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The semiclassical operator method of Baier and Katkov allows one to obtain the spectrum of synchrotron
radiation in a way similar to the classical derivation but which is fully valid also in the quantum case of very
strong electromagnetic fields. In the usual calculation the extension of the field is taken to be infinite. In this
paper we apply a numerical routine based on the semiclassical operator method to the case of a constant
field but with a finite extension. For large extensions of the field one obtains the usual result of quantum
synchrotron radiation, while in the limit of small extension of the field one obtains a spectrum resembling
that of bremsstrahlung. We derive a formula for the radiation spectrum in this limit. In the transition toward
shorter field extensions one finds that the power-spectrum increases for soft photons and slightly
diminishes for harder photons. It is found that in the classical case the total power emitted decreases as the
field extension decreases while in the quantum case the total power emitted is first increased and then
decreases. Such an effect could be important for future eþe− colliders such as the ILC or CLIC where the
dominant energy and luminosity loss is due to synchrotron radiation by an e−=eþ in the field of
the opposing bunch, often termed “beamstrahlung.” In this paper we also discuss how these effects, in the
quantum case could be measured in an experiment using thin aligned single crystals and high energy
electrons available at e.g. the CERN SPS North Area, and in the classical case could already be relevant at
existing accelerators with conventional magnets providing the electromagnetic field.
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I. INTRODUCTION

In the field of strong field QED, processes whose
description defy the usual application of the perturbative
expansion in orders of α are of major interest. Until recently
only a handful of analytical solutions existed in this case,
namely the case of a plane wave field and the constant
crossed field, see e.g. [1]. Recently analytical solutions in
strong fields for the cases of ultrashort laser pulses have
been found [2,3]. In this paper we will likewise investigate
radiation emission by electrons in a nontrivial field
configuration.
The result of quantum synchrotron radiation was first

derived by N. P. Klepikov [4] and has been studied by
several notable physicists in the field of QED [5–7]. The
semiclassical operator method of V. N. Baier and V. M.
Katkov seen in e.g. [8,9] provides a powerful method
for the calculation of such processes. In [10] it is
discussed how this method can be rewritten in a form
similar to the classical formula of radiation emission as
seen in e.g. [11] which allows one to find the radiation
emission spectrum in any electromagnetic field by
numerical methods. As seen in e.g. [1,12] a more
traditional approach to the problem consists of finding

the exact wave function of the Dirac equation where the
constant crossed field is included exactly [13], and then
treating the radiation emission to first order in pertur-
bation theory. If the field is no longer “simple” e.g. a
constant crossed field, finding the exact wave function is
not a trivial task. The semiclassical operator method is
powerful here, in the sense that finding this wave
function is unnecessary—the classical motion in the
field is sufficient. In Sec. II we will briefly introduce the
theoretical formalism forming the basis of the numerical
routine (see also [10] for this). In Sec. III we discuss the
usual result of quantum synchrotron radiation and when
the field should be considered “short.” In Sec. IV we
discuss the results of the numerical solution in the limit
of short and “long” extensions of the field, as well as
what happens in the intermediate region. In Sec. V we
derive an analytical formula for the radiation spectrum
in the limit of a short extension of the field. In Sec. VI
we discuss the relevance of the obtained results in future
colliders and how one could study these phenomena
experimentally.
We use units where ℏ ¼ c ¼ 1 and e2 ¼ α≃ 1

137
,

unless otherwise stated. For 4-vectors we employ the
ðþ;−;−;− Þ metric and the dot product of two 4-vectors
is defined as the contraction i.e. ab ¼ aμbμ.

