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Jérôme Gleyzes,a,b David Langlois,c Michele Mancarellaa,b,d and
Filippo Vernizzia,d

aInstitut de physique théorique, Université Paris Saclay, CEA, CNRS,
91191 Gif-sur-Yvette, France
bUniversité Paris Sud,
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the parameters describing the modifications of gravity are of order σ ∼ 10−2–10−3. We also
consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of
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1 Introduction

The recent measurements of the cosmic microwave background (CMB) anisotropies, per-
formed by the WMAP and Planck satellites, have significantly improved our knowledge on
the content of the universe and on the initial conditions of cosmological perturbations. A
similar progress is expected from the next generation of galaxy surveys concerning the prop-
erties of dark energy or, possibly, modifications of general relativity on cosmological scales.
Indeed, even if the CMB is useful to constrain dark energy through the integrated Sachs-
Wolfe (ISW) effect and gravitational lensing, these effects are ultimately related to the impact
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of dark energy on the late-time evolution of structures. Probing directly these large scale
structures is thus thought to be the most promising source of information on the origin of
the current acceleration.

Since no compelling model of dark energy has emerged from theoretical investigations,
it is appropriate to resort to a description that encodes a wide range of physical effects with
a limited number of theoretically motivated parameters, in order to compare deviations from
the standard ΛCDM scenario with cosmological observations on linear scales. For single-field
dark energy models in the presence of universally coupled matter fields, this research program
has been initiated by the effective theory of dark energy recently proposed in refs. [1–3],
inspired by the so-called effective field theory of inflation [4, 5] and of minimally coupled dark
energy [6]. Another model-independent framework that has been developed with the same
motivations is the Parameterized Post-Friedmann approach [7, 8]. In the effective theory
of dark energy, the quadratic action describing linear perturbations of single-field models
belonging to Horndeski theories is characterized by four free functions of time [3, 9–11],
while a fifth function must be introduced to describe theories beyond Horndeski [12, 13].
The power and efficiency of this formalism has just started to be exploited. For instance,
it has been applied to explore and forecast the phenomenology of dark energy and modified
gravity in [14–17] (see also [18, 19] for some nonlinear aspects).

Recently, in ref. [20], we extended this unifying treatment to allow for distinct confor-
mal and disformal couplings of matter species to the gravitational sector.1 We focused on
Horndeski-like models, i.e. those whose quadratic action has the same structure as Horndeski
theories,2 although the full action can be different. This is a rather natural extension given
that a modification of the gravitational sector can often be interpreted as a direct coupling
of matter to a fifth force exchanged by the scalar, in the frame where the scalar and the
gravitational fluctuations are demixed — the so-called Einstein frame. Together with the
four functions describing the gravitational quadratic action, each matter species is now char-
acterized by two new functions parametrizing their conformal and disformal couplings to
the gravitational metric. However, as reviewed in section 2, the structure of the full action
remains invariant under conformal and disformal transformations of the gravitational metric
itself. Taking into account this freedom, which allows for instance to choose a frame where
one of the species is minimally coupled, one eventually finds that the whole system depends
on a total of 2(NS + 1) independent functions of time, where NS is the number of matter
species. In this context, the conditions for stability (i.e. the absence of ghostlike and gradient
instabilities) can be generalized to any frame (see section 2).

In this article we go one step further and explore the constraining power of future large
scale structure surveys on the deviations from the standard ΛCDM scenario, expressed in
terms of the parameters of the effective theory of dark energy proposed in [20]. Specifically,
we will consider a simple scenario where the gravitational sector is described by Horndeski-
like models while, in the matter sector, cold dark matter (CDM) is nonminimally coupled to
gravity. This extends to a much broader spectrum of gravitational theories previous studies
of coupled dark energy, with conformal [25, 26] (see also [27] and references therein) and
disformal (see e.g. [28–37]) couplings.

1A treatment of single-field dark energy coupled to CDM in the context of the Parameterized Post-
Friedmann framework can be found in [21].

2Note that although Horndeski theories are generically unstable under quantum corrections [22], an exam-
ple of a radiatively stable subclass of Horndeski theories where all the operators of action (2.3) can be relevant
has been proposed in [23], based on weakly broken galileon invariance, and applied to inflation in [24].
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The equations of motion for the linear perturbations in the presence of modified gravity
and nonmininally coupled CDM, derived in [20], are reviewed in section 3, where we assume
the quasi-static approximation. As shown in [38], this approximation should be reliable
for surveys such as Euclid as long as the sound speed exceeds 10% of the speed of light,
i.e. cs & 0.1. In particular, we will consider the extreme quasi-static limit, i.e. the limit
k →∞, of the dynamics. In such a regime the linear growth of matter (both for baryons and
CDM) remains scale-independent as in ΛCDM. Modifications of gravity and the nonminimal
coupling to CDM are encoded in the time dependence of the gravitational couplings in the
“Poisson” equations for the metric potentials, which are different for baryons and CDM. As
explained in section 3, this time dependence modifies the growth rate of structures and the
lensing potential, which in turn affect, respectively, the redshift-space distortions and the
weak-lensing cosmic shear.

In section 4 we introduce the details of our parametrization, in particular concerning the
time dependence of the parameters characterizing the modifications of gravity. We consider
three fiducial models: a minimal ΛCDM model, a braiding model and a model with an active
nonminimal coupling of CDM. In section 5 we perform a Fisher matrix analysis based on
future photometric and spectroscopic data with configuration parameters close to those of
the Euclid mission [27, 39] as an example. We focus on the two-point statistics and consider
the galaxy power spectrum in redshift space for the spectroscopic data, the projected weak-
lensing shear power spectrum for the photometric data as well as the correlation between the
ISW effect in the CMB temperature and the photometric galaxy distribution. The derived
constraints are discussed in section 6, together with the involved degeneracies. It should
be mentioned that other approaches have been developed to study in a general and model-
independent way the impact of modified gravity on cosmological observables, together with
the involved degeneracies, e.g. on the growth rate of fluctuations [40] (see also [41, 42]) or on
the weak lensing [43].

In section 7 we summarize our results and draw conclusions. Details on the parametriza-
tion and the choice of background cosmological parameters are given in the appendix A, while
in appendix B, we discuss the frame dependence of the evolution equations of matter.

2 Model and main equations

In this section, we introduce our general formalism and then focus on the specific model
at the core of the present work. The first subsection, which is mainly a review of our
recent paper [20] and previous works, can be skipped by the reader mostly interested in our
phenomenological model and forecasts for the parameter constraints. The model that we are
specifically studying in the rest of this paper is described in the second subsection.

2.1 Effective description of the gravitational and matter sectors

We start by summarizing the effective approach of dark energy introduced and developed in
refs. [1, 3, 20] (see e.g. [11, 44] for reviews). The gravitational sector is assumed to consist of
a four-dimensional metric gµν and of a scalar field φ. In order to treat simultaneously a wide
range of models, it is very convenient to “hide” the scalar field in the metric, by choosing the
constant-time hypersurfaces to coincide with the uniform scalar field hypersurfaces. In this
gauge, referred to as unitary gauge, the metric can be written in the ADM form [45],

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (2.1)

whereN is the lapse function, N i the shift vector and hij the three-dimensional spatial metric.
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In unitary gauge, a generic gravitational action can be written in terms of geometric
quantities that are invariant under spatial diffeomorphisms, namely in terms of the lapse N ,
the 3d Ricci tensor Rij of the constant time hypersurfaces, as well as their extrinsic curvature
Kij , with components

Kij =
1

2N

(
ḣij −DiNj −DjNi

)
, (2.2)

where a dot stands for a time derivative with respect to t, and Di denotes the covariant
derivative associated with the spatial metric hij (spatial indices are lowered or raised via the
metric hij).

The generalized Friedmann equations are then obtained by varying the specialization
of the action to a homogeneous FLRW (Friedmann-Lemâıtre-Robertson-Walker) spacetime,
endowed with the metric ds2 = −dt2 +a2(t)d~x2 . The dynamics of the linear perturbations is
governed by the quadratic action, obtained by a perturbative expansion of the original action.

In this paper, we will consider a very large class of models, which includes all Horndeski
theories, for which the quadratic action can be written in the form [3, 9–11]3

S(2)
g =

∫
d3xdt a3M

2

2

[
δKi

jδK
j
i − δK

2 +RδN + (1 + αT) δ2

(√
hR/a3

)
+ αKH

2δN2 + 4αBHδKδN

]
,

(2.3)

where M , αT, αB and αK are four time-dependent functions and δ2 denotes the second order
term in a perturbative expansion. H ≡ ȧ/a is the Hubble parameter. We have not included
irrelevant terms that vanish when adding the matter action and imposing the background
equations of motion. Note that (2.3) does not include the models beyond Horndeski [12]
for which the coefficient of the term RδN differs from 1, the difference defining a new
parameter αH [11].

General relativity corresponds to the particular case where αT = αB = αK = 0 and
M = MPl. In general, the above quadratic action contains not only two tensor modes, as
in general relativity, but a scalar mode as well. The coefficient in front of the tensor kinetic
term is M2 and, by analogy with general relativity, M can be identified with an effective
Planck mass. If M depends on time, it is convenient to introduce the related parameter

αM ≡
1

H

d lnM2

dt
. (2.4)

The parameter αT appears in the gradient term of the tensor modes and is thus directly
related to the tensor propagation speed, namely

c2
T ≡ 1 + αT . (2.5)

3Together with the operator αHδNR, this is the most general quadratic action for linear perturbations
about a homogeneous and isotropic spacetime that does not induce higher derivatives in the equation of motion
of the linearly propagating scalar degree of freedom. In consistent effective theories, higher time derivatives
are not forbidden but are suppressed by positive powers of the ratio between the energy and the cutoff scale
(see e.g. [46, 47]). Thus, at energies much smaller than the cutoff their effect can be neglected without loss of
generality. Higher spatial derivatives are not necessarily suppressed and may dominate the dispersion relation,
such as in the Ghost Condensate theory [48]. In this case, higher spatial gradients become relevant, and can
easily be included in our formalism, but begin operating at very short distances [6, 49], typically shorter than
the cosmological ones.

