherence factor calculated over
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Table 9: Coherence factor observables to which the isobar models are sensitive. The third column
summarizes the CLEO results measured in quantum-correlated decays [12], where the uncertainty
on δK0

SKπ − δK∗K is calculated assuming maximal correlation between δK0
SKπ and δK∗K.

Variable GLASS LASS CLEO

RK0
SKπ 0.573± 0.007± 0.019 0.571± 0.005± 0.019 0.73±0.08

RK∗K 0.831± 0.004± 0.010 0.835± 0.003± 0.011 1.00±0.16
δK0

SKπ − δK∗K (0.2± 0.6± 1.1)◦ (−0.0± 0.5± 0.7)◦ (−18±31)◦

the full phase space. The results from the GLASS and LASS isobar models are very similar,
showing that the coherence variables are not sensitive to the Kπ S-wave parameterization.

The coherence factor RK0
SKπ, and the ratio of branching fractions BK0

SKπ, are combined
with the mean phase difference between the two final states measured in ψ(3770) decays [12]
to calculate the CP -even fraction F+, defined in Eq. 16, which is determined to be

F+ = 0.777± 0.003 (stat)± 0.009 (syst),

using the GLASS amplitude models. A consistent result is obtained using the alternative
(LASS) amplitude models. This model-dependent value is compatible with the direct
measurement using only ψ(3770) decay data [12,51].

6.3 SU(3) flavor symmetry tests

SU(3) flavor symmetry can be used to relate decay amplitudes in several D meson decays,
such that a global fit to many such amplitudes can provide predictions for the neutral
and charged K∗(892) complex amplitudes in D0→ K0

SK
±π∓ decays [4, 5]. Predictions are

available for the K∗+K−, K∗−K+, K∗0K0 and K∗0K0 complex amplitudes, where K∗ refers
to the K∗(892) resonances. There are therefore three relative amplitudes and two relative
phases that can be determined from the isobar models, with an additional relative phase
accessible if the isobar results are combined with the CLEO measurement of the mean
strong phase difference [12]. The results are summarized in Table 10.

The isobar model results are found to follow broadly the patterns predicted by SU(3)
flavor symmetry. The amplitude ratio between the K∗(892)+ and K

∗
(892)0 resonances,

which is derived from the D0→ K0
SK
−π+ isobar model alone, shows good agreement. The

two other amplitude ratios additionally depend on the ratio BK0
SKπ, and these are more

discrepant with the SU(3) predictions. The relative phase between the charged and neutral
K∗(892) resonances shows better agreement with the flavor symmetry prediction in the
D0→ K0

SK
+π− mode, where both resonances have clear peaks in the data. The GLASS and

LASS isobar models are found to agree well, suggesting the problems are not related to the
Kπ S-wave.
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Table 10: SU(3) flavor symmetry predictions [5] and results. The uncertainties on phase difference
predictions are calculated from the quoted magnitude and phase uncertainties. Note that some
theoretical predictions depend on the η–η′ mixing angle θη−η′ and are quoted for two different
values. The bottom entry in the table relies on the CLEO measurement [12] of the coherence
factor phase δK0

SKπ, and the uncertainty on this phase is included in the statistical uncertainty,
while the other entries are calculated directly from the isobar models and relative branching
ratio. Where two uncertainties are quoted the first is statistical and the second systematic.

Theory Experiment
Ratio θη−η′ = 19.5◦ θη−η′ = 11.7◦ GLASS LASS

|A(K∗(892)−K+)|
|A(K∗(892)+K−)| 0.685± 0.032 0.685± 0.032 0.582± 0.007± 0.007 0.576± 0.005± 0.010

|A(K
∗
(892)0K0)|

|A(K∗(892)+K−)| 0.138± 0.033 0.307± 0.035 0.297± 0.010± 0.024 0.295± 0.009± 0.014

|A(K∗(892)0K0)|
|A(K∗(892)+K−)| 0.138± 0.033 0.307± 0.035 0.333± 0.008± 0.016 0.345± 0.007± 0.010

Argument Theory (◦) Experiment (◦)

A(K
∗
(892)0K0)

