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Abstract  

The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase the 

load on its computation infrastructure from 100 GB/s to 4 TB/s, encouraging us to look for new ways of 

accelerating the Online reconstruction. The Coprocessor Manager is our new framework for integrating 

LHCb’s existing computation pipelines with massively parallel algorithms running on GPUs and other 

accelerators. This paper describes the system and analyzes its performance. 
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1 Introduction 

The LHCb experiment [1] [2], located at Point 8 of the LHC, is a single-arm spectrometer with a forward 

geometry. The detector’s hardware is being upgraded with the intent of sustaining luminosities of up to 

2 × 10��cm�	s�� [3] from current 4 × 10�	cm�	s�� [4]. These higher luminosities will increase the 

number of particle collisions at the detector and require dramatic increases in the data processing capacity. 

LHCb’s on-site data-centre is comprised of 27,040 physical CPU cores; increasing this number, as well as 

each core’s individual performance, is necessary, but more cost-effective approaches are highly desirable. 

This motivates the search for innovative ways of dealing with increased data loads [5]. 

One alternative to the straightforward expansion of the current infrastructure is to shift a part of the load to 

GPU processors. GPUs often achieve higher data throughput than conventional processors while drawing 

less power — as evidenced by their use in nine out of the ten top supercomputers in the November 2014 

Green500 list [6]. However, the algorithms currently in use are optimized for serial execution; the new 

massively parallel accelerators require these algorithms to be redesigned or replaced with entirely new 

approaches. Massively parallel processing also calls for changes in the way data travels through the 

computation infrastructure. 

We describe the extension of the existing system that we have created, which allows using new massively 

parallel algorithms in combination with existing proven software, called a Coprocessor Manager. It creates 

an environment for adding new algorithms to existing computation pipelines and manages the flow of data 

in a way that lets the algorithms use the hardware most effectively. The extension’s design is informed by 

the lessons learned from the other experiments’ efforts [7] [8] [9] and makes use of a distinct architecture.  

The rest of the paper is organized as follows: Chapter 2 compares Coprocessor Manager’s architecture to 

other similar projects; Chapter 3 provides a detailed description of the Coprocessor Manager; Chapter 4 

describes a tracking algorithm we used to test it; Chapter 5 evaluates the system’s performance; and Chapter 

6 summarizes the results. 

2 Architecture design 

Other collider experiments have investigated the idea of moving some of their computation to GPUs. We 

document how these efforts, ranging from implementation of specialized algorithms to creation of new 

software infrastructure, informed Coprocessor Manager’s design. 

Researchers at the NA62 experiment have investigated the problem of adapting specific algorithms to 

massively parallel architectures [7]. Using Nvidia’s CUDA [10] GPU programming platform, they make the 

important observation that the overhead cost of setting up the computation is high compared to the cost of 

processing a single particle collision event — this makes it very desirable to process events in batches, 

amortizing the setup cost. 

Researchers at ALICE (A Large Ion Collider Experiment) at LHC took the next step and investigated the 

issues that arise from GPU algorithm integration with existing software infrastructure [8]. They have 

successfully added GPU track reconstruction to ALICE’s High-Level Trigger (HLT) and the offline 

reconstruction framework. This turned out to require adjustments in the HLT framework, as well as AliRoot 

— ALICE’s offline software framework for data analysis, event reconstruction, and simulation. Because 

CUDA is only available on a fraction of cluster nodes, all of the GPU code had to be packaged in a separate 

library and loaded dynamically as needed. The authors also encountered a mismatch in the threading models 

used by the HLT framework and CUDA. The mismatch was that HLT processes events over multiple 

asynchronous concurrent threads, while CUDA is intended for single-threaded use. 

ATLAS (A Toroidal LHC Apparatus) has mounted a serious effort to integrate GPU computation with its 

software infrastructure [9]. ATLAS has a special relationship with LHCb in that its computation framework 
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— Athena — is an adaptation of LHCb’s. Like Gaudi, Athena spawns multiple concurrent processes for 

multiple events. ATLAS’s initial design was to make remote procedure calls to the GPU. In this design, a 

separate GPU Server process hosts a number of GPU kernels. Athena processes connect to this process, 

choose a kernel, send parameters to the kernel, and wait to receive the results. The server accepts requests 

and calls whichever kernel is requested in the order it receives the requests. 