– 4 –



J
C
A
P
0
2
(
2
0
1
6
)
0
5
6

The stability of the tensor modes is ensured by requiring M2 > 0 (absence of ghosts) and
αT > −1 (absence of gradient instabilities).4

Keeping in mind that the lapse perturbation is analogous, in the ADM language, to the
time derivative of the scalar perturbation, one observes that the parameter αK is related to
the coefficient of the kinetic scalar term. It is thus present for simple quintessence models.
Finally, the coefficient αB characterizes the mixing between the scalar and tensor kinetic
terms, sometimes called “braiding”. In contrast with the tensor modes, the full dynamics
of the scalar mode depends on the matter action as well, and the discussion on the scalar
stability conditions thus needs to be postponed until after the introduction of the matter
action below.

The remarkably simple form of the quadratic action (2.3) holds only in the unitary
gauge. However, it is straightforward to derive the quadratic action in an arbitrary gauge,
by simply performing a time reparametrization of the form

t→ φ = t+ π(t,x) , (2.6)

where the unitary time becomes a four-dimensional scalar field. The scalar degree of freedom
of the gravitational sector thus reappears explicitly in the form of the scalar perturbation π.

A matter species can be either minimally or nonminimally coupled to the gravitational
metric gµν . In the latter case, it is often assumed that matter is minimally coupled to some
effective metric g̃µν , which depends on gµν and on the scalar field φ. We will adopt this type
of nonminimal coupling in the following and consider a matter action of the form

Sm = Sm[ψm, g̃µν ] , (2.7)

with

g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ . (2.8)

The initial gravitational metric gµν being somewhat arbitrary in general, one has the
freedom to choose the metric g̃µν as the new gravitational metric. Remarkably, the quadratic
action (2.3) remains of the same form [20, 52],5 with new parameters defined as

M̃2 =
M2

C
√

1 + αD
(2.9)

4As shown in [20, 50] and reviewed below, the propagation speed for gravitons can be set to unity by
a convenient disformal transformation (only ratios between sound speeds are invariant and thus meaningful
physical quantities). It is thus not a priori pathological to have c2T > 1 in a generic frame and we will
not impose any upper bound on cT as a condition for the viability of the theory. A propagation speed for
gravitons smaller than that of the other particles is instead very tightly constrained at high energy by cosmic
rays observations [51]. We have not taken this bound into account in our analysis, since it concerns the speed
of gravitational waves at wavelengths much shorter than the cosmological ones.

5In the presence of the operator proportional to αH [3, 11] describing linear perturbations in the theories
beyond Horndeski proposed in [12, 13], the structure of the Lagrangian remains invariant under the trans-
formation (2.8) even if the disformal function D depends on (∂φ)2 as well [12] (see also [53] for a recent
study).
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and6

α̃K =
αK + 12αB[αD + (1 + αD)αC]− 6[αD + (1 + αD)αC]2 + 3ΩmαD

(1 + αC)2(1 + αD)2
,

α̃B =
1 + αB

(1 + αC)(1 + αD)
− 1 ,

α̃M =
αM − 2αC

1 + αC
− α̇D

2H(1 + αD)(1 + αC)
,

α̃T = (1 + αT)(1 + αD)− 1 ,

(2.10)

where

αC ≡
Ċ

2HC
, αD ≡

D

C −D
. (2.11)

Given a single species of matter, one can thus always work in the frame where this species
is minimally coupled. If there are several matter species, this is possible only in the case of
universal coupling, i.e. if all species are coupled to gravity via the same effective metric. By
contrast, for species with different couplings, one cannot find a frame where all of them are
minimally coupled. It remains however possible to choose a frame where one of the species
is minimally coupled, even if the others are not.7

The sum of the gravitational and matter actions at quadratic order yields the dynamics
of the scalar mode, as mentioned earlier. As shown in [20], the kinetic term of the scalar
mode is proportional to the combination

α ≡ αK + 6α2
B + 3

∑
I

αD,I ΩI , (2.12)

where
ΩI ≡

ρI
3H2M2

, (2.13)

while its propagation speed is given by

c2
s = − 2

α

{
(1+αB)

[
Ḣ

H2
−αM +αT +αB(1+αT)

]
+
α̇B

H
+

3

2

∑
I

[
1+(1+αD,I)wI

]
ΩI

}
. (2.14)

The stability conditions for the scalar mode,

α ≥ 0 , c2
s ≥ 0 , (2.15)

involve all the modified gravity parameters, as well as the matter disformal couplings.

2.2 Baryon-CDM model

In our model, the coupling of CDM to the gravitational sector is different from that of the
other species (baryons, photons and neutrinos). In the following, for simplicity, we choose
to work in the frame where the other species are minimally coupled and assume that the

6Here we correct a typo in the expression for α̃K in eq. (2.45) of the arXiv version of ref. [20].
7The situation simplifies during inflation, when the couplings to matter can be ignored. In this case,

without loss of generality one can always go to a frame where α̃M = α̃T = 0, corresponding to the standard
time-independent Planck mass and unity speed of propagation for gravitons. In this frame one then recovers
the standard inflationary predictions [50].
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original metric gµν corresponds to this frame (if not, one just needs to apply the above
metric transformation). We then assume that the coupling of CDM to gravity and dark
energy is characterized by an effective metric of the form

ǧ(c)
µν ≡ Cc(φ)gµν +Dc(φ)∂µφ∂νφ , (2.16)

from which one can define, in analogy with (2.11), the conformal and disformal parameters

αC,c ≡
Ċc

2HCc
, αD,c ≡

Dc

Cc −Dc
. (2.17)

We ignore the photon and neutrino cosmological fluids, as we are interested in late-time
cosmology where their effects are negligible.

The equations of motion for the matter species follow from the conservation, or non-
conservation, of their respective energy-momentum tensor. Since baryons are minimally
coupled, their energy-momentum tensor is conserved as usual, i.e.

∇µT(b)
µ
ν = 0 . (2.18)

By contrast, the CDM energy-momentum tensor is not conserved, but instead satisfies the
equation

∇µT(c)
µ
ν +Qc∂νφ = 0 (2.19)

with

Qc ≡ −
C ′c
2Cc

T(c) −
D′c
2Cc

Tµν(c)∂µφ∂νφ+∇µ
(
Tµν(c)∂νφ

Dc

Cc

)
, (2.20)

where a prime denotes a derivative with respect to φ. Like the usual conservation equation,
this equation can be derived by simply using the invariance of the matter action under
arbitrary diffeomorphisms.

The background evolution equations for the baryon and CDM fluids follow directly
from (2.18) and (2.19). On a FLRW background, the definition of Qc, eq. (2.20), reduces to

Q̄c =
Hρc

1 + αD,c

{
αC,c + αD,c

(
3 +

ρ̇c
Hρc

)
+

α̇D,c

2H(1 + αD,c)

}
. (2.21)

Substituting the above expression into eq. (2.19), one finds that the homogeneous fluid equa-
tions can be written in the form

ρ̇b + 3Hρb = 0 , (2.22)

ρ̇c + 3H(1− γc)ρc = 0 , (2.23)

where the coupling parameter γc is given by8

γc =
1

3
αC,c +

α̇D,c

6H(1 + αD,c)
. (2.24)

Expressed in terms of the energy density fractions defined in (2.13), the evolution equa-
tions for the baryon and CDM energy densities, (2.22) and (2.23), become

Ω̇b = −H
(

3 + 2
Ḣ

H2
+ αM

)
Ωb , (2.25)

Ω̇c = −H
(

3 + 2
Ḣ

H2
− 3γc + αM

)
Ωc . (2.26)

8Taking into account eq. (2.23) one finds that Q̄c = 3Hρcγc.
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The presence of the coefficient αM is due to the fact that the mass M , which appears in the
definition (2.13), can be time-dependent.

The evolution of the Hubble parameter is usually determined by the Friedmann equa-
tions. In the present work where dark energy remains unspecified at the background level, one
can alternatively assume some specific evolution H = H(t) and infer from it the dark energy
background components. This means that the Friedmann equations, written in the form

H2 =
1

3M2
(ρm + ρDE) , Ḣ = − 1

2M2
[ρm + (1 + wDE)ρDE] , ρm ≡ ρb + ρc , (2.27)

are treated as definitions of the energy density for dark energy, ρDE, and of its equation of
state parameter, wDE, namely

ρDE ≡ 3M2H2 − ρm , wDE ≡
−2

3
Ḣ
H2 − 1

1− Ωm
, (2.28)

where
Ωm ≡ Ωb + Ωc . (2.29)

Given some prescription for the time-dependent functions H = H(t), αM(t) and γc(t),
the evolution of Ωb and Ωc can be determined in terms of their present values Ωb,0 and Ωc,0.
This will be done explicitly in section 4.1.

3 Linear perturbations

In this section, we present the equations governing the linear perturbations. For convenience,
we work in the Newtonian gauge, where the scalarly perturbed FLRW metric reads

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)d~x2 . (3.1)

For each species, the continuity and Euler equations can be derived from, respectively, the
time component and the space components of eqs. (2.18)–(2.19). As obtained in [20], they
read in Fourier space

δ̇b −
k2

a2
vb = 3Ψ̇ , (3.2)

v̇b = −Φ , (3.3)

δ̇c −
k2

a2
vc = 3(Ψ + γcHπ)· + 2(1 + αD,c)(αC,c − 3γc)H(Φ− π̇)− αD,c(Φ̇− π̈) , (3.4)

v̇c + 3Hγcvc = −Φ− 3Hγcπ . (3.5)

These equations must be supplemented by the generalized Einstein equations and by
the scalar fluctuation equation. We will not write them explicitly here but they can be
found in [20].