A(K∗(892)+K−)
151± 14 112± 8 72± 2± 4 78.5± 2.0± 2.8

A(K∗(892)0K0)
A(K∗(892)−K+)

−9± 13 −37± 6 −4± 2± 9 5.0± 1.7± 1.4

A(K∗(892)0K0)

A(K
∗
(892)0K0)

180 180 −78± 16± 10 −75± 15± 2

6.4 CP violation tests

Searches for time-integrated CP -violating effects in the resonant structure of these decays
are performed using the best isobar models. The resonance amplitude and phase parameters
aR and φR are substituted with aR(1±∆aR) and φR ±∆φR, respectively, where the signs
are set by the flavor tag. The convention adopted is that a positive sign produces the D0

complex amplitude. The full fit results are tabulated in Appendix D.
A subset of the ∆ parameters is used to perform a χ2 test against the no-CP violation

hypothesis: only those parameters corresponding to resonances that are present in the best
isobar models using both the GLASS and LASS Kπ S-wave parameterizations are included.
The absolute difference |∆GLASS −∆LASS| is assigned as the systematic uncertainty due
to dependence on the choice of isobar model. This subset of parameters is shown in
Table 11, where the change in fit fraction between the D0 and D0 solutions is included for
illustrative purposes. In the χ2 test the statistical and systematic uncertainties are added
in quadrature.

Using the best GLASS (LASS) isobar models the test result is χ2/ndf = 30.5/32 = 0.95
(32.3/32 = 1.01), corresponding to a p-value of 0.54 (0.45). Therefore, the data are
compatible with the hypothesis of CP -conservation.
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7 Conclusions

The decay modes D0→ K0
SK
±π∓ have been studied using unbinned, time-integrated, fits

to a high purity sample of 189 670 candidates, and two amplitude models have been
constructed for each decay mode. These models are compared to data in a large number
of bins in the relevant Dalitz plots and a χ2 test indicates a good description of the data.

Models are presented using two different parameterizations of the Kπ S-wave systems,
which have been found to be an important component of these decays. These systems are
poorly understood, and comparisons have been made to previous results and alternative
parameterizations, but the treatment of the Kπ S-wave is found to have little impact on
the other results presented in this paper. The large fractions attributed to the neutral
Kπ S-wave channels could indicate larger than expected contributions from the penguin
annihilation diagrams shown in Fig. 1d.

The models are seen to favor small, but significant, contributions from the
ρ(1450, 1700)± → K0

SK
± resonances, modes which were seen by the OBELIX experi-

ment [44] but are not well established. All models contain clear contributions from
both the K∗(892)± and K∗(892)0 resonances, with the K∗(892)0 contribution found to be
suppressed as expected from the diagrams shown in Fig. 1. This allows the full set of
amplitudes in these decays that are predicted by SU(3) flavor symmetry to be tested, in
contrast to the previous analysis by the CLEO collaboration [12]. Partial agreement is
found with these predictions.

The ratio of branching fractions between the two D0→ K0
SK
±π∓ modes is also measured,

both across the full Dalitz plot area and in a restricted region near the K∗(892)± resonance,
with much improved precision compared to previous results.

Values for the D0→ K0
SKπ coherence factor are computed using the amplitude models,

again both for the whole Dalitz plot area and in the restricted region, and are found to be
in reasonable agreement with direct measurements by CLEO [12] using quantum-correlated
ψ(3770)→ D0D0 decays. The CP -even fraction of the D0→ K0

SKπ decays is also computed,
using input from the quantum-correlated decays, and is found to be in agreement with the
direct measurement [12,51]. A search for time-integrated CP violation is carried out using
the amplitude models, but no evidence is found with either choice of parameterization for
the Kπ S-wave.

The models presented here will be useful for future D0–D0 mixing, indirect CP violation
and CKM angle γ studies, where knowledge of the strong-phase variation across the Dalitz
plot can improve the attainable precision. These improvements will be particularly valuable
for studies of the large dataset that is expected to be accumulated in Run 2 of the LHC.
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Appendices

A Additional isobar formalism information

This appendix contains Table 12, which summarizes the nominal values used for the various
resonance and form factor parameters.