This approach is in practice very similar to ALICE’s method of packaging CUDA code into dynamically 

loaded libraries; in both cases GPU kernel calls are made available to regular Athena algorithms as external 

procedures. Having a separate server offers cleaner separation between regular Athena pipeline code and 

CUDA-dependent algorithms; it also has the added benefit of allowing remote calls to CUDA kernels to be 

made across a network. Finally, hosting all the kernels in a separate long-lived process could potentially 

save on the costs of GPU device setup. 

There are significant costs to hosting GPU code in a separate service this way. Every kernel has custom 

parameters and returns custom data types; addition of new kernels also requires somewhat complicated 

encoding and decoding changes to the server’s request processing loop and to the Athena client. This design 

also necessitates expensively copying potentially large amounts of data between different processes for 

sequences of kernel calls when it would be preferable to simply keep this data in GPU memory. A related 

issue is that the design makes it difficult to reuse resources when calling the same kernel for different 

events. 

ALICE’s and NA62’s experience with GPUs shows the difficulty in maintaining high utilization of the 

processing units. Detectors like LHCb, where individual events require relatively little computation, need 

massively parallel event processing systems to combine and simultaneously process multiple events. This 

difficulty will increase as long as the growth of GPU performance outpaces growth in information volume 

produced by particle detectors. 

Another issue that has to be addressed is the system’s ease of use by the algorithm developer. We tap into 

an existing body of research on GPU algorithms for high-energy physics. If it happens to be difficult to 

transfer an algorithm’s implementation from a standalone version to the detector’s production system, our 

choice of massively parallel algorithms may be restricted. 

The Coprocessor Manager addresses the shortcomings of its predecessors. It is expressly designed to 

combine data from multiple sources — a coprocessor algorithm is an object that takes a batch of objects of 

a given type and creates an output for each of these objects. Special provisions are made for error handling. 

The way an algorithm performs its computations, what libraries and devices it uses, is left up to its author. 

This lack of restrictions serves to facilitate porting of existing tested code to the new infrastructure. 

3 System overview 

1.1 Introduction 

Any system for running algorithms within LHCb’s software environment has to adapt to Gaudi. Gaudi [11] 

[12] is LHCb’s software framework hosting a wide range of physics data processing applications, from 

simulation to reconstruction and analysis; all of these application are built as Gaudi components. 

Experiment-specific software, such as the Event Model [13], which describes the event data classes and 

their relationships, and the Detector Description [14], which provides centralized access to technical 

information about the detector, is provided within the framework as core software components. The 

framework, together with these services and applications, constitutes the complete LHCb software system. 

The Gaudi framework was originally designed and implemented in the 1990s, but consumer multicore 

CPUs did not become widespread until 2006 with the release of Intel Core 2 Duo, and general-purpose 

GPU computation later yet. It builds on the idea of having each node process events one by one; several 

Gaudi instances can run concurrently on a single multicore machine as multiple processes, but each instance 

has its own copies of the transient stores and they do not communicate with each other. This approach to 
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processing events was prudent when the framework was designed, but in the present it stands in the way of 

making effective use of powerful massively parallel hardware, which is typically heavily optimized for 

single-instruction multiple-data (SIMD) execution. SIMD execution favours applying the same algorithm to 

multiple events at the same time, processing them in batches.  

The Coprocessor Manager is the external process and accompanying infrastructure that enables Gaudi 

algorithms to leverage the power of massively parallel algorithm accelerators, such as GPUs without 

changing the fundamental nature of the framework. It uses a client/server architecture, where a process 

called cpserver runs on each coprocessor-equipped machine, while multiple Gaudi instances on the same 

machine or on the same network connect to it as clients. The cpserver process hosts all of the GPU 

algorithms. When a client sends data for processing, it specifies which algorithm is to be used for the task. 

As multiple clients send data to cpserver concurrently, it schedules them in a way that maintains high 

throughput, as explained in more detail in section 1.4. 

The Coprocessor Manager additionally offers facilities for development and fine-tuning of massively 

parallel algorithms. The cpserver process logs algorithm execution times and data batch sizes. It is also 

capable of recording input and output for each client to disk for later playback and verification using the 

cpdriver tool. This way, the same data can be played back repeatedly and without waiting for it being 

generated by Gaudi. We use this for analyzing algorithm performance and maintaining correctness. 