II. THEORETICAL FORMALISM

It is well known that some radiation phenomena
are well described using classical electrodynamics such
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as synchrotron and undulator/wiggler radiation, while
others, such as radiation from atomic transitions, are
not. Bohr’s correspondence principle dictates that in the
limit of large quantum numbers, quantum theory must
reduce to that of classical physics. Atomic states have
relatively low quantum numbers, compared to for in-
stance a high energy electron in a magnetic field of
typical laboratory field strengths. The case of synchrotron
radiation, where an electron moves in a magnetic field,
can be solved quantum mechanically giving the well-
known Landau levels and the level spacing ωL given by
the cyclotron frequency, the classical frequency of rev-
olution. The quantum number is therefore given by the

particle energy ε and is ε
ωL

¼ γ2B0

B where γ is the

relativistic gamma factor and B0 ¼ m2

e ≃ 4.4 × 109 T is
the Schwinger critical magnetic field. This means that as
the particle energy increases, the motion becomes
increasingly classical, and a trajectory as opposed to a
wave function is an accurate description of the motion.
However, the radiation process itself can be quantum
mechanical, even if the motion is classical. Quantum
effects become important in the radiation process when
the emitted photon energy can no longer be neglected in
comparison to the particle energy, meaning a condition
for a classical treatment is ω ≪ ε, or in other words that
the particle recoil due to radiation emission is negligible.
Analytical applications of the semiclassical operator
method show that this is equivalent with χ ≪ 1, i.e. χ
is the relevant parameter when deciding whether quantum
theory is necessary, see [9] for a more thorough dis-
cussion of this subject. Here we defined

χ ¼
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðFμνpνÞ2i

q
m3

; ð1Þ

where Fμν is the electromagnetic field tensor, pν the
electron 4-momentum and m the electron mass. In the
case of a constant magnetic field this becomes

χ ¼ γ
B
B0

; ð2Þ

where γ is the Lorentz factor of the incoming particle and
B the magnetic field strength.
The essence of the semiclassical operator method [9,14]

is the neglect of quantum effects in the motion of the
energetic particle, while treating the radiation emission
quantum mechanically. This powerful result means that the
classical trajectory completely determines the radiation
emitted, also in the quantum regime.
In strong field QED, in addition to the parameter χ, often

called the quantum nonlinearity parameter, one also intro-
duces the classical nonlinearity parameter which in the case
of a plane wave field is

ξ ¼ eEr:m:s:

mω
; ð3Þ

where Er:m:s: is the r.m.s. electric field strength and ω the
angular frequency of the plane wave field. In the case of a
plane wave field the two nonlinearity parameters χ and ξ
can be varied individually to give a variety of cases. In the
case of a plane wave field, edges are found in the emission
spectrum corresponding to absorption of s number of
photons given by the formula

ωs ¼
4sωε2

m̄2 þ 4sωεþ ε2θ2
; ð4Þ

where m̄2 ¼ m2ð1þ ξ2Þ and θ the angle of the emitted
photon. Some controversy surrounds the effective mass m̄
[2,15,16] and it has not yet been demonstrated exper-
imentally. As ξ increases from 0 the increased effective
mass moves the kinematic edge found in the emission
spectrum toward a lower photon energy as seen from
Eq. (4) (the edge corresponds to θ ¼ 0). In addition the
higher harmonics (s > 1) become dominant. The case of
the constant crossed field can be seen to correspond with
letting ω → 0 in Eq. (3) or m̄ → ∞. In this case the
spectrum will consist of a sum of many harmonics which
have become very downshifted due to the increased
effective mass—the sum of which add up to the well-
known constant crossed field result to be discussed later.
The shape of the spectrum in the case of the constant
crossed field of infinite extension is thus determined only
by the single parameter χ.
We employ a formula seen in [17], derived and discussed

in detail in [10], of the radiation emission similar to the
classical result [11]. In this approach the electromagnetic
coupling of the electron to the incoming electromagnetic
field is treated exactly i.e. without the use of perturbation
theory while the coupling to the outgoing electromagnetic
field leading to emission is treated to first order in
perturbation theory.
As seen in [10,17] the energy emitted differential in

photon energy and solid angle, in the case of an initially
unpolarized electron, and summing over final spins is
given by

d2I
dωdΩ

¼ e2

4π2

�
ε02 þ ε2

2ε2
jIj2 þ ω2m2

2ε4
jJj2

�
: ð5Þ

In [10] one also finds the contribution when the initial
electron beam is polarized, which in the case of a constant
field gives additional contributions when the beams are
polarized transversely to the velocity. In a collider, how-
ever, the beams will be longitudinally polarized and these
terms vanish. Thus we consider the case of an unpolarized
beam. We have defined
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I ¼
Z