B Additional isobar model information

This appendix contains additional information about the various isobar model parameters
that are used and allowed to vary freely in the model fits, e.g. resonance mass and width
parameter values, and parameters of the GLASS and LASS Kπ S-wave functional forms.

Tables 13 and 14 summarize the most significant interference terms in the D0→ K0
SK
−π+

and D0→ K0
SK

+π− models, respectively. Table 15 defines the matrices U used to define
the LASS Kπ S-wave form factor. Tables 16 (GLASS) and 17 (LASS) summarize the various
resonance and form factor parameters. The nominal values that are used in Gaussian
constraint terms are given in Appendix A.

Figure 11 shows the smooth functions that describe the combinatorial background in
the isobar model fits. Figure 12 illustrates the two-dimensional quality of fit achieved in
the four isobar models and shows the binning scheme used to derive χ2/bin values.

The changes in −2 logL obtained in alternative models where one ρ contribution is
removed are given in Table 18.
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Figure 11: Smooth functions, cK0
SK±π∓(m2
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SK
,m2

K0
Sπ

), used to describe the combinatorial back-

ground component in the D0→ K0
SK−π+ (left) and D0→ K0

SK+π− (right) amplitude model
fits.
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Table 12: Nominal values for isobar model parameters that are fixed in the model fits, or used in
constraint terms. These values are taken from Refs. [3, 35,44,45] as described in Sect. 4.

Parameter Value

K∗(892)±
mR 891.66±0.26 MeV/c2

ΓR 50.8±0.9 MeV/c2

K∗(1410)±
mR 1.414±0.015 GeV/c2

ΓR 0.232±0.021 GeV/c2

(K0
Sπ)±S-wave

mR 1.435±0.005 GeV/c2

ΓR 0.279±0.006 GeV/c2

K∗(892)0 mR 895.94±0.22 MeV/c2

ΓR 48.7±0.8 MeV/c2

K∗(1410)0 mR 1.414±0.015 GeV/c2

ΓR 0.232±0.021 GeV/c2

K∗2(1430)0 mR 1.4324±0.0013 GeV/c2

ΓR 0.109±0.005 GeV/c2

(Kπ)0
S-wave

mR 1.435±0.005 GeV/c2

ΓR 0.279±0.006 GeV/c2

Kπ S-wave
r 1.8±0.4 (GeV/c)−1

a 1.95±0.09 (GeV/c)−1

a0(980)±
mR 0.980±0.020 GeV/c2

gηπ 324±15 MeV
g2
KK

g2ηπ
1.03±0.14

a2(1320)±
mR 1.3181±0.0007 GeV/c2

ΓR 0.1098±0.0024 GeV/c2

a0(1450)±
mR 1.474±0.019 GeV/c2

ΓR 0.265±0.013 GeV/c2

ρ(1450)±
mR 1.182±0.030 GeV/c2

ΓR 0.389±0.020 GeV/c2

ρ(1700)±
mR 1.594±0.020 GeV/c2

ΓR 0.259±0.020 GeV/c2
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Table 15: Matrices U relating the fit coordinates b′ to the LASS form factor coordinates b = Ub′

defined in Sect. 4.

(K0
Sπ)±S-wave (Kπ)0

S-wave−0.460 0.702 −0.543
0.776 0.197 −0.631
−0.433 −0.711 −0.554

 −0.452 −0.676 −0.582
0.776 0.0243 −0.631
−0.440 0.737 −0.513


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Figure 12: Two-dimensional quality-of-fit distributions illustrating the dynamic binning scheme
used to evaluate χ2. The variable shown is di−pi√

pi
where di and pi are the number of events and

the fitted value, respectively, in bin i. The D0→ K0
SK−π+ (D0→ K0

SK+π−) mode is shown in
the left (right) column, and the GLASS (LASS) isobar models are shown in the top (bottom) row.
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Table 16: Additional fit parameters for GLASS models. This table does not include parameters
that are fixed to their nominal values. The first uncertainties are statistical and the second
systematic.