3.1 Quasi-static approximation

The evolution of perturbations well inside the horizon is most conveniently studied within
the quasi-static approximation. This is justified for spatial scales that are smaller than the
sound horizon of dark energy, or equivalently for wavenumbers k � aH/cs (see [38] for a
detailed discussion and [54] for a recent analytical extension of this approximation). In this
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regime, one can neglect time derivatives with respect to space derivatives and the continuity
and Euler equations (3.2)–(3.5) for the baryon and CDM fluids simplify into

δ̇b −
k2

a2
vb = 0 , (3.6)

v̇b = −Φ , (3.7)

δ̇c −
k2

a2
vc = 0 , (3.8)

v̇c + 3Hγcvc = −Φ− 3Hγcπ . (3.9)

The equations for the gravitational potentials Φ and Ψ and for the scalar fluctuation
π also simplify and become constraint equations. The gravitational potentials satisfy two
Poisson-like equations, given by [20]

−k
2

a2
Φ =

3

2
H2Ωm

{(
1 + αT + β2

ξ

)
ωbδb + [1 + αT + βξ(βξ + βγ)]ωcδc

}
, (3.10)

−k
2

a2
Ψ =

3

2
H2Ωm {(1 + βBβξ)ωbδb + [1 + βB(βξ + βγ)]ωcδc} , (3.11)

where we have introduced the parameters ωI ≡ ΩI/Ωm,

βB ≡
√

2

csα1/2
αB ,

βξ ≡
√

2

csα1/2
ξ ≡

√
2

csα1/2
[αB(1 + αT) + αT − αM] ,

(3.12)

as well as9

βγ ≡
3
√

2

csα1/2
γc . (3.13)

The scalar fluctuation also satisfies a Poisson-like equation, which reads

− k2

a2
π = 3HΩm

βξωbδb + (βξ + βγ)ωcδc√
2csα1/2

. (3.14)

Combining eqs. (3.6)–(3.9) with eqs. (3.10)–(3.11) and (3.14) leads to a system of two
second-order equations for the density contrasts,

δ̈b + 2Hδ̇b =
3

2
H2Ωm

{
(1 + αT + β2

ξ )ωbδb + [1 + αT + βξ(βξ + βγ)]ωcδc
}
, (3.15)

δ̈c + (2 + 3γc)Hδ̇c =
3

2
H2Ωm

{
[1 + αT + βξ(βξ + βγ)]ωbδb +

[
1 + αT + (βξ + βγ)2

]
ωcδc

}
.

(3.16)

Introducing the bias bc (bb) between CDM (baryons) and the total matter density contrast
δm ≡ ωbδb + ωcδc, as

δc = bc δm (δb = bb δm) , (3.17)

9The parameter βγ generalizes the parameter β defined for coupled quintessence in section 5.3.4 of [15]. In
this case, the relation between the two parameters is βγ = −

√
2β. We thank Valeria Pettorino for a discussion

on this issue.
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the influence of modified gravity and nonminimal coupling onto the growth of perturbations
enters through the combinations

Υb ≡ αT + βξ(βξ + βγωcbc) , Υc ≡ αT + (βξ + βγ)(βξ + βγωcbc) , (3.18)

which vanish for standard gravity (the friction term γc on the left hand side of eq. (3.16)
is essentially a background effect and does not affect directly the energy density perturba-
tions δρb,c).

Modifications of gravity exchanged by π are parametrized by βξ and the nonminimal
coupling of dark matter is parametrized by βγ [20]. This separation of effects is not physical
and depends on the choice of frame. Indeed, under a generic change of frame (2.8), one finds,
using (2.9)–(2.10) as well as the relations

α̃D,I =
αD,I − αD

1 + αD
, α̃C,I =

αC,I − αC

1 + αC
, (3.19)

that these two parameters transform as

β̃ξ = (βξ + βγ∗)(1 + αD)1/2 ,

β̃γ = (βγ − βγ∗)(1 + αD)1/2 ,
(3.20)

where

βγ∗ =
3
√

2

csα1/2
γ∗ =

√
2

csα1/2

[
αC +

α̇D

2H(1 + αD)

]
. (3.21)

See also appendix B for a discussion on the frame dependence of eqs. (3.15) and (3.16) and
of the combinations Υb,c.

The modification of gravity associated with the parameter αT does not depend on the
exchange of π, see eq. (3.14) and refs. [20, 55] (see also [56] for a recent discussion on local
constraints of this effect), and does not mix with the other two effects under change of frame.
We note that if αT ≥ 0 (which corresponds to a speed of graviton fluctuations cT ≥ 1)
in the absence of nonminimal coupling, i.e. βγ = 0, the combinations (3.18) are always
positive, which tends to enhance the growth of structure. More generally, for a positive αT

the combinations Υb and Υc can be negative only if βξ has the opposite sign of βγ .
Since equations (3.15)–(3.16) are independent of the wavenumber k, one can factorize

the time dependence from the k dependence of the initial conditions and write the solutions
in the form

δc(t,~k) = Gc(t) δc,0(~k) , δb(t,~k) = Gb(t) δb,0(~k) , (3.22)

where δc,0 and δb,0 represent the initial density contrasts for CDM and baryons respectively,
defined at some earlier time in the matter dominated era. The two functions of time Gc(t)
and Gb(t) are the growth factors for CDM and baryons, respectively, assumed to be equal at
the initial time, Gc(0) = Gb(0) = 1.

The continuity equation (3.8) then implies that the velocity potential vc for CDM is
given by

vc(t,~k) =
a2

k2
Ġc(t) δc,0(~k) =

a2H

k2
fc(t) δc(t,~k) , (3.23)

where, in the second equality, we have introduced the CDM growth rate

fc ≡
d lnGc
d ln a

. (3.24)
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Similarly, using the continuity equation (3.6), one finds that the velocity potential vb for
baryons is given by

vb =
a2H

k2
f(t) δb(t,~k) , fb ≡

d lnGb
d ln a

. (3.25)

3.2 Link with observations

We now examine how the quantities introduced above can be probed by cosmological obser-
vations.

A powerful cosmological probe for dark energy is weak lensing, which depends on the
so-called scalar Weyl potential, i.e. the sum of the two gravitational potentials Φ and Ψ.
Combining the Poisson-like equations (3.10) and (3.11), one gets the expression

Φ + Ψ = −3a2H2

2k2
Ωm [2 + αT + (βξ + βB) (βξ + βγωcbc)] δm . (3.26)

In analogy with the combinations (3.18), it is convenient to define

Υlens ≡ αT + (βξ + βB) (βξ + βγωcbc) , (3.27)

which vanishes when gravity is standard.
Another way to probe dark energy is via the observation of galaxy clustering. In par-

ticular, redshift-space distortions are sensitive to the growth rate of fluctuations, which is
affected by deviations from standard gravity. Here we extend previous studies and include
also the effect of a nonminimal coupling of CDM.

When observing galaxies, one must take into account the fact that what is directly mea-
sured is the redshift, and not the distance of the galaxy. In the parallel plane approximation,
the correspondence between the so-called redshift space and real space is described by the
change of coordinates (see e.g. [57])

~s = ~x+ ẑ
vg,z

aH
, (3.28)

where ~s and ~x denote the spatial coordinates in redshift and real space respectively and vg,z

is the line-of-sight component of the galaxy’s peculiar velocity. At linear order, the invariance
of the number of galaxies yields the expression for the number density in redshift space in
terms of the number density in real space:

δg,s = δg −
1

aH
∇zvg,z . (3.29)

On large scales, the galaxy peculiar velocity ~vg can be related to the CDM and baryon
fluid velocities, respectively ~vb and ~vc, by effectively treating galaxies as test particles (see
e.g. [58]) of baryon and CDM mass fractions xb ≡Mb/Mg and xc ≡Mc/Mg (Mg ≡Mb+Mc),
respectively. By considering that the large-scale galaxy momentum coincides with the sum
of the baryon and CDM fluids momenta in the linear regime, the galaxy peculiar velocity is
given as

~vg = xc~vc + xb~vb , (3.30)

where ~vc = ~∇vc and ~vb = ~∇vb are the linear velocities satisfying the Euler equations (3.7)
and (3.9). Indeed, in the absence of screening the mass of the CDM component in the galaxy
is not conserved and obeys

Ṁc = 3HγcMc , (3.31)
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in agreement with the background evolution (since Mc scales as ρca
3). Then, the combination

of the Euler equations yields

d

dt
(Mg~vg) =

d

dt
(Mc~vc) +

d

dt
(Mb~vb) = ~Fg, (3.32)

where
~Fg = −Mg

~∇Φ + 3HγcMc
~∇π (3.33)

is the neat force exerted on each galaxy. The last term is due to the fifth force on the CDM
component.

Using the expression (3.23) and (3.25) for the velocity potentials, one thus finds

vg =
a2H

k2
(xcfc δc + xbfb δb) . (3.34)

Substituting the above expression into (3.29), and proceeding as in the standard calculation,
one finally obtains, in Fourier space,

δg,s = δg + µ2 (xcfc δc + xbfb δb) , µ ≡ kz
k
, (3.35)

or

δg,s = δg +
µ2

bg
(xcfc bc + xbfb bb)δg , (3.36)

after introducing the galaxy bias bg, defined by

δg = bg δm . (3.37)

The galaxy power spectrum in redshift space is thus given by

Pg,s(~k) =
(
b2g + µ2feff

)2
Pm(k) , (3.38)

where we have introduced the effective growth rate of the galaxy distribution as

feff ≡ xcfc bc + xbfb bb . (3.39)

In the absence of nonminimal coupling of CDM (i.e. for universally coupled baryons and
CDM) the species have the same velocities, i.e. fb bb = fc bc = f ≡ d ln δm/d ln a.