∞

−∞
f ðt;nÞeik0xdt; ð6Þ

J ¼
Z

∞

−∞

n · _v
ð1 − n · vÞ2 e

ik0xdt; ð7Þ

where k is the photon 4-momentum, xðtÞ ¼ ðt; xðtÞÞ,
where xðtÞ is the solution of the relativistic equation
of motion using the Lorentz force given by the back-
ground field, k0 ¼ ε

ε0 k, ε
0 ¼ ε − ω and n is a unit vector

in the direction of k. We will also use the notation
ω0 ¼ ω ε

ε0. We have defined

f ðt; nÞ ¼ n × ½ðn − vÞ × _v�
ð1 − v · nÞ2 ; ð8Þ

where v ¼ _x is the velocity and _v the acceleration. In
addition we have the useful relations

Z
∞

−∞
ðn − vÞeik0xdt

¼
Z

∞

−∞
n × ðn × vÞeik0xdt

¼ −
1

iω0

Z
∞

−∞
f ðt; nÞeik0xdt ¼ i

ω0 I; ð9Þ

and

Z
∞

−∞
eik

0xdt ¼
Z

∞

−∞
n · veik

0xdt

¼
Z

∞

−∞

n · v
1 − n · v

1

iω0
d
dt

ðeik0xÞdt

¼ −
1

iω0

Z
∞

−∞

n · _v
ð1 − n · vÞ2 e

ik0xdt ¼ i
ω0 J: ð10Þ

We define the “phase” as the function.

ϕ ¼ k0x ¼ ω0ðt − n · xðtÞÞ: ð11Þ

We remind the reader that the classical result for the
radiation emission instead of Eq. (5) is given by

d2I
dωdΩ

¼ e2

4π2

����
Z

∞

−∞
f ðt; nÞeikxdt

����
2

: ð12Þ

The initial direction of motion is chosen along the z-axis
and we therefore define δz ¼ z − v0t where v0 ≃ 1 − 1

2γ2

and θx, θy are the small transverse components of n such

that n ¼ ðθx; θy; 1 − θ2

2
Þ and θ2 ¼ θ2x þ θ2y. We then expand

Eq. (8) to leading order in the small quantities vx, vy, θx, θy
and 1=γ to obtain

fx ¼ g

�
θy½ðθx − vxÞ _vy − ðθy − vyÞ_vx�

−
�

1

2γ2
−
θ2

2
− δvz

�
_vx þ ðθx − vxÞδ _vz

�
; ð13Þ

fy ¼ g

�
ðθy − vyÞδ _vz −

�
1

2γ2
−
θ2

2
− δvz

�
_vy

− θx½ðθx − vxÞ _vy − ðθy − vyÞ_vx�
�
; ð14Þ

fz ¼ g

�
θx

��
1

2γ2
−
θ2

2
− δvz

�
_vx − ðθx − vxÞδ _vz

	

− θy

�
ðθy − vyÞδ _vz −

�
1

2γ2
−
θ2

2
− δvz

�
_vy

	�
; ð15Þ

and

n · _v ¼ gfn⊥ · _v⊥ þ δ _vzg ð16Þ

where we have defined n⊥ ¼ ðθx; θyÞ, v⊥ ¼ ðvx; vyÞ
and

g ¼
�

1

2γ2
þ θ2

2
− δvz − n⊥ · v⊥

�
−2
: ð17Þ

Similarly the exponential phase becomes

k0x ¼ ε

ε0
ω

��
1

2γ2
þ θ2

2

�
t − δzðtÞ − n⊥ · x⊥ðtÞ

�
: ð18Þ

fz is suppressed by 1
γ compared to fx and fy, and can thus

be neglected.