Parameter Value

K∗(892)±
mR 893.1± 0.1± 0.9 MeV/c2

ΓR 46.9± 0.3± 2.5 MeV/c2

K∗(1410)± ΓR 210± 20± 60 MeV/c2

(K0
Sπ)±S-wave

F 1.785 (fixed)
a 4.7± 0.4± 1.0 (GeV/c)−1

φF 0.28± 0.05± 0.19 rad
φS 2.8± 0.2± 0.5 rad
r −5.3± 0.4± 1.9 (GeV/c)−1

K∗(1410)0 mR 1426± 8± 24 MeV/c2

ΓR 270± 20± 40 MeV/c2

(Kπ)0
S-wave

F 0.15± 0.03± 0.14
a 4.2± 0.3± 2.8 (GeV/c)−1

φF −2.5± 0.2± 1.0 rad
φS −1.1± 0.6± 1.3 rad
r −3.0± 0.4± 1.7 (GeV/c)−1

a0(1450)± mR 1430± 10± 40 MeV/c2

ρ(1450)± ΓR 410± 19± 35 MeV/c2

ρ(1700)± mR 1530± 10± 40 MeV/c2
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Table 17: Additional fit parameters for LASS models. This table does not include parameters
that are fixed to their nominal values. The first uncertainties are statistical and the second
systematic.

Parameter Value

K∗(892)±
mR 893.4± 0.1± 1.1 MeV/c2

ΓR 47.4± 0.3± 2.0 MeV/c2

K∗(1410)± mR 1437± 8± 16 MeV/c2

(K0
Sπ)±S-wave

b′1 60± 30± 40
b′2 4± 1± 5
b′3 3.0± 0.2± 0.7

K∗(1410)0 mR 1404± 9± 22 MeV/c2

(Kπ)0
S-wave

b′1 130± 30± 80
b′2 −6± 1± 14
b′3 2.5± 0.1± 1.4

Kπ S-wave r 1.2± 0.3± 0.4 (GeV/c)−1

a0(980)± mR 925± 5± 8 MeV/c2

a0(1450)±
mR 1458± 14± 15 MeV/c2

ΓR 282± 12± 13 MeV/c2

ρ(1450)± mR 1208± 8± 9 MeV/c2

ρ(1700)± mR 1552± 13± 26 MeV/c2

Table 18: Change in −2 logL value when removing a ρ resonance from one of the models.

Kπ S-wave Removed
parameterization Decay mode resonance ∆(−2 logL)

LASS
D0→ K0

SK
−π+ ρ(1450)− 338

D0→ K0
SK

+π− ρ(1700)+ 235

GLASS

D0→ K0
SK
−π+ ρ(1450)− 238

ρ(1700)− 162

D0→ K0
SK
−π+ ρ(1450)+ 175

ρ(1700)+ 233
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C Systematic uncertainty tables

This appendix includes tables summarizing the various contributions to the systematic
uncertainties assigned to the various results. The table headings correspond to the
uncertainties discussed in Sect. 5.2 with some abbreviations to allow the tables to be
typeset compactly. Definitions of the various abbreviations are given in Table 19. The
quantity ‘DFF’ listed in the tables is the sum of fit fractions from the various resonances,
excluding interference terms. Tables 20 (GLASS) and 21 (LASS) show the results for the
complex amplitudes and fit fractions in the D0→ K0

SK
−π+ models, Tables 22 (GLASS)

and 23 (LASS) show the corresponding values for the D0→ K0
SK

+π− models and Tables 24
and 25 summarize the uncertainties for the parameters that are not specific to a decay
mode.

In each of these tables the parameter in question is listed on the left, followed by the
central value and the corresponding statistical (first) and systematic (second) uncertainty.
The subsequent columns list the contributions to this systematic uncertainty, and are
approximately ordered in decreasing order of significance from left to right.

D CP violation fit results

This appendix contains Table 26, which summarizes the full fit results of the CP violation
searches described in Sect. 6.4.
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Table 19: Listing of abbreviations required to typeset the systematic uncertainty tables.

Abbreviation Description

max(| cos |) Variation of the cut that excludes the boundary regions of the Dalitz
plot.

