

Muon reconstruction performance in ATLAS at Run-II

Nicolas Köhler, on behalf of the ATLAS Collaboration

LHCP 2015, St. Petersburg

MUON RECONSTRUCTION AND SELECTION

INNER DETECTOR - ID

The Inner Detector's task is to track charged particles and determine their charge and momentum within $|\eta| < 2.5$ using a 2 T solenoid magnetic field, as well as to identify vertices.

MUON SPECTROMETER - MS

The Muon Spectrometer is designed for muon detection in the range $|\eta| < 2.7$. Three large air core toroidal magnets with a mean magnetic field of 0.5 T allow for a precise measurement of muon momenta up to the TeV range.

Thin-gap chambers (TGC)

LHC RUN-II DATA

MUON SELECTION

Combining tracks of the ID and MS, the ATLAS software provides four complementary types of reconstructed muons: Combined, Segment-tagged, Stand-alone and Calorimeter-tagged muons.

Depending on the kinematics and desired purity, these form four categories of muons:

- **Loose** maximized efficiency
- Medium compromise between efficiency and purity, low systematic uncertainties
- **Tight** strong rejection of misidentifications
- ► **High** p_{T} maximized momentum resolution for $p_{T} > 100 \text{ GeV}$

The ATLAS dataset taken at $\sqrt{s} = 13$ TeV comprises an integrated luminosity of 100 pb⁻¹, of which 85 pb⁻¹ are suitable for physics analyses.

This dataset already allows for a precise determination of muon reconstruction efficiencies, momentum scale and resolution using the J/ψ and

ATL-PHYS-PUB-2015-037

Z resonances.

MUON RECONSTRUCTION EFFICIENCY

The **reconstruction efficiency** is measured using a **tag-and-probe method** based on $Z \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow \mu^+\mu^-$ events. The measurement is carried out in both data and simulation, and a **scale factor** is derived as the ratio between the two results. These scale factors are applied to the simulation in order to correct for a possible mismodeling of the muon reconstruction efficiency.

Left: Measured reconstruction efficiency in various regions of the ATLAS muon spectrometer for muons with $p_T > 10$ GeV.

Below: Muon reconstruction efficiency as a function of the pseudorapidity (left) and of the transverse momentum (right).

MUON MOMENTUM SCALE AND RESOLUTION

Corrections to the simulated muon momentum scale and resolution are extracted separately for ID and MS tracks using a template-based likelihood fit. The bulk of the corrections is derived from $Z \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow \mu^+\mu^-$ decays in 5 fb⁻¹ of *pp* data collected at $\sqrt{s} = 8$ TeV in 2012. The data taken at $\sqrt{s} = 13$ TeV is used to validate and update the corrections to account for changes of the detector conditions.

Fitted resonance mass parameter for $J/\psi \rightarrow \mu^+\mu^-$ (left) and $Z \rightarrow \mu^+\mu^-$ decays (right) as a function of the leading muon pseudorapidity.

The measured muon reconstruction efficiency exceeds 98% for $0.1 < |\eta| < 2.5$ and $p_T > 10$ GeV. Excellent agreement between reconstructed efficiencies in data and simulation is observed.

ATL-PHYS-PUB-2015-037

ATL-PHYS-PUB-2015-037