1.2 Gaudi framework integration 

The Coprocessor Manager extends the Gaudi framework and connects to it at two points. First, it offers a 

Gaudi service that allows existing algorithms to exchange data with GPU algorithms, although it should be 

noted that the Coprocessor Manager can also exchange data with sources other than Gaudi. Second, it 

exposes an extension point that allows GPU algorithms to be developed within Gaudi alongside the existing 

software and be picked up by cpserver automatically. We now take a more detailed look. 

3.1.1. CpService 

Algorithms running on Gaudi have access to various services. The Coprocessor Manager exposes a service 

of its own via the ICpService interface, which can be instantiated in the same way as any other Gaudi 

service: 

ICpService cpService = svc<ICpService>("CpService", true); 

ICpService exposes only a single function: submitData. This function takes a data array and the name of 

the GPU algorithm to be used to process it, sends the data to cpserver, waits for a response, and returns 

another data array that is the result of running the algorithm. If the client can perform other useful work 

while waiting for results, submitData can be safely called from a worker thread. Here is its signature: 

class ICpService : public virtual IInterface { 
 
  virtual void submitData( 
    std::string  algorithmName, 
    const void * data, 
    const size_t size, 
    Alloc        allocResults, 
    AllocParam   allocResultsParam); 
}; 

There are two parameters that need to be explained: allocResults and allocResultsParam. These 

parameters form a pattern that allows the caller of submitData to choose its own memory allocation 

method for reception of the result data, thus potentially avoiding creation of unnecessary intermediate 
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copies. The former parameter is a user-supplied function of type Alloc that takes the amount of memory to 

allocate and returns a corresponding memory block. The latter parameter is an arbitrary user-supplied 

parameter that will be passed to allocResults along with the memory amount. 

/// User-defined data to be passed through to the allocator. 
typedef void * AllocParam; 
 
/// Allocator function. 
typedef uint8_t * (*Alloc)(size_t size, AllocParam param); 

A simple implementation could pass a std::vector as AllocParam and resize it in Alloc. Alloc would then 

return a pointer to the contents of the std::vector. 

uint8_t * allocVector(size_t size, void * param) 
{ 
  typedef std::vector<uint8_t> Data; 
  Data & tracks = *reinterpret_cast<Data*>(param); 
  tracks.resize(size); 
  return tracks.data(); 
} 

3.1.2. CpAlgorithm 

The other point of integration into the Gaudi framework consists of allowing GPU algorithms to be 

developed alongside the rest of Gaudi components and added without the need to modify cpserver. 

To be made available for loading via cpserver, an algorithm needs to add a dependency on the 

CpManager/CpAlgorithm project and generate a component library implementing the ICpAlgorithm 

interface. The ICpAlgorithm interface contains only a single function that the GPU algorithm must 

implement: 

class ICpAlgorithm 
{ 
  typedef std::vector<uint8_t>     Data; 
  typedef std::vector<const Data*> Batch; 
 
  virtual void operator() ( 
    const Batch & batch, 
    Alloc         allocResult, 
    AllocParam    allocResultParam); 
}; 

Coprocessor Manager’s key feature is its ability to accumulate data from multiple Gaudi processes and hand 

them over to algorithms in batches. Hence, the algorithm receives an std::vector consisting of one or more 

data arrays sent by calls to submitData. It could process these arrays one by one or, to make optimal use of 

the GPU, it could process them all together. 

As with ICpService, the Alloc/AllocParam pattern allows the caller to supply a custom memory 

allocation function. However, this time these parameters are supplied by Coprocessor Manager. The 

algorithm implementer is expected to call allocResult to request memory for the algorithm’s results. The 

contents of this memory are eventually returned from ICpService::submitData. Again, this pattern allows 

us to avoid making unnecessary intermediate copies, while keeping a consistent interface for algorithm 

authors going forward. 