Efficiency Two efficiency modelling uncertainties added in quadrature: using an
alternative parameterization, and accounting for the limited size of the
simulated event sample.

Joint Uncertainty obtained by simultaneously fitting disjoint sub-sets of the
dataset, separated by the year of data-taking and type of K0

S daughter
track, with distinct efficiency models.

Weights Three uncertainties related to the re-weighting of simulated events used
to generate the efficiency model ε(m2

K0
Sπ
,m2

Kπ), added in quadrature.

These account for: incorrect simulation of the underlying pp interaction,
uncertainty in the relative yield of long and downstream K0

S candidates,
and uncertainty in the efficiency of selection requirements using informa-
tion from the RICH detectors.

Comb. Using an alternative combinatorial background model.
−2 logL Using a more complex alternative model where the threshold in

∆(−2 logL) for a resonance to be retained is reduced to 9 units.
Flatté Variation of the Flatté lineshape parameters for the a0(980)± resonance

according to their nominal uncertainties.
fm, fc Variation of the mistag and combinatorial background rates according

to their uncertainties in the mass fit.
dD0 , dR Variation of the meson radius parameters.
Tρ± Switching to a Breit-Wigner dynamical function to describe the

ρ(1450, 1700)± resonances.
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Joint

Comb.

Tρ
±

fm
,f

c

K
∗ (

89
2)
−

F
F

[%
]

28
.8
±

0
.4
±

1.
3

0
.0

7
0
.0

8
0
.3

2
0
.2

1
0
.1

5
0
.0

8
1
.2

1
0.

0
1

0.
0
1

0.
1
9

K
∗ (

14
10

)−
a
R

9.
1
±

0
.6
±

1.
5

1
.2

1
0
.0

6
0
.5

8
0
.4

1
0
.3

9
0
.0

8
0
.1

9
0.

0
9

0.
0
1

0.
0
3

φ
R

(◦
)

−
79
±

3
±

7
5.

2
4
.1

2
.7

0
.8

0
.6

0.
9

0.
2

0.
2

0.
0

0.
4

F
F

[%
]

11
.9
±

1
.5
±

2.
2

0
.1

5
0
.0

0
1
.4

2
1
.1

1
1
.0

4
0.

1
7

0.
7
1

0.
1
5

0.
1
0

0.
0
8

(K
0 S
π

)− S
-w

a
v
e

a
R

1
.1

6
±

0
.1

1
±

0.
32

0
.2

0
0
.2

1
0
.1

0
0
.0

4
0
.0

4
0
.0

4
0
.0

1
0.

0
4

0.
0
2

0.
0
3

φ
R

(◦
)

−
10

1
±

6
±

21
1
9.

3
6
.2

5
.7

2
.7

1
.6

2.
3

0.
4

0.
0

0.
8

0.
6

F
F

[%
]

6
.3
±

0
.9
±

2.
1

1
.3

0
1
.3

1
0
.8

1
0
.2

4
0
.4

2
0.

2
0

0.
1
9

0.
2
6

0.
2
0

0.
1
1

K
∗ (

89
2)

0
a
R

0.
42

7
±

0
.0

10
±

0.
0
1
3

0
.0

1
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0.

0
0

0.
0
0

0.
0
0

φ
R

(◦
)
−

17
5
.0
±

1
.7
±

1.
4

0
.2

1
.2

0
.3

0
.2

0
.2

0
.3

0.
1

0.
5

0.
3

0.
2

F
F

[%
]

5
.1

7
±

0
.2

1
±

0.
32

0
.1

6
0
.2

0
0
.0

4
0
.0

8
0
.0

8
0.

0
1

0.
1
0

0.
1
0

0.
0
0

0.
0
2

K
∗ (

14
10

)0
a
R

4.
2
±

0
.5
±

0.
9

0
.3

3
0
.2

0
0
.7

1
0
.1

6
0
.1

3
0
.1

5
0
.0

3
0.

0
8

0.
0
2

0.
0
6

φ
R

(◦
)

16
5
±

5
±

10
1.