In the following we will assume the same baryon-to-CDM ratio for each galaxy and we
will set this to be the background value, i.e. xc = ωc and xb = ωb. However, one could also
consider different populations of galaxies with different baryon-to-CDM ratios and study the
effects of equivalence principle violations on large scales between these different populations
(see e.g. [59]).

4 Parametrization

4.1 Time dependence

As already mentioned, at the background level the dark energy can be defined by simply
giving a specific time evolution for the Hubble parameter. For simplicity, we assume that the
expansion history corresponds to that of wCDM, so that H is given by

H2(a) = H2
0

[
Ωm,0a

−3 + (1− Ωm,0)a−3(1+w)
]
, (4.1)
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where Ωm,0 is the fraction of matter energy density today, w is a constant parameter and the
scale factor a is normalized to unity today. This choice of parametrization for the background
is motivated by the fact that observations suggest that the recent cosmology is very close to
ΛCDM, which corresponds to w = −1, and deviations from ΛCDM in the expansion history
are usually parametrized in terms of w 6= −1. In the absence of modifications of gravity
and nonminimal couplings, i.e. for αM = γc = 0, w coincides with the equation of state of
dark energy, i.e. wDE in eq. (2.28). Another advantage of this parametrization is that the
background expansion remains close to the observed one, even when αM or γc are switched
on and matter does not scale as a−3 (see eqs. (2.25) and (2.26)). In this way we can assume
that the background cosmological parameters are those fitted by a simple ΛCDM model. See
discussion at the beginning of section 5 and in appendix A.1.

In the framework of our effective description, gravitational modifications are encoded
in the functions αB, αM and αT, and the non-minimal coupling of CDM is parametrized by
γc.

10 The time dependence of these parameters is undetermined in general. In order to obtain
some quantitative estimates about how much future observations will be able to constrain
these parameters, we will focus in the following on a specific functional form for their time
dependence.

For simplicity, we will assume that the functions αB, αM and αT share the same time
dependence Γ(t),

αB(t) = αB,0 Γ(t) ,

αM(t) = αM,0 Γ(t) ,

αT(t) = αT,0 Γ(t) ,

(4.2)

where Γ is normalized to unity today, i.e. Γ(t0) = 1, and αB,0, αM,0 and αT,0 denote the
current values of these parameters, which we wish to constrain. To be more specific, we will
consider the following time evolution,11

Γ(t) ≡ 1− Ωm(t)

1− Ωm,0
, (4.4)

where Ωm is the total nonrelativistic matter fraction introduced in (2.29) and Ωm,0 its present
value. Thus, Γ vanishes when the unperturbed energy density of dark energy is negligible,
such as at high redshift, and one recovers general relativity. The above parametrization is
analogous to the one proposed in [10, 14], up to a normalization factor.

We parametrize the time dependence of γc by assuming that the parameter βγ , defined
in eq. (3.13), is time-independent, so that

γc(t) =
βγ

3
√

2
cs(t)α

1/2(t) , (4.5)

10In the quasi-static approximation, the parameter αK does not appear in any equation (note that the
combination c2sα does not depend on αK), while αC,c and αD,c only enter through the combination γc (the
combination c2sα does not depend on αD,c, since wc = 0), so that their individual values remain unconstrained
in the analysis.

11Another possible choice would be

Γ(a) ≡ 1

Ωm,0a3w + (1− Ωm,0)
, (4.3)

which has the advantage to be directly related to the scale factor a. We have checked that this choice leads
to constraints similar to those obtained with the choice (4.4).
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and the time dependence on the right-hand side can be computed from eq. (2.14). This
choice of parametrisation allows to include coupled quintessence [60] as a special case, or
more generally other cases where the nonminimal coupling of CDM remains active also when
φ̇/(HM) becomes negligibly small, since one can have csα

1/2 = 0 while βγ 6= 0. Moreover,
cs(t)α

1/2 vanishes in matter domination, see appendix A.2 for details. Therefore, when
Ωm → 1, then Γ → 0 and γc → 0, which corresponds to the standard matter dominated
phase for the background evolution. However, while modifications of gravity switch off in
this limit (i.e. αB, αM, αT → 0), the nonminimal coupling parametrized by βγ remains active
(see eq. (4.8) and discussion in the next subsection).

Let us briefly discuss the theoretical constraints coming from the stability condi-
tions [1, 3, 20]. As discussed in section 2, the absence of ghost-like and gradient instabilities
in the tensor fluctuations respectively requires M2 > 0 —which will be always assumed here
and in the following — and c2

T > 0. Requiring that the second condition is satisfied at all
times, eq. (2.5) implies

αT,0 > −1 . (4.6)

For scalar fluctuations, these two conditions become α ≥ 0 and c2
s ≥ 0, where the expressions

for α and c2
s are respectively given in eqs. (2.12) and (2.14). In the following we assume that

α ≥ 0 is satisfied by an appropriate choice of the parameters αK, αB and αD,c and we will
exclude parameters for which the combination c2

sα (see eq. (A.5)) becomes negative before
z = 0 (see again appendix A.2 for details).

4.2 Initial conditions for the perturbations

We set the initial conditions during matter domination, i.e. when Ωm ' 1, and thus Γ ' 0. In
this limit αM ' 0 and γc ' 0, so that, according to eqs. (2.22)–(2.23), both CDM and baryons
behave as conserved species at the background level. Moreover, αT ' 0 and eqs. (3.12)–(3.13)
respectively imply that βB ' 0 and βξ ' 0. Therefore, deep in matter domination eqs. (3.15)
and (3.16) simplify to

δ̈b + 2Hδ̇b '
3

2
H2 [ωbδb + ωcδc] , (4.7)

δ̈c + 2Hδ̇c '
3

2
H2
[
ωbδb +

(
1 + β2

γ

)
ωcδc

]
, (4.8)

where ωb,c are constant.

This linear system can easily be solved by diagonalizing it. One can find solutions
written as

δb = bb,in δm , δc = bc,in δm, (4.9)

with constant and scale-independent bias parameters given by

bb,in =
1+β2

γωc −
√

4β2
γω

2
c + (1− β2

γωc)
2

2β2
γωcωb

, bc,in =
−1+β2

γωc +
√

4β2
γω

2
c + (1− β2

γωc)
2

2β2
γω

2
c

.

(4.10)
The respective growth functions Gc and Gb are identical, solutions of the equation

G̈+ 2HĠ− 3

2
H2
(
1 + β2

γω
2
c bc,in

)
G = 0 . (4.11)
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As usual, we will consider only the growing mode solution of this equation, G+. In conclusion,
we find that baryons and CDM possess spectra that are initially proportional and then grow
similarly.

Although we use the full expressions from (4.10) and (4.11) in our numerical analysis,
it is instructive to consider approximate expressions for small values of βγ . For small βγ
eq. (4.10) yields

bb,in = 1− ω2
cβ

2
γ +O(β4

γ) , bc,in = 1 + ωcωbβ
2
γ +O(β4

γ) , (4.12)

while the growing solution of eq. (4.11) is of the form

G+(a) = a1+ 3
5
ω2
cβ

2
γ +O(β4

γ) . (4.13)

Thus, for small βγ the initial conditions in matter domination are simply given by

δb(a, k) ' (1− ω2
cβ

2
γ) a1+ 3

5
ω2
cβ

2
γ δ0(~k) , δc(a, k) ' (1 + ωcωbβ

2
γ) a1+ 3

5
ω2
cβ

2
γ δ0(~k) . (4.14)

4.3 Fiducial models

For our analysis, we take as fiducial evolution of the Hubble parameter the function

Ĥ(a) = H0

√
Ωm,0a−3 + 1− Ωm,0 , (Fiducial) (4.15)

which corresponds to the ΛCDM evolution, i.e. w = −1 in eq. (4.1) and a quantity evaluated
on the fiducial model is denoted by a hat. The fiducial value for two of the parameters that
appear in our analysis is taken to be zero,

α̂M,0 = α̂T,0 = 0 , (Fiducial) (4.16)

but we consider several options for the parameters βγ and αB,0. In addition to the simplest
case where these parameters are zero, it is also instructive to consider fiducial models where
either of these parameters is nonzero.

We will distinguish three fiducial models, characterized respectively by the parameters

I) ΛCDM: α̂B,0 = β̂γ = 0,

II) Braiding: β̂γ = 0, α̂B,0 = −0.01,

III) Interacting: α̂B,0 = 0, β̂γ = −0.03,

while the other parameters take the common values prescribed in (4.15) and (4.16). Case (I)
gives the usual ΛCDM for the perturbations. In this case the generalized Einstein equations
and the modified continuity and Euler equations reduce to the standard ones. Case (II)
corresponds to a mixing between the dark energy and gravity kinetic terms at the level of
the perturbations. Finally, in case (III) we allow for a non vanishing interaction between
dark energy and CDM, which is active for perturbations but does not affect the background
because csα

1/2 = 0, and thus γc = 0. Let us stress that the background evolution is exactly
the same for all three fiducial models.
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5 Fisher matrix forecasts

Our constraints will be based on a Fisher matrix analysis applied to the galaxy and weak
lensing power spectra [61, 62] and to the correlation between the ISW effect in the CMB and
the galaxy distribution [63]. In general, the Fisher matrix is defined as

Fab ≡ −
〈
∂2 lnL(θ)

∂θa∂θb

〉
θ̂

, (5.1)

where L is the likelihood function, θ is a set of parameters. The expectation values are
over realizations. In the fiducial models I and III γc vanishes when varying along βγ (since
csα

1/2 = 0) and thus, since βξ = 0 (see eqs. (3.15) and (3.16)), βγ only appears quadratically
in the perturbation equations. We have checked that observables depend only mildly on γc
for the fiducial II. Thus, we choose β2

γ rather than βγ as the independent variable in the
analysis. In summary, we have the parameters

θ ≡ {w , αB,0 , αM,0 , αT,0 , β
2
γ} . (5.2)

Our goal here is to estimate the precision on the above parameters that will be reached
by forthcoming spectroscopic and photometric redshift surveys with Euclid-like character-
istics [39] (see e.g. [60, 64, 65] for analogous studies). In particular, we are interested in
identifying the degeneracies affecting these parameters and their origin. To simplify this
analysis we will fix the other background cosmological parameters to their Planck estimated
values: for w = −1 these are given by [66] h = 0.6731, h2Ωb,0 = 0.0222 and h2Ωc,0 = 0.1197,
while for w 6= −1 we choose the values of Ωb,0 and Ωc,0 such as to maintain the same angular
diameter distance as in the w = −1 case [66]. See details in the appendix A.1.