III. SYNCHROTRON RADIATION

Because of the similarity of Eq. (5) with the classical
result, one can follow a calculation completely analogous
to the one found in [11] to obtain the distribution of
synchrotron radiation, but valid also in the quantum case.
Synchrotron radiation is obtained by using Eq. (5) and the
motion as described by

vx ¼ v sin

�
vt
R

�
; ð19Þ

vy ¼ 0; ð20Þ

vz ¼ v cos

�
vt
R

�
; ð21Þ

where R ¼ p
eB is the radius of curvature, v the velocity

and t the time coordinate. To obtain I we calculateR ðn − vÞeik0xdt, see Eq. (9). Due to the symmetry of the
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motion it is known a priori that the radiation spectrum
must be independent of θx and thus we can choose our
coordinate system such that θx ¼ 0 as done in [11]. This
means θ ¼ θy. Then we can calculate the phase using
Eq. (18).

k0x ¼ ω0
��

1

2γ2
þ θ2

2

�
tþ t3

6R2

�
: ð22Þ

We then find

Z
∞

−∞
ðn − vÞxeik0xdt

¼
Z

∞

−∞
−v sin

�
vt
R

�
eik

0xdt

¼ −
v2

R

Z
teik

0xdt

¼ −
1

R

Z
∞

−∞
te

iω
0 t
2
ðθ2þ 1

γ2
þv2t2

3R2
Þ
dt: ð23Þ

Changing variable to x ¼ t
R

ffiffiffiffiffiffiffiffiffi
1

γ2
þθ2

p and introducing

ξ ¼ ω0R
3
ð 1
γ2
þ θ2Þ32 this becomes

Z
∞

−∞
ðn − vÞxeik0xdt

¼ −R
�
1

γ2
þ θ2

�Z
∞

−∞
x exp

�
i
3

2
ξ

�
xþ x3

3

��
dx

¼ −R
�
1

γ2
þ θ2

�
2iffiffiffi
3

p K2=3ðξÞ ð24Þ

where Kα denotes the modified Bessel function of the
second kind of order α. Similarly we calculate

Z
∞

−∞
ðn − vÞyeik0xdt

¼ θ

Z
∞

−∞
e
iω

0 t
2
ðθ2þ 1

γ2
þv2t2

3R2
Þ
dt

¼ Rθ

�
1

γ2
þ θ2

�1
2

Z
∞

−∞
exp

�
i
3

2
ξ

�
xþ x3

3

��
dx

¼ Rθ

�
1

γ2
þ θ2

�1
2 2ffiffiffi

3
p K1=3ðξÞ: ð25Þ

To calculate J we need to calculate [see Eq. (10)]

Z
∞

−∞
eik

0xdt ¼
Z

∞

−∞
e
iω

0 t
2
ðθ2þ 1

γ2
þv2t2

3R2
Þ
dt

¼ R

�
1

γ2
þ θ2

�1
2 2ffiffiffi

3
p K1=3ðξÞ: ð26Þ

We therefore obtain

jIj2 ¼ ω02
�
R2

�
1

γ2
þ θ2

�
2 4

3
K2

2=3ðξÞ

þR2θ2
�
1

γ2
þ θ2

�
4

3
K2

1=3ðξÞ
�

¼ ε2

ε02
ðωRÞ2 4

3

�
1

γ2
þ θ2

�
2
�
K2

2=3ðξÞ þ
θ2

1
γ2
þ θ2

K2
1=3ðξÞ

�

ð27Þ

and

jJj2 ¼ ω02
�
R

�
1

γ2
þ θ2

�1
2 2ffiffiffi

3
p K1=3ðξÞ

	
2

¼ ε2

ε02
ðωRÞ2

�
1

γ2
þ θ2

�
4

3
K2

1=3ðξÞ: ð28Þ

By using Eq. (5) we obtain the energy spectrum of
synchrotron radiation as

d2I
dωdΩ

¼ e2

3π2
ðωRÞ2

�
ε02 þ ε2

2ε02

�
1

γ2
þ θ2

�
2

×

�
K2

2=3ðξÞ þ
θ2

1
γ2
þ θ2

K2
1=3ðξÞ

�

þ ω2m2

2ðεε0Þ2
�
1

γ2
þ θ2

�
K2

1=3ðξÞ
�
: ð29Þ

By writing dΩ ¼ dθxdθy and integrating over θx from 0
to 2π and dividing by the period 2πR the differential power
spectrum is obtained as