The Gaudi framework requires one more addition. The *.cpp implementation file for the algorithm needs to 

call the DECLARE_COMPONENT macro with the name of the implementation class. Here is a sample 

implementation: 
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#include "GpuPixelSearchByTriplet.h" 
#include "PrPixelCudaAlgorithm.h" 
 
#include <algorithm> 
#include <vector> 
 
using namespace std; 
 
DECLARE_COMPONENT(PrPixelCudaAlgorithm) 
 
void PrPixelCudaAlgorithm::operator() ( 
    const Batch & batch, 
    Alloc         allocResult, 
    AllocParam    allocResultParam) { 
  // analyze the event 
  vector<Data> trackCollection; 
  gpuPixelSearchByTriplet(batch, trackCollection); 
 
  // allocate memory for the output and copy (this could be optimized) 
  for (int i = 0, size = trackCollection.size(); i != size; ++i) { 
    uint8_t * buffer = 
      allocResult(i, trackCollection[i].size(), allocResultParam); 
    copy(trackCollection[i].begin(), trackCollection[i].end(), buffer); 
  } 
} 

1.3 cpserver and cpdriver 

Coprocessor Manager includes two important executables: cpserver and cpdriver. The former executable 

implements the service that hosts algorithms and communicates with Gaudi or other data sources; the latter 

is a utility that can replay pre-recorded data to cpserver and verify the results. cpdriver is an example of 

sending data to cpserver from a source other than Gaudi. 

cpserver can be used for launching a new instance of the server process, as well as controlling one that is 

already running. It takes the following arguments: 

daemonize – runs cpserver as a daemon. Otherwise, it is run as a regular console process. 

exit – terminates a running instance. The instance is identified by the service argument. 

load – loads an algorithm into a running instance. For the algorithm used in a previous example, the 

algorithm name would be PrPixelCudaAlgorithm. 

connection – local or tcp; toggles the means of communication with cpserver. 

localPath – a local Unix socket path. This is a high-performance means of communication within a single 

machine. 

tcpHost – a network socket address. Used for communication across a network. 

tcpPort – a network socket port. 

datadir – enables recording of input and output data to disk. Specifies the directory, in which to store the 

files. The directory should exist. 

The server additionally keeps a log of algorithm performance. The log is saved to the file perf.log. Every 

time an algorithm processes a data batch, a new entry is added to the log, listing a time stamp, the name of 

the algorithm, the time it took to process the batch, the number of entries, the size of the input, and the size 

of the output. 
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When datadir is specified, each call to submitData generates a file containing the data received and the 

data produced by the algorithm used to process it. These files can then be played back using cpdriver. It 

takes the following arguments: 

connection – local or tcp; toggles the means of communication with cpserver. 

localPath – as with cpserver, a local Unix socket path. 

tcpHost – network socket address. Used for communication across a network. 

tcpPort – network socket port. 

threads – the number of threads used to send the data. 

verify – have cpdriver check the output returned by cpserver to the output recorded originally and 

produce a message in case of mismatch. 

data – path to the directory containing record files. The file naming convention should be the same as used 

by cpserver with the datadir argument. 

Playing back recorded data can be used to measure hosted algorithm performance without contamination by 

processes producing the data. It is also useful for maintaining algorithm correctness: running a previously 

recorded data set with the verify flag after modifying an algorithm to make sure that it produces the same 

output. 

The LHCb code is organized into several large collections, each containing the software specialized for 

some task. The Coprocessor Manager can be used with any of these collections. Here is sample usage with 

event reconstruction in Brunel (B Reconstruction, UNderstanding Events in Lhcb) [15] [16]: 

# configure the server to copy incoming data to the MyEvents directory 
> cpserver --datadir MyEvents & 
> cpserver --load PrPixelCudaAlgorithm 
  loaded 'PrPixelCudaAlgorithm' 
 
# get events from Brunel and send them to the Coprocessor Manager 
> gaudirun.py Brunel-Script.py 
  ============================================== 
            Welcome to Brunel version v45r0 
   running on lab13 on Fri Dec 31 23:59:59 1999 
  ============================================== 
  … 
 
# replay the events one more time, checking whether the results are consistent 
> cpdriver --data MyEvents --verify 

1.4 Client-server architecture 

The Coprocessor Manager assigns a dedicated server process to every machine equipped with massively 

parallel accelerator hardware. Data is sent from client processes that could be Gaudi or cpdriver instances. 

A custom library called CpIpc handles the communications. 
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Figure 1. Coprocessor Manager architecture. 