5.1 Galaxy clustering

The galaxy power spectrum in redshift space is given by eq. (3.38). Including the corrections
due to the Alcock-Paczynski effect, the observed power spectrum reads [67]

Pobs(z; k, µ) = N (z)
[
bg(z) + feff(z)µ2

]2
Pm(z, k) , (5.3)

where the normalization factor N (z) is given by

N (z) ≡
H(z)D̂2

A(z)

Ĥ(z)D2
A(z)

, DA(z) ≡ 1

1 + z

∫ z

0

dz̃

H(z̃)
, (5.4)

and DA is the angular diameter distance. Moreover, we assume the bias between galaxies
and the total matter distribution, bg = δg/δm, to be scale independent. Its fiducial value has

little effects on the constraints; in the following we will assume it to be b̂g =
√

1 + z [68]. It
can be taken as a nuisance parameter but we will fix it to its fiducial value, as a consequence
of the discussion at the beginning of section 6. Finally, feff is given in eq. (3.39) and Pm(z, k)
is the total matter power spectrum, given by

Pm(z, k) = T 2
m(z)P0(k) , (5.5)

where
Tm(z) ≡ ωb(z) bb,inGb(z) + ωc(z) bc,inGc(z) (5.6)
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is the matter transfer function, P0(k) is the initial power spectrum of matter fluctuations,
δm,0, during matter domination and bb,in, bc,in are defined in eq. (4.10). As the effects of dark
energy and modified gravity intervene at late times, the initial spectrum is independent of
the parameters θ.12 We have neglected corrections due to the shot noise in the number of
galaxies and the radial smearing due to the redshift uncertainty of the spectroscopic galaxy
samples and Doppler shift due to the virialized motion of galaxies (see e.g. [27, 69]), which
become relevant on small scales.

We assume a spectroscopic redshift survey of 15 000 squared degrees, sliced in eight
equally-populated redshift bins (we take the galaxy distribution as given by [70] with a lim-
iting flux placed at 4× 10−16 erg s−1 cm−2) between z = 0.5 and z = 2.1. The corresponding
Fisher matrix is given by [62]

FLSS
ab (z) =

∑
bins

V

2(2π)3

∫ kmax

kmin

2πk2dk

∫ 1

−1
dµ

∂ lnPobs(z; k, µ)

∂θa
∂ lnPobs(z; k, µ)

∂θb
, (5.7)

where V , kmin and kmax are, respectively, the comoving volume and the minimum and max-
imum wavenumbers of the bin. In this formula we have neglected the intrinsic statistical
error associated with the white shot noise from the Poisson sampling of the density field [71].
However, to be conservative, we choose the maximum wavenumber kmax such that the galaxy
power spectrum dominates over the shot noise and we are well within the linear regime. More
specifically, for each redshift bin we take kmax as the minimum between π/(2R), where R
is chosen such that the r.m.s. linear density fluctuation of the matter field in a sphere with
radius R is 0.5, and the value of k such that n̄iPg(k) = 1, where n̄i is the number density of
galaxies inside the bin. We have checked that these values of kmax are always smaller than
H/(σg(1+z)), with σg = 400 km s−1, i.e. the scale where the peculiar velocity of galaxies due
to their virialized motion becomes important. For the minimum wavenumber, we assume
kmin = 10−3h Mpc−1.

Since we work in the quasi-static limit and P0(k) is unaffected by the parameters θ, the
effects of modifications of gravity and nonminimal couplings are scale-independent. Thus,
the integration over k in eq. (5.7) simply gives an overall normalisation to the Fisher matrix.

5.2 Weak lensing

For weak lensing, we consider lensing tomography [72]. The angular cross-correlation spectra
of the lensing cosmic shear for a set of galaxy redshift distributions ni(z) is given by

CWL
ij (`) =

`

4

∫ ∞
0

dz

H(z)

Wi(z)Wj(z)

χ3(z)
k3
` (z)PΦ+Ψ[z, k`(z)] , (5.8)

where χ(z) ≡
∫ z

0 dz/H(z) is the comoving distance and the lensing efficiency in each bin is
given by

Wi(z) ≡ χ(z)

∫ ∞
z

dz̃ ni(z̃)
χ(z̃)− χ(z)

χ(z̃)
, (5.9)

with each galaxy distribution normalized to unity,
∫∞

0 dz ni(z) = 1. Moreover, PΦ+Ψ(k) is
the power spectrum of Φ+Ψ. Using eq. (3.26), it is related to the matter power spectrum by

PΦ+Ψ(k) = T 2
Φ+Ψ(z, k)P0(k) , (5.10)

12Since modifications of gravity affecting the background evolution take place only at late time, we are
insensitive to the the shift in the matter-radiation equality and to the change in scale of the power spectrum
turnaround described in [60].
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where

TΦ+Ψ(z, k) ≡ −3a2H2

2k2
Ωm [2 + αT + (βξ + βB) (βξ + βγωcbc)]Tm(z) (5.11)

is the transfer function for Ψ+Φ. Finally, we define k`(z) ≡ `/χ(z) as the wavenumber which
projects into the angular scale `.

We assume a photometric survey of 15 000 squared degrees in the redshift range 0 <
z < 2.5, with a redshift uncertainty σz(z) = 0.05(1 + z), and a galaxy distribution [73]

n(z) ∝ z2 exp

[
−
(
z

z0

)1.5
]
, (5.12)

where z0 = zm/1.412 and zm is the median redshift, assumed to be zm = 0.9 [27, 74].
Then, we divide the survey into 8 equally populated redshift bins. For each bin i, we define
the distribution ni(z) by convolving n(z) with a Gaussian whose dispersion is equal to the
photometric redshift uncertainty σz(zi), zi being the center of the ith bin (see also [60, 65]).

Neglecting the shot noise error due to the intrinsic ellipticity of galaxies, the Fisher
matrix for the cross-correlation spectra in eq. (5.8) is given by [75, 76]

FWL
ab = fsky

`max∑
`=`min

2`+ 1

2
Tr

{
∂CWL

ij (`)

∂θa
[
CWL
jk (`)

]−1∂CWL
km (`)

∂θb
[
CWL
mi (`)

]−1

}
, (5.13)

where we choose `min = 10 and `max = 300. Assuming Euclid-like characteristics [39] for the
galaxy density and intrinsic ellipticity noise, we have checked that the chosen `max corresponds
to scales where the shot noise is negligible and perturbations are only mildly beyond the linear
regime at small redshift.13

5.3 ISW-galaxy correlation

As a third probe, we consider the cross-correlation between the ISW effect of the CMB
photons and the galaxy distribution in the photometric survey, which is a valuable probe of
dark energy and of its clustering properties in the late-time universe (see e.g. [77, 78]). We
treat the galaxy survey as for the weak lensing analysis of the previous section, i.e. we divide
it into 8 bins and, for each bin, we consider the same galaxy distribution. Following [79], the
projected galaxy overdensity in the bin i is given by

gi(n̂) =

∫ ∞
0

dz ni(z)bg(z)δm[z, n̂χ(z)] , (5.14)

while the ISW effect is given by

∆T

T

ISW

(n̂) = −
∫ ∞

0
dz

∂

∂z

(
Φ + Ψ

)
[z, n̂χ(z)] . (5.15)

With these definitions, the angular power spectra of the projected galaxy overdensity and of
the ISW effect are respectively given by

Cgal
ij (`) =

∫ ∞
0

dz
H(z)

χ2(z)
ni(z)nj(z)b

2
g(z)Pm[z, k`(z)] , (5.16)

CISW(`) =

∫ ∞
0

dz
H(z)

χ2(z)

[(
∂TΦ+Ψ

∂z
(z, k)

)2

P0(k)

]
k=k`(z)

. (5.17)

13Notice that the value of `max chosen here is smaller than what is usually assumed in comparable analyses
(see e.g. [27] and references therein).
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Analogously, the angular cross-correlation spectrum between the ISW effect and galax-
ies reads

CISW-gal
i (`) = −

∫ ∞
0

dz
H(z)

χ2(z)
ni(z)bg(z)Tm(z)

[
∂TΦ+Ψ

∂z
(z, k)P0(k)

]
k=k`(z)

. (5.18)

The Fisher matrix for the ISW-galaxy correlation is given by (see e.g. [80, 81])

F ISW-gal
ab = fsky

`max∑
`=`min

(2`+ 1)
∂CISW-gal

j (`)

∂θa
[
Covjk(`)

]−1∂C
ISW-gal
k (`)

∂θb
, (5.19)

where we use `min = 10 and `max = 300 and the covariance matrix is given by

Covjk(`) = CISW-gal
j (`)CISW-gal

k (`) + CCMB(`)Cgal
jk (`) , (5.20)

where CCMB(`) is the full CMB angular power spectrum. We have omitted from this expres-
sion the CMB noise, which is negligible for CMB experiments such as WMAP and Planck,
and the galaxy shot noise. We have checked that the latter is small up to the chosen `max.