3
7
.1

3
.6

4
.3

2
.5

0.
7

0.
2

1.
8

1.
1

0.
6

F
F

[%
]

2
.2
±

0
.6
±

2.
1

1
.8

2
0
.3

6
0
.7

7
0
.3

4
0
.1

9
0.

1
6

0.
1
2

0.
0
3

0.
0
7

0.
0
7

(K
π

)0 S
-w

a
v
e

a
R

1.
7
±

0
.2
±

0.
4

0
.1

8
0
.2

9
0
.1

7
0
.0

6
0
.0

9
0
.0

4
0
.0

0
0.

0
8

0.
0
0

0.
0
3

φ
R

(◦
)

14
4
±

3
±

6
3.

6
0
.9

2
.2

2
.3

3
.3

0.
4

0.
9

0.
5

0.
7

0.
3

F
F

[%
]

17
±

2
±

6
3.

7
6

4
.3

1
2
.3

0
0
.7

0
0
.5

6
0.

6
0

1.
3
7

0.
5
4

0.
0
0

0.
3
2

a
0
(9

80
)+

a
R

3.
8
±

0
.2
±

0.
7

0
.3

0
0
.6

4
0
.0

3
0
.1

1
0
.1

7
0
.0

6
0
.0

2
0.

1
0

0.
0
1

0.
0
3

φ
R

(◦
)

12
6
±

3
±

6
4.

3
0
.4

0
.8

1
.3

1
.9

2
.7

0.
2

0.
6

0.
5

0.
5

F
F

[%
]

26
±

2
±

10
3.

6
1

8
.8

3
0
.0

1
1
.6

7
1
.4

4
0.

2
7

1.
1
2

0.
9
2

0.
1
5

0.
1
5

a
0
(1

45
0)

+
a
R

0
.8

6
±

0
.1

0
±

0.
12

0
.0

6
0
.0

0
0
.0

0
0
.0

4
0
.0

7
0
.0

2
0
.0

3
0.

0
4

0.
0
1

0.
0
2

φ
R

(◦
)

−
11

0
±

8
±

7
1.

7
2
.5

3
.5

1
.2

3
.9

1
.8

1.
1

1.
1

0.
5

1.
0

F
F

[%
]

1
.5
±

0
.3
±

0.
4

0
.2

2
0
.0

7
0
.0

2
0
.1

5
0
.2

5
0.

0
6

0.
0
5

0.
1
3

0.
0
3

0.
0
5

ρ
(1

70
0)

+
a
R

1
.2

5
±

0
.1

5
±

0.
33

0
.2

2
0
.1

2
0
.0

7
0
.1

2
0
.1

2
0
.0

2
0
.0

2
0.

0
4

0.
1
1

0.
0
2

φ
R

(◦
)

39
±

9
±

15
9.

5
8
.4

5
.1

4
.0

2
.0

1.
3

0.
1

0.
4

2.
1

1.
1

F
F

[%
]

0
.5

3
±

0
.1

1
±

0.
23

0
.1

5
0
.0

8
0
.0

6
0
.0

7
0
.1

0
0.

0
1

0.
0
7

0.
0
3

0.
0
2

0.
0
1

χ
2
/b

in
1.

09
1
.1

0
1
.0

7
1
.0

8
−

−
1
.0

9
1
.1

4
1.

0
9

1.
0
9

1.
0
9

D
F

F
[%

]
99

.0
9
9
.1

1
0
4.

8
9
5.

6
−

−
9
8
.9

1
0
0.

7
9
9.

3
9
9
.3

9
9
.4

43



T
a
b

le
2
4
:

S
y
st

em
a
ti

c
u

n
ce

rt
a
in

ti
es

fo
r

sh
a
re

d
p

a
ra

m
et

er
s,

co
h
er

en
ce

a
n

d
re

la
ti

v
e

b
ra

n
ch

in
g

ra
ti

o
o
b

se
rv

a
b

le
s

in
th

e
G
L
A
S
S

m
o
d

el
s.

T
h

e
sy

st
em

at
ic

u
n

ce
rt

ai
n
ty

on
th

e
K
∗ (

8
92

)±
w

id
th

d
u

e
to

n
eg

le
ct

in
g

re
so

lu
ti

on
eff

ec
ts

in
th

e
n

om
in

al
m

o
d

el
s

is
0
.5

M
eV
/
c2

.

