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(1) Introduction (4) Data quality approach

In this work, we focus on the problem of online detection of anomalies along the data taking period. Anomalies, in this
context, are defined as an unexpected behavior of the TDAQ system that result in a loss of data taking efficiency: the
causes for those anomalies may come from the TDAQ itself or from external sources.

« An anomaly can be seen as a data quality problem in a time series Disturbances
information: with the series modeled, an anomaly can be seen as a l
model outlier.

: : : : : Controller System
» Time series will be monitored in order to evaluate whether an anomaly

has occurred or not.

Motivation :

« Detect anomalies in the ATLAS' Trigger and Data Acquisition? system (TDAQ).

« Detect and predict the anomalies in an online environment and warn the responsible people.
« Profile and categorize the kind of anomalies.

« A validation corridor needs to be constructed in order to define when an |
outlier occurs. Everything outside this corridor (i.e. outside the model) is Measurements
an outlier and in the data quality perspective an anomaly.

Proposed methodology:

* Preprocessing.

« A neural network model® is used to decide if the current time series state is within the normal operation or it is an
anomaly.

» Decision taking.

* In the picture on the right we can see the predicted values by the model o
and the corridor, that is the uncertainty on the predicted value. If any g
value is outside this uncertainty area it is then an anomaly. |

' Corridor
L 4

The validity of this approach is demonstrated using a single time series as indicator, the level 1 trigger rate: monitoring
data from past physics runs have been used to show that already with a single variable the method is capable of
identifying anomalies that had gone unnoticed during data taking.

In this work we used a single time series in which all the anomalies were labeled manually and then the neural network
was trained to detect them. (5) Neural networks

In this work we use neural network models to detect the possible anomalies of the DAQ system. The first thing to do is to
decide how many inputs the neural network is going to be fed with. To do that:

(2) Preprocessing

Plot the linear autocorrelation function from the processed time series.
Plot the nonlinear autocorrelation function from the processed time series.
From the plots decide how many samples should be used as inputs to the neural network.

In order to retrieve (and process) the important information we need to remove the fully known components from the time
series, since they do not bring any new information. It is important that the processed time series are stationary in the
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The processing procedure is as follows:

In this work several models of neural networks have been tested and the one that showed the best results are the NARX
model.
The architecture of the neural network is presented below:

1. Apply the square root function to the rate and the luminosity time series, to reduce the dynamic range of the time
series so that the neural networks can treat them more easily.
2. Remove the deterministic trends in the time series, in this case the deterministic trend is presented as the luminosity

itself, to remove it we need only to divide the trigger rate by the luminosity. e Tl = « The NARX neural network predicts the next value of the time series based on
L1 Trigger Rate | ) | L1 Rate without luminosity | ] — =5 ;  the past values and the current value of the time series.
.5 | ™ < 2 —4 _____ //
W I . r ] vea [Tl RN, K  The NARX network was chosen because it showed: the best performance
. | s | 1 ,‘ ’ XX 5: \ — . values (best accuracy for the predict values), the best speed of reaction in the
z SRS 1 TS =~ online system and the best dynamic range of all the tested model.
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3. Remove the stochastic trend, by removing all the unit-roots of the time series (just apply the difference operator i.e.
the discrete derivative). Below we can see the results for two NARX neural networks, the difference between them is the training criteria, the first one
4. Remove the critical errors from the trigger rate (since this type of error is always detected we are not interested in it), was trained to have a bigger dynamic range and the second one to be more precise. The blue time series is the original and
these are the moments in which the trigger rate goes to zero. the red time series is the predicted time series.
_ | « On the left the whole time series is shown. Showing the overall prediction.
Y . RaUSRKGS . , , L . « On the right there is a zoom of the time series to show the accuracy of the networks.
sl ] ol r | Original x Predicted Series Original x Predicted Series

—| 1+ —
In | .
\\f ‘LVI .,‘1‘\‘ N ‘\'r' ‘-W .,\|\|‘,‘ L ‘1‘-"\-"'}“,‘.' e _‘L‘ NP S '\ '.-.,..y-,,,l,_‘. WA |

ot ‘\‘\,Iq W «,ﬁ\‘,

Rate (Hz)

05 | —

|
d/dt(kHz cm?3s' x (1030))
iy
|
!

1 1 1 1 1 1
1.
400 500 600 o 100 200 300 400 500 600

Luminosity block number Luminosity block number

1 1
100 200

|
T
|
d/dt(kHz cm2s’ x (1030))
o
—4
=
=
!
d/dt(kHz cm2s’ x (1030))

(3) Preprocessing interpretation | :
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The number of events taking place in the detector follow the given formula : N = L * Cs * Eff, where L is luminosity, Cs is
cross section and Eff is the efficiency of the detector (this is made up of several different efficiencies) and the rate of
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events is defined by : R = dN / dt.
Original x Predicted Series Original x Predicted Series
Following the steps of preprocessing, namely dividing by the Luminosity and applying the difference operator, we have : |
d(R/L)/dt = Cs*d2Eff/dt?. i, _

Since the cross-section is constant, the variations that we see in the processed series comes from the efficiency. In a
perfect world this would be constant and the result would be 0 (we can see that the baseline is). So apart from the af . |
statistics variations in the operation of the detector we also see efficiencies drops and rebounds. | L] .
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Given this interpretation, some conclusions can be drawn:

« The processed series is composed of two members:
« The normal DAQ operations (with some statistic fluctuations).
 The anomalies (errors or problems).

* Problems will appear in the processed series in the form of lost performance, which has two cases: _ i | |
* Real anomalies or problems -> The system should detect and warn someone. | !(
» Deterministic behavior of the detector (rate dropping before prescale, recoveries...) -> The system should detect | | |

and ignore.

d/dt(kHz cm2s' x (10%))

d/dt(kHz cm?2s™ x (1030))
)
—F
o ——
=
—*;”"“"
E——
\.
—
{
D
=
——-—’_’_’_ﬁjl.
—
L
—~—
—
o —
x'<
—
—
—
<
—
e
—
—
—
——
-
—
|

T
j?_
é

|
e
[

-0.6| —
| | | | I |
0 100 200 300 400 500 600 700 800 900 610 620 630 640 650 660 670 680 690
Luminosity block number Luminosity block number

(6) Conclusions

The neural networks models have proven that they can correctly identify when an anomaly occurs, purely based on

trigger data. Thus we can immediately build a system that detects anomalies and predicts their happenings. (7) References

In future works we will focus on if we can detect where these anomalies are coming from by monitoring more time series
concurrently in an online manner. To do so we will first have to create an anomaly profile, by looking through all the past
runs and identifying all the rate drops that do not have a known cause.
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