6 Results

In this section we present the results of the Fisher matrix analysis and the associated degen-
eracies between parameters. We start by discussing the effects of nonstandard gravity on the
evolution of homogeneous quantities. As shown below, they are important to understand the
effects on perturbations.

6.1 Background

Before presenting the results of the Fisher matrix analysis, we discuss how the background
evolution is modified when one goes slightly away from any of the fiducial models by modifying
one of the parameters. The results are summarized in figure 1, where we have plotted the
evolution of the difference between Ωb,c and their respective fiducial value.

As is clear from (2.25), the parameter Ωb is only affected by a change of the background
history embodied by H(z) or by a variation of the effective Planck mass M . It is thus only
sensitive to a change of the parameters w or αM. In the former case, the evolution of ρb, and
thus Ωb, is modified because H is changed. In the latter case, the evolution of ρb does not
change but that of Ωb does. These changes are independent of the other parameters and one
does not need to distinguish between the three fiducial models.

For Ωc, the situation is exactly the same as Ωb when w or αM are changed, provided
there is no coupling between dark energy and CDM, i.e. γc = 0. This is apparent in the boxes
corresponding to the fiducial models I and II, for which βγ = 0. By contrast, if we start from
the fiducial model III, where βγ 6= 0, and modify either w or αM, then the deviation of Ωc

with respect to its fiducial value is amplified due to the coupling γc generated by a nonzero
csα

1/2 combined with a nonzero βγ . For the same reason, i.e. γc 6= 0, we observe a deviation
of Ωc when αT,0 or αB,0 are switched on, in contrast with the other fiducial models. This
also explains why one sees a deviation from the fiducial model II when βγ is switched on.

The modifications of the background quantities discussed above affect the observables
both indirectly, through their effect on the evolution of perturbations, and directly, because
the observables explicitly depend on H and Ωm (see for instance eq. (5.11)). Therefore, a
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Figure 1. Relative change of the baryon and CDM density fractions, with respect to their fiducial
values, as a function of the redshift z, depending on the values of the parameters w, αB,0, αM,0, αT,0

and βγ .

qualitative analysis of the effect of the parameters θ on the observables is rather complex
and must take into account both the background evolution and the quantities Υb,c and Υlens.
This is why we resort to a Fisher matrix analysis, which allows us to quantify the combined
effects on the observables.

6.2 Forecasts

Let us now discuss the results of the Fisher matrix analysis. The unmarginalized errors on
the parameters are summarized in table 1 while the two-dimensional contours are presented
in figures 3, 4 and 5. Red dotted, green dashed and yellow solid lines respectively correspond
to galaxy clustering, weak lensing and ISW-galaxy observables. The combination of the three
observables, given by summing the three Fisher matrices, is plotted in thick solid black line.
The shaded blue regions in the plots correspond to instability regions, where c2

sα < 0.14

For each observable, the Fisher matrix including all the parameters is ill-conditioned
and cannot be inverted. This means that the observables do not have the constraining power
to resolve the degeneracies (see e.g. [82]). Thus, when plotting the two-dimensional contours
we do not marginalise over the other parameters but we fix them to their fiducial values.

As shown in table 1, the forecasted constraints from the three probes for the same fiducial
model are comparable, within an order of magnitude. This reflects the comparable effects on
the observables, shown in figure 2, given our choice of kmax and `max for the spectroscopic
and photometric surveys, respectively, which translates into a comparable number of modes
for the three probes. More precisely, the effects of gravity modifications and nonminimal
couplings is slightly larger on the lensing potential and ISW effect but this is compensated
by a larger number of modes in the spectroscopic survey.

14Here we conservatively exclude the instability region from the allowed parameter space. A more refined
treatment would require multiplying the likelihood function by a theoretical prior that excludes the forbidden
region, which is impossible to achieve with a Fisher matrix analysis (our priors cannot be represented with
an invertible matrix).

– 20 –



J
C
A
P
0
2
(
2
0
1
6
)
0
5
6

Fid. Obs. 103 × σ(1 + w) 103 × σ(αB,0) 103 × σ(αM,0) 103 × σ(αT,0) 104 × σ(β2
γ)

I GC 7.0 18.6 24.5 – 1.4

WL 1.6 4.3 42.1 – 5.7

ISW-g 15.5 4.4 20.2 – 31.3

Comb 1.6 3.0 14.6 – 1.35

II GC 7.2 18.6 33.8 24.4 2.7

WL 1.4 4.4 67.4 98.9 6.4

ISW-g 5.0 4.2 24.5 43.2 56.0

Comb 1.3 3.0 19.0 20.8 2.5

III GC 0.22 0.40 0.22 0.22 1.4

WL 0.17 2.12 0.18 0.18 5.7

ISW-g 0.88 2.78 0.88 0.87 31.3

Comb 0.13 0.39 0.14 0.14 1.4

Table 1. 68% confidence level (CL) errors on each individual parameter, assuming that the others
take their fiducial values, for each fiducial model and observable: galaxy clustering (GC), weak lensing
(WL), ISW-galaxy correlation (ISW-g) and the combination of the three (Comb).16 The parameter
αT,0 is unconstrained in fiducial model I, see explanation in section 6.2.1.

Specifically, for this survey the number of modes is roughly given byNmodes ∼ Nbins×V×
(4π/3)(kmax/2π)3, where Nbins = 8 is the number of bins and V is the (average) comoving
volume of the bins. Assuming kmax = 0.1hMpc−1, this yields Nmodes ∼ 106. For the
photometric survey we have Nmodes ∼ Nbins × fsky × `2max ∼ 3 × 105. As a rule of thumb,
the relative effects of αB,0, αM,0 and αT,0 on the three observables are typically of the order
of O(0.1) at redshift z ∼ 1, see figure 2. Thus, one expects to be able to constrain these

parameters at the level of O(0.1)−1 × N−1/2
modes, i.e. few percents (which is improved by one

order of magnitude for fiducial III, where the effects on the observables are larger), if all the
other parameters are fixed. The ISW-galaxy correlation is limited by cosmic variance but
due to the larger sensitivity of ∂zTΦ+Ψ to the modifications of gravity, it sometimes provides
constraints comparable to those from the other probes.17 The effect of β2

γ is typically of
the order of a few at redshift z ∼ 1 and this parameter can be constrained at a level of
a few × 10−4 for galaxy clustering and weak lensing. Given the smaller effect on the ISW
and the smaller number of modes for the photometric survey, the ISW-galaxy correlation
provides the weakest constraints on this parameter. We also notice that the degeneracy of
this parameter with the others is rather small.

6.2.1 Fiducial I: ΛCDM

Let us study the constraining power of the observables around a ΛCDM model. The errors
are reported in table 1 and the 68% CL contours are shown in figure 3. In table 2 we
report, for each Fisher matrix, the eigenvector associated to the maximal eigenvalue (called

16Our constraints on β2
γ are in qualitative agreement with those obtained for coupled quintessence in [60],

taking into account that the parameter β2 defined in this reference is related to ours by β2
γ = 2β2.

17We thank Alessandro Manzotti and Scott Dodelson for pointing out a numerical underestimation of the
noise in the ISW-galaxy correlation in an earlier version of this paper, corrected here.
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Figure 2. Modifications of the evolution of perturbations from their fiducial values, as a function
of redshift, for the different parameters w, αB,0, αM,0, αT,0 and βγ . From top to bottom, relative
variation of the effective growth factor feff , eq. (3.39), the matter transfer function Tm, eq. (5.6), the
Weyl potential transfer function TΦ+Ψ, eq. (5.11) and its derivative with respect to redshift, ∂zTΦ+Ψ,
for the three different fiducial models (respectively I, II and III, from left to right). As ∂zTΦ+Ψ

vanishes in matter domination, we have normalized it to its value at z = 0 instead of its value as a
function of the redshift.

here maximal eigenvector), which provides the direction maximally constrained in parameter
space, i.e. the one that minimizes the degeneracy between parameters.

At first view, the parameter αT,0 seems to contribute to the growth of perturbations
through the combinations Υb and Υc, defined in (3.18), and to the lensing potential through
the combination Υlens, given in (3.27). However, it turns out that these combinations in fact
do not depend on αT for this choice of fiducial model.

More precisely, when w = −1 and βγ = 0, one finds that

Υb,c = αT + β2
ξ = αT +

2ξ2

c2
sα
, c2

sα = −2(1 + αB)ξ + 3ΩmαB − 3
α̇B

H
. (6.1)

When one goes away from the fiducial model by switching on the parameter αT, while all
the other parameters keep their fiducial value, one gets β2

ξ = −αT so that the dependence
on αT vanishes in Υb,c. It is immediate to check that αT disappears in Υlens for the same
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Obs. Fiducial I Fiducial II Fiducial III

GC (0.012,−0.007, 0.005, 0, 1) (0.022,−0.013, 0.007, 0.01, 1) (−0.626, 0.348,−0.629, 0.64, 1)

WL (−0.345,−0.115,−0.007, 0,1) (−0.463,−0.136,−0.001, 0.004,1) (1,−0.074, 0.910,−0.914,−0.293)

ISW-g (0.053, 0.7, 0.154, 0, 1) (0.856, 1, 0.117, 0.063,−0.609) (−0.997,−0.138,−0.989, 1,−0.068)

Comb. (−0.008,−0.012, 0.005, 0, 1) (−0.055,−0.034, 0.006, 0.009, 1) (1,−0.285, 0.953,−0.964,−0.867)

Table 2. First eigenvector of the Fisher matrices, for the basis {w,αB,0, αM,0, αT,0, β
2
γ}, with the max-

imum eigenvalue, corresponding to the combinations of parameters that are maximally constrained
by experiments. The coefficients are normalized by the maximum component and rounded to three
significant digits.
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Figure 3. Two-dimensional 68% CL contours for the fiducial model I (ΛCDM model), obtained
by fixing all the other parameters to their fiducial values. The parameter αT,0 is absent, as it is
unconstrained on this fiducial model. Shaded blue regions correspond to theoretically forbidden
parameter space where c2sα < 0. Note that the axis range is different for different parameter planes.
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reason. Thus, the parameter αT,0 cannot be constrained by a Fisher matrix analysis for this
choice of fiducial and will be dropped from the analysis in this subsection. Correspondingly,
the component in the αT,0 direction of the maximal eigenvectors vanishes, see table 2.