dP
dωdθ

¼ e2

3π2R
ðωRÞ2

�
ε02 þ ε2

2ε02

�
1

γ2
þ θ2

�
2

×

�
K2

2=3ðξÞ þ
θ2

1
γ2
þ θ2

K2
1=3ðξÞ

�

þ ω2m2

2ðεε0Þ2
�
1

γ2
þ θ2

�
K2

1=3ðξÞ
�
: ð30Þ

This formula is valid in the quantum regime as well.
Integrating Eq. (30) over θ yields the usual result of
quantum synchrotron radiation given by [9]

dP
dω

¼ e2m2

π
ffiffiffi
3

p u
ð1þ uÞ3

du
dω

×

�
u2

1þ u
K2=3

�
2u
3χ

�
þ
Z

∞

2u
3χ

K5=3ðyÞdy
�

ð31Þ
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where u ¼ ω
ε0. The integral of this spectrum with respect

to the photon energy gives the total power which we
denote P0.
In this calculation a circular motion is assumed, lasting

for times −∞ < t < ∞, as seen in Eqs. (19)–(21). In the
case of a field with finite extension the motion can be
characterized by that of Eqs. (19)–(21) when − L

2
< t < L

2

and that the acceleration is 0 otherwise. For this reason we
employ the formulas for I and J where the integrand is
proportional to the acceleration such that the only differ-
ence in the numerical calculation is changing the integra-
tion limit. From Eq. (21) it can be shown that the condition
− L

2
< t < L

2
differs from the condition − L

2
< z < L

2
only

with a relative correction on the order of 1
γ2
þ L2

R2 which

means that whether the field has a finite extension in time or
in the z-direction is equivalent. The I term

I ¼
Z

∞

−∞
f ðt;nÞeik0xdt; ð32Þ

becomes

I ¼
Z L

2

−L
2

f ðt; nÞeik0xdt; ð33Þ

and similarly for the J term. The angular distribution is then
no longer known to be independent of θx and the integra-
tion limits means an analytical expression is no longer
easily obtained. We can argue how small L should be for
the difference between these two integrals to be significant.
The formation length is the length over which the
contributions from different parts of the trajectory add
coherently and by setting ϕ ∼ 1 from Eq. (11). The
corresponding length is given by

lf ¼ 2γ2

ω0 ¼ 2γ2ðε − ωÞ
ωε

: ð34Þ

We can therefore recognize two cases. When L ≫ lf we
are in the usual regime of synchrotron radiation, while
if L ≪ lf the extension of the field can no longer be
neglected. We therefore obtain the condition

ω

ε
≪

1

1þ εL
2γ2

: ð35Þ

If we define η ¼ γ L
R, meaning η is the deflection angle in

units of 1=γ, we can express the length as

L ¼ ηγ

mχ
ð36Þ

and so the condition becomes

ω

ε
≪

1

1þ η
2χ

: ð37Þ

We can thus consider the four cases

A. Case 1: η ≤ 1 and η ≤ χ , the limit
of short field extension

η ≤ 1 is also commonly referred to as the dipole case and
from Eq. (37) we see that the spectrum is modified for all
photon energies up to the initial electron energy. In Sec. V
we will derive an analytical result applicable in this case.

B. Case 2: η ≤ 1 and η ≥ χ , the
intermediate classical case

In this case we are still in the dipole case and the
spectrum is modified when ω

ε ≲ 2χ
η this means the spectrum

is modified below frequencies of 1
η times the critical

synchrotron frequency ωc and is here given approximately
by the dipole formula as shown in Sec. V. Since η ≤ 1 this
means the spectrum will always be modified at the critical
synchrotron frequency or above. At photon energies above

FIG. 1 (color online). A plot of the power spectra for the case
χ ¼ 0.1, ε ¼ 1.5 TeV and different values of η. QS formula is the
formula of quantum synchrotron radiation seen in Eq. (31). SF
formula is the short field formula of Eq. (51) for the case
of η ¼ 0.1.

FIG. 2 (color online). A plot of the power spectra for the case
χ ¼ 10, ε ¼ 1.5 TeV and different values of η. QS formula is the
formula of quantum synchrotron radiation seen in Eq. (31).
SF formula is the short field formula of Eq. (51) for the case
of η ¼ 1=4.

