
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2015-224
LHCb-PAPER-2015-034

November 24, 2015

Measurement of CP violation
parameters and polarisation

fractions in B0
s → J/ψK∗0 decays

The LHCb collaboration†

Abstract

The first measurement of CP asymmetries in the decay B0
s → J/ψK∗(892)0 and

an updated measurement of its branching fraction and polarisation fractions are
presented. The results are obtained using data corresponding to an integrated
luminosity of 3.0 fb−1 of proton–proton collisions recorded with the LHCb detector at
centre-of-mass energies of 7 and 8 TeV. Together with constraints from B0 → J/ψρ0,
the results are used to constrain additional contributions due to penguin diagrams
in the CP -violating phase φs, measured through B0

s decays to charmonium.
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1 Introduction

The CP -violating phase φs arises in the interference between the amplitudes of B0
s mesons

decaying via b → cc̄s transitions to CP eigenstates directly and those decaying after
oscillation. The phase φs can be measured using the decay B0

s → J/ψφ. Within the
Standard Model (SM), and ignoring penguin contributions to the decay, φs is predicted to
be −2βs, with βs ≡ arg(−VcbV ∗cs/VtbV ∗ts), where Vij are elements of the CKM matrix [1].
The phase φs is a sensitive probe of dynamics beyond the SM (BSM) since it has a
very small theoretical uncertainty and BSM processes can contribute to B0

s -B
0
s mixing [2–

5]. Global fits to experimental data, excluding the direct measurements of φs, give
−2βs = −0.0363± 0.0013 rad [6]. The current world average value is φs = −0.015 ±
0.035 rad [7], dominated by the LHCb measurement reported in Ref. [8]. In the SM
expectation of φs [6], additional contributions to the leading b → cc̄s tree Feynman
diagram, as shown in Fig. 1, are assumed to be negligible. However, the shift in φs due to
these contributions, called hereafter “penguin pollution”, is difficult to compute due to
the non-perturbative nature of the quantum chromodynamics (QCD) processes involved.
This penguin pollution must be measured or limited before using the φs measurement
in searches for BSM effects, since a shift in this phase caused by penguin diagrams is
possible. Various methods to address this problem have been proposed [9–14], and LHCb
has recently published upper limits on the size of the penguin-induced phase shift using
B0 → J/ψρ0 decays [15].

Tree and penguin diagrams contributing to both B0
s → J/ψφ and B0

s → J/ψK∗0

decays are shown in Fig. 1. In this paper, the penguin pollution in φs is investigated
using B0

s → J/ψK∗0 decays1, with J/ψ → µ+µ− and K∗0 → K−π+, following the method
first proposed in Ref. [9] for the B0 → J/ψρ0 decay and later also discussed for the
B0
s → J/ψK∗0 decay in Refs. [11, 13]. This approach requires the measurement of the

branching fraction, direct CP asymmetries, and polarisation fractions of the B0
s → J/ψK∗0

decay. The measurements use data from proton-proton (pp) collisions recorded with the
LHCb detector corresponding to 3.0 fb−1 of integrated luminosity, of which 1.0 (2.0) fb−1 was
collected in 2011 (2012) at a centre-of-mass energy of 7 (8) TeV. The LHCb collaboration
previously reported a measurement of the branching fraction and the polarisation fractions
using data corresponding to 0.37 fb−1 of integrated luminosity [16].

The paper is organised as follows: a description of the LHCb detector, reconstruction
and simulation software is given in Sect. 2, the selection of the B0

s → J/ψK∗0 signal
candidates and the B0 → J/ψK∗0 control channel are presented in Sect. 3 and the
treatment of background in Sect. 4. The J/ψK−π+ invariant mass fit is detailed in Sect. 5.
The angular analysis and CP asymmetry measurements, both performed on weighted
distributions where the background is statistically subtracted using the sPlot technique [17],
are detailed in Sect. 6. The measurement of the branching fraction is explained in Sect. 7.
The evaluation of systematic uncertainties is described in Sect. 8 along with the results,
and in Sect. 9 constraints on the penguin pollution are evaluated and discussed.

1Charge conjugation is implicit throughout this paper, unless otherwise specified.
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Figure 1: Decay topologies contributing to the B0
s → J/ψφ channel (a,b) and B0

s → J/ψK∗0

channel (c,d). The tree diagrams (a,c) are shown on the left and the penguin diagrams (b,d) on
the right.