The server receives data from multiple concurrent clients, schedules algorithm execution, combines data 

into batches, runs algorithms, and distributes the results back to clients. The server does not enforce any 

constraints on the algorithms’ use of the hardware resources, so algorithms that have been written without 

the Coprocessor Manager can be ported with minimal changes. However, the server could be augmented 

with additional hardware management capabilities, should they be deemed beneficial. 

To handle multiple concurrent clients, the server opens a socket and accepts each connection on a new 

thread. This is currently a local Unix socket, but an option to use a network socket could be added with only 

small modifications. When a client connects, the server receives a data payload and the name of the 

algorithm to be used to process it. The payload goes into a queue for scheduling; meanwhile, the thread is 

suspended. Once the payload is processed, the client thread is woken up, and the result of the computation 

is sent back to the client. The client gets notified when the requested algorithm is not available or an 

exception is thrown during the computation. 

Algorithm scheduling and execution are done on a dedicated thread. Algorithms are executed one after 

another whenever data is available. The scheduling algorithm is a variant of the first-come-first-serve 

(FCFS) approach: the difference is that whenever a payload is removed from the queue, all payloads 

targeting the same algorithm are removed from the queue with it. These payloads are submitted to the 

algorithm as a batch. When the hardware cannot cope with the amount of incoming data, new clients are 

refused connection. 

FCFS, despite its simplicity, has an important benefit: because there is no prioritization, every payload is 

guaranteed to be processed in time. Prioritization schemes risk “starving” low-priority clients. However, 

more complicated approaches may be preferable, if latency guarantees are desired. 

The communication protocol and network machinery are encapsulated in the CpIpc library. The server uses 

this library to communicate with its clients and with other instances of itself, when the cpserver executable 

is used to terminate a running instance or load an algorithm into it. CpService uses this library to allow 

Gaudi algorithms to submit data to cpserver. The cpdriver executable uses this library to send pre-

recorded data to cpserver. Potentially, this library could be used to enable additional types of cpserver 

clients or even different kinds of servers for existing clients. 

1.5 Concurrent Gaudi considerations 

There is an ongoing effort to add support for parallelism inside the Gaudi framework [17]. The prototype 

implementation of Gaudi with added task parallelism is called GaudiHive. It uses the Intel Thread Building 

Blocks to divide work into tasks and its own scheduler to run them. 

GaudiHive could become a more efficient way of sending concurrent requests to the Coprocessor Manager; 

the more concurrent requests the Coprocessor Manager receives, the more efficiently it can schedule their 

execution. However, having multiple schedulers, one in cpserver and one in GaudiHive, creates an 
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additional difficulty: a task waiting for ICpService::submitData to return would stall GaudiHive’s 

execution queue due to GaudiHive having no concept of idle waiting. In order to cooperate with the 

Coprocessor Manager, GaudiHive needs a way for tasks to suspend themselves. We currently do not know 

whether it will gain this capability, but this is an important consideration when adding parallelism to 

computation frameworks. 

4 VELO tracking on the GPU 

1.6 VELO Pixel 

We evaluate the Coprocessor Manager’s performance using a GPU-based VELO Pixel tracking algorithm. 

In this chapter we describe the algorithm and the system it measures. 

The VErtex LOcator (VELO) is a silicon strip detector that is the part of the LHCb detector closest to the 

interaction region [18]. Its job is to measure the particle tracks and precisely separate primary and 

secondary vertices due to decay of heavy flavoured particles. Efficient and accurate track reconstruction in 

the VELO is critical for vertex identification, underpinning physics analysis at LHCb. 

In the upgrade following Long Shutdown 2, scheduled for 2019, VELO will be upgraded to a pixel module-

based design capable of 40 MHz readout [19]. VELO Pixel will consist of 52 modules placed along the z-

axis, each featuring 12 radiation-hard VeloPix ASIC chips with 256x256-pixel matrices. The chips are 

grouped by rows of three, each bump-bonded to a single sensor to form a tile. Four tiles are arranged around 

the LHCb beam pipe in an L shape, so that two tiles are read out along the x-axis and two along the y-axis. 

Sensors on one side overlap with sensors on the other in order to prevent loss of angled tracks. 

 

Figure 2 Schematic layout of the upgraded VELO. 