QUANTUM SYNCHROTRON RADIATION IN THE CASE OF … PHYSICAL REVIEW D 92, 045045 (2015)

045045-5



those corresponding to ω
ε ≃ 2χ

η the spectrum will transition
to that of synchrotron radiation, which is vanishing above
the critical frequency which means in effect that one has
dipole spectrum up to this limit and then the spectrum will
die out. An accurate spectrum can in this case only be
obtained numerically.

C. Case 3: η ≥ 1 and η ≤ χ , the
intermediate quantum case

In this case the radiation spectrum is modified at
roughly all photon energies and must also be calculated
numerically.

D. Case 4: η ≥ 1 and η ≥ χ , the limit
of large field extension

In this case the spectrum is modified when ω
ε ≲ 2χ

η which

means the spectrum is modified below frequencies of 1
η

times the critical synchrotron frequency ωc. Since η ≥ 1
this means the spectrum will always be modified
only below the critical frequency, and thus for higher
frequencies the spectrum is that of the usual synchrotron
radiation. In the limit η ≫ χ one obtains the usual result
of Eq. (31).
From these 4 cases it is seen that whether one is in the

classical case, χ ≲ 1 or the quantum case χ ≳ 1 makes an
important difference. In the classical case, as one transitions
from larger to smaller values of η one goes from case 4 to
case 2 and then to case 1. In the quantum case one goes
from case 4 to case 3 and then to case 1. We can therefore
define two characteristic lengths which determine the
extension of the field where deviation from the usual
synchrotron result is seen. In the classical case the
transition from the usual result happens when one tran-
sitions from case 4 to case 2 i.e. η ∼ 1, using Eq. (36) we
thus define the characteristic classical length as

lc ¼
γ

mχ
: ð38Þ

In conventional units this does not contain ℏ and is
indeed a classical quantity. In the quantum case the
transition takes place when between case 4 and 3 i.e.
when η ∼ χ and thus we define the characteristic quantum
length of this problem as

lq ¼
γ

m
; ð39Þ

which is a factor of γ times the reduced Compton
wavelength—a quantum length scale. This case thus
corresponds to the extension of the field in the rest frame
of the electron being the reduced Compton wavelength.

IV. DISCUSSION OF NUMERICAL RESULTS

We employed a numerical method like the one used in
[10]. In essence one performs a numerical calculation of the
classical trajectory by solving the classical equations of
motion in the given field. Here the field is a constant
magnetic field in the region −L=2 ≤ z ≤ L=2 and no field
otherwise. Then the integrals of Eqs. (6) and (7) are
evaluated numerically by using the formulas Eqs. (13)–
(18). This allows one to calculate the intensity distribution
using Eq. (5) for a given photon energy ω and angle
ðθx; θyÞ. Therefore for each photon energy these integrals
must be calculated on an angular grid, and then integrated
numerically over this grid to obtain the intensity distribu-
tion in photon energy dI=dω. This grid should be chosen
large enough such that essentially all radiation falls within
this grid. In Eq. (30) the variable of the Bessel function is
ξ ¼ ω0R

3
ð 1
γ2
þ θ2Þ32, and for large arguments the Bessel

function decreases rapidly, thus the typical angle of the
radiation is θ ≲ ð 3

ω0RÞ
1
3. If the deflection is along x as in

Eq. (19) one can use the total deflection angle in x as a
guide for the grid size in the x-direction and θy ≲ ð 3

ω0RÞ
1
3 for

FIG. 3 (color online). A plot of the total power emitted in units
of P0 as function of 1=η. In this case χ ¼ 0.1. The red curve is
obtained by the numerical procedure described in the text and the
green dashed curve is a plot of Eq. (52).