R
es

on
an

ce
V

a
r

B
a
se

li
n
e

dD
0,d

R

Comb.

max(|co
s|)

Tρ
±

Joint

−2logL

Efficie
ncy

Weig
hts

Flatté
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Supplemental material

This is divided into two parts: lookup tables for the complex amplitude and covariance
information, each for the four quoted amplitude models. These are available at Ref. [60].
No correlation information is included for systematic uncertainties.

Isobar model lookup tables

The lookup table filenames are listed in Table 27. As an example, the first five lines of the
file glass fav lookup.txt are:

# S-wave: GLASS, mode: D0->KSK-pi+ (FAV)

# mD0 = 1.86486; mKS = 0.497614; mK = 0.493677; mPi = 0.13957018 GeV/c^2

# m^2(Kpi) GeV^2/c^4, m^2(KSpi) GeV^2/c^4, |amp|^2 arb. units, arg(amp) rad

0.300625,0.300625,0.000000e+00,0.000000

0.300625,0.301875,0.000000e+00,0.000000

The first three lines are comments, describing which D0 decay mode and isobar model this
file corresponds to, giving the precise nominal masses used in the fit and, finally, defining
the data fields in the remainder of the file. As this shows, the models are evaluated on a
grid with a spacing of 0.00125 GeV2/c4.

Covariance information

A reduced covariance matrix is presented for each isobar model, tabulating the correlations
between the complex amplitudes aRe

iφR . These are listed in files named analogously to
those in Table 27, e.g. glass fav covariance.txt. An example first four lines:

# S-wave: GLASS, mode: D0->KSK-pi+ (FAV)

# x , y , cov(x,y)

K(0)*(1430)+_Amp,K(0)*(1430)+_Amp,2.195e-03

K(0)*(1430)+_Amp,K(0)*(1430)+_Phase,1.147e-01

i.e. a similar format to the lookup tables. Note that the Kπ S-wave contributions are
tabulated as K(0)*(1430)+ and K(0)*(1430)bar0.

Table 27: Lookup table filenames.

Kπ S-wave parameterization
D0 decay mode GLASS LASS

D0→ K0
SK
−π+ glass fav lookup.txt lass fav lookup.txt

D0→ K0
SK

+π− glass sup lookup.txt lass sup lookup.txt

47



References

[1] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.

[2] M. Kobayashi and T. Maskawa, CP -violation in the renormalizable theory of weak
interaction, Prog. Theor. Phys. 49 (1973) 652.

[3] Particle Data Group, K. A. Olive et al., Review of particle physics, Chin. Phys. C38
(2014) 090001.

[4] B. Bhattacharya and J. L. Rosner, Relative phases in D0 → K0K−π+ and D0 →
K0K+π− Dalitz plots, arXiv:1104.4962.

[5] B. Bhattacharya and J. L. Rosner, Flavor SU(3) tests from D0 → K0K−π+ and
D0 → K0K+π− Dalitz plots, Phys. Lett. B714 (2012) 276, arXiv:1203.6014.

[6] Note on “Scalar mesons below 2 GeV/c2” in Ref. [3].

[7] D. Atwood, I. Dunietz, and A. Soni, Enhanced CP violation with B → KD0(D0)
modes and extraction of the Cabibbo-Kobayashi-Maskawa angle γ, Phys. Rev. Lett.
78 (1997) 3257, arXiv:hep-ph/9612433.

[8] D. Atwood, I. Dunietz, and A. Soni, Improved methods for observing CP violation
in B± → KD and measuring the CKM phase γ, Phys. Rev. D63 (2001) 036005,
arXiv:hep-ph/0008090.

[9] Y. Grossman, Z. Ligeti, and A. Soffer, Measuring γ in B+ → K±(KK∗)D decays,
Phys. Rev. D67 (2003) 071301(R), arXiv:hep-ph/0210433.