Track reconstruction takes hit �, �, �� coordinates produced by the detector and computes track state 

vectors of the form: 

������������ � � � �� �� � �⁄ � 

Variables �� � !�/!� and �� � !�/!� are the track slopes in the xz and yz plane. The last parameter �/� 

is an estimate charge divided by momentum for the reconstructed particle, used to reconstruct trajectories in 

a magnetic field. 
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1.7 Massively parallel VELO Pixel tracking 

We ran our tests on a reconstruction algorithm specially optimized for GPU computation. The algorithm 

collects hit coordinates for events from Gaudi, sorts them along the x coordinate, hands them off to 

CpService, and then waits for the results. On the cpserver side, the algorithm is given hit coordinates in 

batches from multiple events and for each event compiles lists of hits likely to form tracks. The algorithm is 

implemented in Nvidia CUDA 7.0. 

The algorithm performs a preparation step and then builds tracks iteratively, progressing through the 

sensors in order, starting at the far end of the detector. During the preparation step, it goes through all the 

sensors once and for each hit finds runs of second-next-sensor hits not exceeding a predefined � slope 

threshold. This is efficient, because tracks are sorted by the � coordinate. The preparation step takes #$	� 

time, where $ is the average number of hits per module. Because some of the steps are interlaced and 

because we cannot accurately time partial CUDA kernel execution, we do not measure the exact 

contribution of each step. 

The track-building step is based on the idea of track forwarding. A track is forwarded for further processing 

until no hits consistent with its trajectory are found over a span more than three sensors long. As it goes 

from sensor to sensor, the algorithm considers whether any track currently followed is consistent with any 

of the hits two sensors away, and, if so, extends the track with the best-matching hit. This takes #$	� time. 

For every sensor, the algorithm also examines every hit registered that is not yet part of any track and goes 

over all the hit triplets starting with this hit and compatible hits (gathered in the preparation step) in the two 

sensors that follow, finding all consistent with beginnings of new tracks. If such triplets are found, the most 

compatible is added to the tracks being forwarded. This operation takes #$�� time. 

The algorithm processes multiple events simultaneously using fast shared memory for communication 

between threads working on each individual event. The work of fitting hits to tracks is split among 128 

threads per event in the current implementation. 

5 Performance evaluation 

1.8 Hardware setup 

We ran all our tests on a machine equipped with a GeForce GTX 680 GPU and two six-core Intel Xeon E5-

2620 CPUs. The GTX 680 is a middle-range consumer graphics card; current top offerings are two to three 

times faster. The Xeon is a middle-range server CPU.  

1.9 Overhead analysis 

Compared to processing data directly in Gaudi, the Coprocessor Manager introduces some additional 

overhead. Data sent to it needs to be serialized and responses from it deserialized. Serialization is 

consolidation of data structures into continuous blocks with no references to external data, while 

deserialization is the reverse process. Additionally, there is some overhead for data transmission, batching, 

and algorithm execution scheduling. 

These additional tasks are performed on the CPU. Ideally, the CPU would be serving new data to the 

Coprocessor Manager while old data is being processed. In this case, there would be no penalty to the 

throughput. However, it could also happen that the CPU would stall while waiting for the coprocessor, and 

in this case we should hope that the combined overhead and the hosted algorithm’s execution time are still 

smaller than the CPU algorithm execution time. 



LHCb GPU Acceleration Project Reference:  LHCb-PUB-2015-021 

Public Note  Revision:  1 

Issue:  1 Last modified:  October 12, 2015 

Performance evaluation 

 

  page 10 

The overhead induced by the Coprocessor Manager also introduces additional latency. To measure this we 

use a simple data algorithm that does not perform any computation on the data it receives and send it 

varying amounts of random bytes via cpdriver. Communication via local Unix sockets provides fast inter-

process communication similar in performance to shared memory. We conducted an experiment by sending 

1000 data packets ranging from 0 to 500,000 bytes using the Coprocessor Manager and a minimal 

application using the same network interface as a baseline. Figure 3 shows the results. 

 

Figure 3. cpserver data transfer overhead in grey (above) and baseline network transfer rate in 

red (below) along with the trend lines. 