FIG. 4 (color online). A plot of the total power emitted in units
of P0 as function of 1=η. In this case χ ¼ 10. The red curve is
obtained by the numerical procedure described in the text and the
green dashed curve is a plot of Eq. (52).
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the y-direction. By plotting the angular distributions one
can determine if a slightly larger grid is necessary.
In Figs. 1 and 2 plots of the power spectra calculated

using this numerical procedure are shown for χ ¼ 0.1 and
χ ¼ 10 for various values of η. In addition we have plotted
the usual result of Eq. (31) where the field has infinite
extension. For large values of η it is seen that the
numerical result approaches this spectrum as is expected
from the discussion in Sec. III D. As η becomes smaller
i.e. the field extension L becomes smaller, the power
spectrum becomes modified at the low end of the
spectrum. Since the formation length becomes longer
for low photon energies this effect can be understood in
the sense that these will be more susceptible to the finite
extension of the field. In the case of χ ¼ 0.1 seen in Fig. 1,
as η becomes close to and below 1 a transition is observed
where the spectrum is radically different. For η ¼ 0.1 we
are at the border of transition from case 2 to case 1. For
comparison we have plotted Eq. (51), which is seen to be
in good agreement for the low end of the spectrum. For
even smaller values of η this agreement extends to the
harder photons as well. In the case of χ ¼ 10 as seen in
Fig. 2 the spectrum is seen to be modified for larger values
of η than the case of χ ¼ 0.1. This is due to the fact that in
the quantum regime the first transition is instead from case
4 to case 3, meaning at η ∼ χ ¼ 10. Here we have also
plotted the result of Eq. (51) for comparison, which is seen
to be in good agreement.
In these plots a remarkable overall decrease in the power

spectrum is seen when η≲ 1. In Figs. 3 and 4 we have
plotted the total power P as a function of 1=η for the case of
χ ¼ 0.1 and χ ¼ 10, respectively. P0 is the total power as
obtained by Eq. (31). For small values of 1=η the spectrum
approaches that of Eq. (31), and therefore the total power
approaches P0. The difference between the classical and
quantum case is clear in these two figures. In the classical
case the intermediate regime of case 2 for 0.1 ≤ η ≤ 1
shows a decrease in the total power emitted while the case

of the intermediate quantum regime of case 3 shows an
increase in the total power emitted. This maximum in the
emitted power is found to be at η ¼ 2

ffiffiffi
2

p
independently of

χ for large values of χ. In Fig. 5 we show how this
maximum emitted power scales with the value of χ. It is
found that the numerical calculation agrees very well with
the expression

P
P0

¼ 0.58χ
2
3 ð40Þ

for large values of χ.

V. THE SPECTRUM IN THE LIMIT OF A SHORT
EXTENSION OF THE FIELD

In Sec. III A and Sec. III B we found that for all photon
energies where there should be radiation, the formation
length is much larger than the extension of the field, and
thus the variation of the phase of Eq. (22) was negligible.
Thus we can approximate

I ¼
Z L

2

−L
2

f ðt; nÞeik0xdt≃
Z L

2

−L
2

f ðt;nÞdt:

We take the force to act in the x direction and thus only
keep terms proportional to _vx in Eqs. (13) and (14). In these
terms only the y-component of the velocity enters which is
0 and so we obtain

Ix ¼ −g0jΔvj
�
θ2y þ

�
1

2γ2
−
θ2

2

��
; ð41Þ

Iy ¼ g0jΔvjθxθy; ð42Þ

where we have only kept the first order in the transverse
velocity change jΔvj and

g0 ¼
�

1

2γ2
þ θ2

2

�
−2
:

For the J term we thus obtain

J ¼
Z

n · _v
ð1 − n · vÞ2 e

ik0xdt≃ g0θxjΔvj:

Then we obtain

jIj2 ¼ jΔvj2g20
×

�
θ4y þ

1

4γ4
þ θ4

4
−

θ2

2γ2
þ θ2y

�
1

γ2
− θ2

�
þ θ2xθ

2
y

�
:

Performing the integration over φ we obtain

Z
jIj2dφ ¼ jΔvj2g20

π

2

1

γ4
ð1þ ν4Þ ð43Þ

FIG. 5 (color online). A plot of the numerical values obtained
for the power in the case of η ¼ 2

ffiffiffi
2

p
where the power is at a

maximum as function of χ and a plot of an analytical fit valid for
large values of χ.
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where ν ¼ γθ. Inserting g0 this becomes