Let us now examine the situation when αB is switched on while all the other parameters
take their fiducial value. The Υ combinations are then given by

Υb,c =
2α2

B

c2
sα

, Υlens =
4α2

B

c2
sα

, (6.2)

with
c2
sα = −(2 + 3Ωm)αB − 2α2

B . (6.3)

For small values of αB, we thus find

Υb,c ' −
2

2 + 3Ωm
αB , Υlens ' −

4

2 + 3Ωm
αB . (6.4)

Thus, one expects the impact of αB to increase as Ωm diminishes, which is in agreement with
the results plotted in figure 2.

When one changes αM from its fiducial value (the other parameters keeping their fiducial
value), one finds

Υb,c = Υlens = αM . (6.5)

As seen in figure 2, the effect of αM and αB on the growth of structures (i.e. on feff and
Tm) is roughly the same in magnitude but opposite in sign, which is in agreement with the
relations found in (6.4) and (6.5). This qualitatively explains the degeneracy observed in the
αB,0–αM,0 panel of figure 3 for galaxy clustering and the corresponding components of the
maximal eigenvectors in table 2. By contrast, the degeneracy between αB and αM observed
for weak lensing does not seem to agree with the values of Υlens in (6.4) and (6.5). The reason
for this discrepancy is that the background is also modified when αM 6= 0, as discussed earlier,
whereas the background for αB 6= 0 is the same as the fiducial one. Since the transfer function
TΦ+Ψ depends not only on the coefficient Υlens but also on the background, the degeneracy
is more complex. In fact, the background modification also affects the matter growth but
more modestly than for weak lensing.

To conclude, let us note that a large region of the observationally constrained parameter
space is forbidden by the stability requirements, i.e. c2

sα > 0.

6.2.2 Fiducial II: Braiding

For this fiducial model, we have the value α̂B,0 = −0.01, where the negative sign is to satisfy
the stability conditions. This corresponds to dark energy models where the kinetic term of π
comes from a mixing with gravity [4, 6], which are sometimes called braiding models [83, 84].
The unmarginalized errors are reported in table 1 and the 68% CL contours are shown in
figure 4. Note that the allowed parameter space is much larger than in the previous fiducial
because for αB,0 6= 0 the null energy condition can be violated without instabilities [4].

In this case, Υb,c and Υlens depend on αT: their partial derivatives with respect to αT

on the fiducial model are given by

∂Υb,c

∂αT
=

9Ω2
m

(3Ωm + 2 + 2αB)2
,

∂Υlens

∂αT
=

3Ωm(3Ωm − 2− 2αB)

(3Ωm + 2 + 2αB)2
, (6.6)

which confirms that this parameter must be included in the analysis.
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Figure 4. Two-dimensional 68% CL contours for the fiducial model II (braiding model with
αB,0 = −0.01), obtained by fixing all the other parameters to their fiducial values. Shaded blue
regions correspond to c2sα < 0. The axis range is different for different parameter planes.

For this fiducial, the plane αB,0–αT,0 in figure 4 has the same background evolution as
ΛCDM. Therefore, all the effects are controlled by Υb,c and Υlens, so that the degeneracies
can in principle be understood analytically from their expressions in terms of αB,0 and αT,0.
For instance, for small αB,0 and αT,0 one finds

Υb,c '
3αB,0 (Ωm − 1) (2αB,0 + (2− 3Ωm)αT,0)

αB,0 (6Ωm + 4) + 4αT,0
' (1− Ωm) (0.54αT,0 − 0.6∆αB,0) , (6.7)

where in the last equality we have expanded at linear order for small 1 − Ωm and used
αB,0 = −0.01 + ∆αB,0. This explains the degeneracy between ∆αB,0 and αT,0 observed in
the growth. By the same procedure we find Υlens ' (1 − Ωm) (0.18αT,0 − 1.2∆αB,0), which
explains why ∆αB,0 is more constrained than αT,0 by lensing observations.
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Similarly to fiducial I, the effect of changing αB,0 and αM,0 on the growth of structures
is roughly the same in magnitude and opposite in sign. This effect can be qualitatively
understood by expanding Υb,c for small ∆αB,0 and αM,0, analogously to what was done in
section 6.2.1. This degeneracy cannot be seen for the lensing, because the modifications of
the background also play a role.

6.2.3 Fiducial III: Interacting

In this model we have a nonzero fiducial value for the parameter βγ (β̂γ = −0.03), which
implies an active coupling between CDM and dark energy. The unmarginalized errors are
reported in table 1 and the 68% CL contours are shown in figure 5. Notice that the constraints
for this fiducial model are generally stronger than those for models I and II (see below). As
one can verify in figure 2, this is due to the enhancement of the effects on the observables,
caused by the nonminimal coupling.

In this case, αT,0 must be included in the analysis, because Υb,c and Υlens depend on αT,0

through the term βξβγ . Indeed, let us examine the case when αT,0 and αM,0 are switched on
while w = −1 and αB,0 = 0. Using csα

1/2 =
√

2(αM − αT) = −
√

2βξ (we assume αM > αT

to satisfy the stability condition) one finds

Υb = αM −
√
αM − αT βγωcbc , Υc = αM −

√
αM − αT βγ(1 + ωcbc) + β2

γ (6.8)

and
Υlens = αM −

√
αM − αT βγbcωc . (6.9)

However, the degeneracies observed in figure 5, for example in the plane αM,0–αT,0, cannot be
understood directly from the above expressions because, as we saw in figure 1, the background
is modified, not only when αM (or w) is changed but also when αT is changed.

Another notable degeneracy appearing in figure 5 is between w and the parameters
−αT,0 or αM,0. This can be partially understood from the fact that w appears in the combi-
nation

c2
sα ' 3(1 + w)(1− Ωm)− 2(αM − αT) = 3(1− Ωm) (1 + w − αM,0 + αT,0) , (6.10)

where we have used η ' −w(1−Ωm) in eq. (A.4) for the first equality and Ωm,0 ' 1/3 in the
last one. However, background effects play an important role as well.

The term βξβγ in eqs. (3.18) and (3.27) translates here as −
√
αM − αT βγ , see eq. (6.8).

This term encodes the new effects that arise when both modifications of gravity and nonmin-
imal couplings are considered, as emphasized in [20]. These effects explain the qualitative
difference, in the size and shape, between the contours of fiducial III (figure 5) and those of
the other two fiducial models. Not only are the constraints tighter by an order of magni-
tude in this case, but also the maximal eigenvectors of the Fisher matrices point in different
directions, see table 2.

7 Summary and conclusions

In this paper, we have investigated the consequences of both modifying gravity and allowing
a coupling between CDM and dark energy. If the propagation speed of dark energy is not too
small, one can rely on the quasi-static approximation because the small scale fluctuations of
dark energy have the time to relax to the quasi-static regime [38]. In this case, the parameters
describing deviations from ΛCDM, which are usually four for Horndeski-like theories [3, 9, 10],
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FIDUCIAL III

Figure 5. Two-dimensional 68% CL contours for the fiducial model III (interacting model with

β̂γ = −0.03), obtained by fixing all the other parameters to their fiducial values. Shaded blue regions
correspond to c2sα < 0. The axis range is different for different parameter planes.

reduce to three: αB, αM and αT [20]. Moreover, the coupling of a fluid of CDM particles
conformally and disformally coupled to dark energy, can be described by a single parameter
γc, see eq. (2.24).

The dynamics of matter perturbations also simplifies. In particular, as discussed in
section 3, it is described by a system of two coupled equations, eqs. (3.15) and (3.16), respec-
tively for baryons and CDM. In these equations, the four parameters above enter in three
combinations (see eq. (3.18)): αT, βξ (a combination of αB, αM and αT) and βγ , the latter
describing the nonminimal coupling of CDM perturbations. As explained in more details in
section 3, these distinctions are frame-dependent, as one can verify using the relations (2.10)
(see also [20] for more details).
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The growth of fluctuations is usually described in terms of the growth rate, which
modulates the galaxy power spectrum in redshift space and can thus be measured with
redshift space distortions. We have computed the effective growth rate for galaxies made of
baryons and nonminimally coupled CDM, in the presence of modifications of gravity. This
is the first general treatment of this kind, to our knowledge.

Deviations from the ΛCDM model can also affect the propagation of light through their
effect on the scalar Weyl potential, i.e. the sum of the two metric potentials in Newtonian
gauge. A fourth parameter, βB (proportional to αB), together with the three parameters
above, is necessary to fully describe this effect, which can be measured in the weak lensing
and ISW effect (see eq. (3.27)).

As discussed in section 4, the evolution of perturbations depends on the time dependence
of the Hubble rate and of the parameters described above. In the present work we have
taken the Hubble rate to be the same as in wCDM. Moreover, the parameters αB, αM and
αT grow as 1 − Ωm, so that modifications of gravity disappear in matter domination, while
the nonminimal coupling remains active at all times, i.e. βγ = constant. We have studied the
constraining power of a future redshift survey with Euclid specifications on the parameters
w, αB,0, αM,0 and αT,0.