 There is a simple linear relationship between data size and time. The Coprocessor Manager achieves a 

throughput of 2.7 GB/s for data packets under 128 KB and 1.7 GB/s for the larger. The base rate is 3.9 

GB/s. The difference in rates for different sizes is not explicitly coded into the Coprocessor Manager and 

may be hardware-dependent. 

Events produced at LHCb are small compared to those of the other experiments — on the order of 100 KB, 

and so benefit from the faster transfer rate. The algorithms that run on a GPU can take on the order of 

milliseconds to hundreds of milliseconds to execute, so the communication overhead is negligible. The 

added 50 μs latency is also well within the LHCb High Level Trigger’s tolerance. 

1.10 Batching performance 

We ran the tracking algorithm on Monte-Carlo simulated hit data, controlling the size of batches, in which 

the CUDA PrPixel coprocessor algorithm was given event data. Performance data from 10 runs is 

summarized in Figure 4. 



LHCb GPU Acceleration Project Reference:  LHCb-PUB-2015-021 

Public Note  Revision:  1 

Issue:  1 Last modified:  October 12, 2015 

Performance evaluation 

 

  page  11 11 

 

 

Figure 4. Times over 10 runs for VELO Pixel tracking running on cpserver with varying batch 
sizes: full dataset above and a zoomed in view below. Run data points are gray, median values 
black. 

We ran tests for batches of up to 500 events. cpserver allows batches to be as large as permitted by the 

operating system’s limits on the number of simultaneous threads and open connections per process. Our 

tests reach the current CUDA VELO Pixel tracking algorithm’s implementation’s batch size limit. 

The top graph shows that the first run for every batch size is delayed by 0.4 s. This is a one-time cost for 

GPU device initialization. Subsequent runs all complete quickly. The main benefit of massively parallel 

computation lies in the ability to increase batch size at almost no performance cost over wide ranges of 

batch sizes. The time per event falls rapidly as batch size increases: it is 2 ms for batches of 100 events, 1 

ms for batches of 200, and 0.7 ms for 500. In practical use, we would want to process data in the largest 

batches that can be processed within exceeding latency tolerances. 
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We compare our algorithm with an up-to-date version of PrPixel — the CPU-based VeloPix tracking 

algorithm [19]. Table 1 makes the comparison in terms of time, ghost rate, and efficiency; a ghost track is 

one that cannot be associated to any simulated particle; efficiency refers to the proportion of simulated 

tracks detected. We see that the GPU algorithm pulls ahead of the CPU implementation for large batches, 

while lagging behind on single-event loads. 

 PrPixel Track forwarding 

Time per event (ms) 3.6 26.2 batch of 1 

3.5 batch of 40 

Ghost rate 1.7% 0.8% 

Efficiency for long tracks 98.3% 98.0% 

Efficiency for long tracks over 

5 GeV 

98.8% 98.4% 

Table 1. Comparison of a CPU and a GPU VELO Pixel tracking algorithm. 

6 Conclusions 

The Gaudi computation framework is designed for running multiple serial computations on fast multi-core 

CPUs. However, modern massively parallel coprocessors, such as GPUs, leverage large-scale vectorization 

to achieve their high throughput and energy efficiency. We have developed the Coprocessor Manager to add 

support for such processors to the current infrastructure and enable computation pipelines to mix existing 

algorithms with new optimized for massively parallel hardware. 

We designed the Coprocessor Manager based on the results of other teams’ investigations into bringing 

massively parallel computation to high-energy physics, mindful of our obligation to provide tools for 

algorithm development and support, as well as the special requirements of the new algorithms. 

Coprocessor Manager’s main distinguishing features is its ability to bring pieces of data from multiple 

sources together and process them in batches using specially designed algorithms running on massively 

parallel processors. In our tests we study one such algorithm and find that its performance is critically 

reliant on having large batches of hundreds of events to process. 

We also studied the overhead incurred by having a separate process perform part of the computation. Our 

tests show that when Gaudi clients run on the same machine as the cpserver process, the overhead is small 

compared to the total processing time. There is a one-time cost of 0.4 s per cpserver instance for setting up 

the GPU and a constant 50 μs latency overhead due to the inter-process communication. Without algorithm-

specific overhead, cpserver has a throughput of 1.7-2.7 GB/s. This overhead is within tolerance for 

LHCb’s HLT trigger. 

For the next step, we intend to test the Coprocessor Manager in a production environment. 
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