[10] LHCb collaboration, R. Aaij et al., A study of CP violation in B± → DK± and
B± → Dπ± decays with D → K0

SK
±π∓ final states, Phys. Lett. B733 (2014) 36,

arXiv:1402.2982.

[11] D. Atwood and A. Soni, Role of a charm factory in extracting CKM phase information
via B → DK, Phys. Rev. D68 (2003) 033003, arXiv:hep-ph/0304085.

[12] CLEO collaboration, J. Insler et al., Studies of the decays D0 → K0
SK
−π+ and

D0 → K0
SK

+π−, Phys. Rev. D85 (2012) 092016, arXiv:1203.3804.

[13] S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, A Cicerone for the physics of charm,
Riv. Nuovo Cim. 26N7 (2003) 1, arXiv:hep-ex/0309021.

[14] M. Artuso, B. Meadows, and A. A. Petrov, Charm meson decays, Ann. Rev. Nucl.
Part. Sci. 58 (2008) 249, arXiv:0802.2934.

[15] F. Buccella, M. Lusignoli, A. Pugliese, and P. Santorelli, CP violation in D me-
son decays: Would it be a sign of new physics?, Phys. Rev. D88 (2013) 074011,
arXiv:1305.7343.

48

http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://pdg.lbl.gov/
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://arxiv.org/abs/1104.4962
http://dx.doi.org/10.1016/j.physletb.2012.07.009
http://arxiv.org/abs/1203.6014
http://dx.doi.org/10.1103/PhysRevLett.78.3257
http://dx.doi.org/10.1103/PhysRevLett.78.3257
http://arxiv.org/abs/hep-ph/9612433
http://dx.doi.org/10.1103/PhysRevD.63.036005
http://arxiv.org/abs/hep-ph/0008090
http://dx.doi.org/10.1103/PhysRevD.67.071301
http://arxiv.org/abs/hep-ph/0210433
http://dx.doi.org/10.1016/j.physletb.2014.03.051
http://arxiv.org/abs/1402.2982
http://dx.doi.org/10.1103/PhysRevD.68.033003
http://arxiv.org/abs/hep-ph/0304085
http://dx.doi.org/10.1103/PhysRevD.85.092016
http://arxiv.org/abs/1203.3804
http://dx.doi.org/10.1393/ncr/i2003-10003-1
http://arxiv.org/abs/hep-ex/0309021
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171131
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171131
http://arxiv.org/abs/0802.2934
http://dx.doi.org/10.1103/PhysRevD.88.074011
http://arxiv.org/abs/1305.7343


[16] Y. Grossman, A. L. Kagan, and Y. Nir, New physics and CP violation in singly Cabibbo
suppressed D decays, Phys. Rev. D75 (2007) 036008, arXiv:hep-ph/0609178.

[17] S. Malde and G. Wilkinson, D0–D0 mixing studies with the decays D0 → K0
SK
∓π±,

Phys. Lett. B701 (2011) 353, arXiv:1104.2731.

[18] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3
(2008) S08005.

[19] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys.
A30 (2015) 1530022, arXiv:1412.6352.

[20] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022,
arXiv:1211.3055.
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O. Deschamps5, F. Dettori38, B. Dey21, A. Di Canto38, F. Di Ruscio24, H. Dijkstra38,
S. Donleavy52, F. Dordei11, M. Dorigo39, A. Dosil Suárez37, D. Dossett48, A. Dovbnya43,
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41Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The
Netherlands
43NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
44Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
45University of Birmingham, Birmingham, United Kingdom
46H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
47Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
48Department of Physics, University of Warwick, Coventry, United Kingdom
49STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
50School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
52Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53Imperial College London, London, United Kingdom
54School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55Department of Physics, University of Oxford, Oxford, United Kingdom
56Massachusetts Institute of Technology, Cambridge, MA, United States
57University of Cincinnati, Cincinnati, OH, United States
58University of Maryland, College Park, MD, United States
59Syracuse University, Syracuse, NY, United States
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gUniversità di Urbino, Urbino, Italy
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lUniversità di Roma La Sapienza, Roma, Italy
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rUniversità di Pisa, Pisa, Italy
sScuola Normale Superiore, Pisa, Italy
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