More specifically, in section 5 we computed the Fisher matrix of the galaxy power
spectrum, the weak lensing power spectrum as well as the correlation spectrum between
the ISW effect and the galaxy distribution. We have considered five parameters, namely w
(describing the background evolution), the current values of αB, αM and αT, and the constant
nonminimal coupling parameter β2

γ , and assumed three fiducial models: (I) ΛCDM, (II) a
braiding model with αB,0 = −0.01 and (III) an interacting model with βγ = −0.03.

The unmarginalized 68% CL errors on these parameters are reported in table 1 in
section 6. For the current values of αB, αM and αT, the errors are of the order of 10−2–10−3

for fiducial models I and II and an order of magnitude better for the fiducial model III. The
error on β2

γ is of the order of 10−4 for all fiducial models. Given the large number of free
parameters and the degeneracies among them, the Fisher matrices cannot be inverted to
compute the marginalized contours. Therefore, we have shown the two-dimensional 68% CL
contours in figures 3, 4 and 5 — together with the excluded parameter space from stability
conditions — by setting all the other free parameters to their fiducial values. Moreover, we
have provided a discussion on the origin of the degeneracies and the constrained directions
in parameter space in table 2. As shown by the contour plots, all the three observational
probes are complementary in breaking degeneracies in parameter space.

This analysis can be generalized in several directions. First, the background cosmo-
logical parameters should be included in the analysis as nuisance parameters. In this case,
it is important to take as well into account other cosmological data such as the CMB, the
baryon acoustic oscillations and the supernovae Type Ia. Another direction is exploring al-
ternative parametrizations of the background evolution and/or of the time dependence of the
parameters αB, αM, αT and βγ . For instance, assuming that the α’s vanish at early times,
as we did, considerably limits the effect of dark energy on certain observables such as the
CMB or the matter power spectrum. On the other hand, one could assume other equally
motivated time dependencies (even different for different parameters), which are expected to
lead to larger effects in the observables. The final goal is to extend this analysis beyond the
quasi-static approximation to include larger scales and other species, such as neutrinos and
photons. Such a program has been initiated with the development of the publicly available
Boltzmann codes EFTCAMB [85] (see [86] for a recent application to Horava gravity) and
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COOP [87]. In this case, at least one more parameter, αK, must be considered in the analysis.
On the other hand, one may expect that some of the degeneracies found in this paper can
be resolved by the scale dependence appearing once the full dark energy dynamics is taken
into account. We leave this for future work.
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A Details on the parametrization

In this appendix we provide some details about the determination of the background pa-
rameters in our numerical calculations and about the value of the effective functions in our
parametrization.

A.1 Background quantities

Assuming that gravity is standard at recombination, dark energy can only affect the best
fit value of the cosmological parameters inferred through the measurement of the comoving
distance to last scattering with the CMB spectrum. Thus, we assume that the comoving
distance to last scattering is fixed and given by its best fit measurement [66] and we compute
the values of the background cosmological parameters inferred from this observation. Let us
discuss how these are determined. When w = −1, these are chosen as the base ΛCDM best
fit values of the Planck TT+lowP parameters [66]. When w 6= −1, we determine the initial
conditions for the background matter components by requiring the comoving distance18

χ(zin; Ωm,0, w) =

∫ zin

0
dzH−1(z; Ωm,0, w) (A.1)

to be the same as the one of the ΛCDM model. More precisely, for each value of w, we
associate the parameter Ωm,0(w) defined by the relation

χ(zin; Ωm,0(w), w) = χ(zin; ΩPlanck
m,0 , w = −1) (A.2)

where we have on the right hand side the standard ΛCDM value, evaluated by using the value
ΩPlanck

m,0 = ΩPlanck
b,0 +ΩPlanck

c,0 = 0.02222h−2 +0.1197h−2, with h = 0.6731, which corresponds to
the estimate deduced from the measurements by the Planck satellite [66]. We take zin = 100,
deep in the matter dominated era, when the effects of dark energy are negligible.

18The comoving distance is related to the luminosity distance DL and the angular-diameter distance DA
by the relations DL(z) = (1 + z)χ(z) and DA(z) = χ(z)/(1 + z).
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A.2 The combination csα
1/2

Here we provide details on the calculation of csα
1/2. For convenience we define the parameter

η ≡ 1

3

(
3 + 2

Ḣ

H2

)
= −w (1− Ωm,0)a−3w

Ωm,0 + (1− Ωm,0)a−3w
, (A.3)

which enters naturally in eqs. (2.25) and (2.26). For αM = γc = 0, the fraction that appears
on the right hand side reduces to the energy density fraction of dark energy, 1−Ωm, but this
is not the case in general. From eq. (2.14), the combination c2

sα reads

c2
sα = (1 + αB)(3− 3η − 2ξ)− 3Ωm − 2

α̇B

H
, (A.4)

where η and ξ are defined above, respectively in eqs. (A.3) and (3.12). By using eqs. (4.2)
and (4.4) and the background evolution equations (2.25) and (2.26) to evaluate α̇B in this
expression, this can be written as

c2
sα = 3(1− Ωm − η) + αB

[
1− 3η

(
1 + 2

Ωm

1− Ωm

)
− 2(αM − 3γc ωc)

Ωm

1− Ωm

]
− 2α2

B − 2αT

(
1 + αB

)2
+ 2αM(1 + αB) .

(A.5)

Finally, one can replace γc by its expression (4.5) given in terms of csα
1/2.

The equation (A.5) is thus a quadratic equation for X ≡ csα1/2, of the form

X2 −BX − C = 0, (A.6)

where

B =
√

2
ωc Ωm

1− Ωm
βγ αB (A.7)

and

C = 3(1−Ωm− η) +

[
1− 3η

1+Ωm

1−Ωm
− 2

Ωm

1−Ωm
αM

]
αB− 2α2

B− 2αT(1 +αB)2 + 2αM(1 +αB) .

(A.8)
Let us extract from this quadratic equation the relevant solution.

Let us start with the case αB,0 = 0, which implies

B = 0, C = 3(1− Ωm − η)− 2(αT − αM) (αB,0 = 0) (A.9)

in (A.6), and the solution is therefore

csα
1/2 = ±

√
3(1− Ωm − η) + 2(αM − αT) , (αB,0 = 0) . (A.10)

Both signs of this solution can be chosen and lead to the same phenomenology as long as the
sign of βγ is chosen to obtain the same γc. In the matter dominated era, corresponding to
Ωm → 1 and η → 0, the stability condition thus imposes

αM,0 ≥ αT,0 (αB,0 = 0) . (A.11)

Let us now consider the case αB,0 6= 0. In the past limit Ωm → 1, one finds that

B =
√

2βγωc
ΩmαB

1− Ωm
→

√
2βγωc

αB,0

1− Ωm,0
(A.12)
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behaves like a constant, while C → 0. Consequently, the two solutions of the quadratic
equation in this limit are X = 0 and X =

√
2βγωcαB,0/(1 − Ωm,0). In order to recover a

standard matter dominated regime with γ → 0 in the past limit Ωm → 1, one needs to pick
up the X = 0 solution in the past. This determines the choice of the sign among the two
solutions

X =
B ±

√
B2 + 4C

2
, (A.13)

which yield X = (B ± |B|)/2 in the limit Ωm → 1. One thus concludes that, depending on
the sign of αB,0 βγ , the solution is

csα
1/2 =

B −
√
B2 + 4C

2
, (βγ αB,0 > 0) (A.14)

csα
1/2 = ±

√
C , (βγ αB,0 = 0) (A.15)

csα
1/2 =

B +
√
B2 + 4C

2
. (βγ αB,0 < 0) (A.16)

As above, both signs on the right hand side of eq. (A.15) can be chosen. The stability
condition c2

sα > 0 is obtained by requiring that the above solutions are real.

B Matter evolution equations in a generic frame

For completeness, we provide here the evolution equations for matter in a generic frame. In
a generic frame gµν where both baryons and CDM are nonminimally coupled, eqs. (3.15)
and (3.16) read

δ̈b + (2 + 3γb)Hδ̇b =
3

2
H2Ωm(1 + Υb)δm , (B.1)

δ̈c + (2 + 3γc)Hδ̇c =
3

2
H2Ωm(1 + Υc)δm , (B.2)

with

Υb = αT + β2
ξ + (β2

γb
+ 2βγbβξ)ωbbb + [βγbβγc + βξ(βγb + βγc)]ωcbc , (B.3)

Υc = αT + β2
ξ + [βγbβγc + βξ(βγb + βγc)]ωbbb + (β2

γc + 2βγcβξ)ωcbc . (B.4)

For the case discussed in the main text of minimally coupled baryons, i.e. βγb = 0, one
recovers the expressions in eq. (3.18).

Under a frame transformation (2.8), ωI = ΩI/Ωm does not change. Moreover, in the
quasi-static limit the density contrasts δI does not change either (the explicit transformations
are discussed in [20]). In particular, this implies that b̃I = bI . Therefore, by using the
transformations of the α’s given in eq. (2.10), γI given in eq. (3.19) and those of the β’s given
in eq. (3.20), one finds the expressions for Υb,c in the frame g̃µν ,

Υ̃b = (1 + Υb)(1 + αD)− 1 ,

Υ̃c = (1 + Υc)(1 + αD)− 1 .
(B.5)

Using the expressions above and that the factors 1 + αD is cancelled by the change of time
between the two frames, dt̃ =

√
C/(1 + αD)dt, one can check that the form of eqs. (B.1)

and (B.2) is frame-independent.
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