Z
jIj2dφ ¼ jΔvj2 8πγ4

ð1þ ν2Þ4 ð1þ ν4Þ ð44Þ

carrying out the integration
R
θdθ ¼ 1

γ2

R
νdν we obtain

Z
jIj2dΩ ¼ 8π

3
γ2jΔvj2 ð45Þ

for the J term we obtain

jJj2 ¼ 16γ8

ð1þ ν2Þ4 θ
2
xjΔvj2 ð46Þ

integrating over φ we obtain

Z
jJj2dφ ¼ 16γ8

ð1þ ν2Þ4 πθ
2jΔvj2 ð47Þ

and integrating over θdθ we obtain

Z
jJj2dΩ ¼ 4

3
πγ4jΔvj2: ð48Þ

We can therefore write the emitted energy differential in
photon energy and angle variable ν by using Eq. (5) as

d2I
dωdν

¼ 2α

π
γ2jΔvj2

×

�
ε02 þ ε2

2ε2
νð1þ ν4Þ
ð1þ ν2Þ4 þ

ω2

ε2
ν3

ð1þ ν2Þ4
�
: ð49Þ

Integrating over ν one obtains the emitted energy differ-
ential in photon energy

dI
dω

¼ 2α

3π
γ2jΔvj2

�
1 −

ω

ε
þ 3

4

ω2

ε2

�
: ð50Þ

Equations (49) and (50) are general and reduce to the
classical formulas as found in e.g. [11] in the limit of
ω ≪ ε. Inserting Δv ¼ eBL

ε and dividing by the duration L
one obtains the power spectrum differential in photon
energy in the case of the short magnetic field as

dP
dω

¼ 2α

3πγ2
χ2m2L

�
1 −

ω

ε
þ 3

4

ω2

ε2

�
: ð51Þ

The shape of this spectrum is the same of that of Bethe-
Heitler bremsstrahlung in matter and thus in this limit
synchrotron radiation becomes bremsstrahlung-like. In
addition the power is now proportional to the length L
in contrast to the usual synchrotron radiation power which
is independent of the duration. Integrating this, one obtains
the total power P as

P ¼ α

2π

χ2m4L
ε

¼ α

2π
χηm2: ð52Þ

VI. DISCUSSION OF EXPERIMENTAL
INVESTIGATION AND RELEVANCE

IN FUTURE COLLIDERS

From Eq. (38) it is seen that if γ is large while χ is
small, the length at which this effect becomes important
can become long. Consider as an example a 1 GeV
synchrotron producing visible light of photon energy
ω ¼ 1 eV, thus χ ∼ 10−9 and the characteristic classical
length is lc ∼ 75 cm. Thus in the classical case this
should be an easily measurable effect under the right
circumstances. In the quantum case when χ approaches or
becomes larger than 1 it becomes experimentally chal-
lenging. In this case the characteristic length of Eq. (39)
can only be made large by increasing the particle energy.
The highest experimentally accessible electron energies
are around 285 GeV found in secondary beams at the
SPS North Area of CERN. At this energy the character-
istic quantum length is 0.2 μm. Single crystals of Silicon
can be purchased with lengths down to 0.1 μm, and by
aligning the incoming beam along the h110i axis one can
obtain χ ∼ 1, meaning one is in the quantum regime. At
large energies the constant field approximation becomes
applicable for the case of channeling radiation in such a
crystal, meaning the results presented in this paper are
applicable in this case.
In future eþ=e− colliders such as CLIC, designed for

the maximum energy per beam of ε ¼ 1.5 TeV one
achieves a quantum nonlinearity parameter of χ ∼ 10
[18] and with the current design parameters one has a
bunch length of σz ¼ 44 μm. In this case lq ¼ 1.1 μm.
Often bunch shapes are modeled by a Gaussian distri-
bution and we have numerically calculated spectra in the
case when the electron is subject to a Gaussian shaped
field pulse of varying length to verify that the effects seen
in this paper are not an artefact present only in the case
of a constant field with a sharp cutoff. Here the same
effects are seen when the typical length scale of the
bunch σz becomes comparable to the formation length.
See e.g. [19] for recent experimental investigations of
the significance of the formation length in the case of
bremsstrahlung. From Figs. 4 and 2 it is seen that in the
case of CLIC the effect is small—on the order of 1%.
However such design parameters could change during
development and thus this effect should be kept in mind.
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