2 Experimental setup

The LHCb detector [18,19] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-
rounding the pp interaction region, a large-area silicon-strip detector located upstream of
a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the magnet. The tracking system
provides a measurement of momentum, p, of charged particles with a relative uncertainty
that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance
of a track to a primary vertex, the impact parameter, is measured with a resolution of
(15+29/pT)µm, where pT is the component of the momentum transverse to the beam,
in GeV/c. Different types of charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a
calorimeter system consisting of scintillating-pad and preshower detectors, an electromag-
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netic calorimeter and a hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger, which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a
software stage, which applies a full event reconstruction. In this analysis, candidates
are first required to pass the hardware trigger, which selects muons with a transverse
momentum pT > 1.48 GeV/c in the 7 TeV data or pT > 1.76 GeV/c in the 8 TeV data. In
the subsequent software trigger, at least one of the final-state particles is required to have
both pT > 0.8 GeV/c and impact parameter larger than 100µm with respect to all of the
primary pp interaction vertices (PVs) in the event. Finally, the tracks of two or more of
the final-state particles are required to form a vertex that is significantly displaced from
any PV. Further selection requirements are applied offline in order to increase the signal
purity.

In the simulation, pp collisions are generated using Pythia [20, 21] with a specific
LHCb configuration [22]. Decays of hadronic particles are described by EvtGen [23],
in which final-state radiation is generated using Photos [24]. The interaction of the
generated particles with the detector, and its response, are implemented using the Geant4
toolkit [25, 26] as described in Ref. [27].

3 Event selection

The selection of B0
s → J/ψK∗0 candidates consists of two steps: a preselection consisting

of discrete cuts, followed by a specific requirement on a boosted decision tree with gradient
boosting (BDTG) [28, 29] to suppress combinatorial background. All charged particles
are required to have a transverse momentum in excess of 0.5 GeV/c2 and to be positively
identified as muons, kaons or pions. The tracks are fitted to a common vertex which is
required to be of good quality and significantly displaced from any PV in the event. The
flight direction can be described as a vector between the B0

s production and decay vertices;
the cosine of the angle between this vector and the B0

s momentum vector is required to be
greater than 0.999. Reconstructed invariant masses of the J/ψ and K∗0 candidates are
required to be in the ranges 2947 < mµ+µ− < 3247 MeV/c2 and 826 < mK−π+ < 966 MeV/c2.
The B0

s invariant mass is reconstructed by constraining the J/ψ candidate to its nominal
mass [30], and is required to be in the range 5150 < mJ/ψK−π+ < 5650 MeV/c2.

The training of the BDTG is performed independently for 2011 and 2012 data, using
information from the B0

s candidates: time of flight, transverse momentum, impact pa-
rameter with respect to the production vertex and χ2 of the decay vertex fit. The data
sample used to train the BDTG uses less stringent particle identification requirements.
When training the BDTG, simulated B0

s → J/ψK∗0 events are used to represent the signal,
while candidates reconstructed from data events with J/ψK−π+ invariant mass above
5401 MeV/c2 are used to represent the background. The optimal threshold for the BDTG
is chosen independently for 2011 and 2012 data and maximises the effective signal yield.
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Table 1: Expected yields of each background component in the signal mass range.

Background sources 2011 data 2012 data
B0 → J/ψπ+π− 51± 10 115± 23
B0
s → J/ψπ+π− 9.3± 2.1 25.0± 5.4

B0
s → J/ψK+K− 10.1± 2.3 19.2± 4.0

Λ0
b → J/ψpK− 36± 17 90± 43

Λ0
b → J/ψpπ− 13.8± 5.3 27.3± 9.0

4 Treatment of peaking backgrounds

After the suppression of most background with particle identification criteria, simulations
show residual contributions from the backgrounds Λ0

b → J/ψpK−, B0
s → J/ψK+K−,

B0
s → J/ψπ+π−, and B0 → J/ψπ+π−. The invariant mass distributions of misidentified

B0 → J/ψπ+π− and B0
s → J/ψπ+π− events peak near the B0

s → J/ψK−π+ signal peak
due to the effect of a wrong-mass hypothesis, and the misidentified B0

s → J/ψK+K−

candidates are located in the vicinity of the B0 → J/ψK+π− signal peak. It is therefore
not possible to separate such background from signal using information based solely on
the invariant mass of the J/ψK−π+ system. Moreover the shape of the reflected invariant
mass distribution is sensitive to the daughter particles momenta. Due to these correlations
it is difficult to add the b-hadron to J/ψh+h− (where h is either a pion, a kaon or a proton)
misidentified backgrounds as extra modes to the fit to the invariant mass distribution.
Instead, simulated events are added to the data sample with negative weights in order to
cancel the contribution from those peaking backgrounds, as done previously in Ref. [8].
Simulated b-hadron to J/ψh+h− events are generated using a phase-space model, and then
weighted on an event-by-event basis using the latest amplitude analyses of the decays
Λ0
b → J/ψpK− [31], B0

s → J/ψK+K− [32], B0
s → J/ψπ+π− [33], and B0 → J/ψπ+π− [34].

The sum of weights of each decay mode is normalised such that the injected simulated
events cancel out the expected yield in data of the specific background decay mode.

In addition to Λ0
b → J/ψpK− and B → J/ψh+h− decays, background from Λ0

b →
J/ψpπ− is also expected. However, in Ref. [35] a full amplitude analysis was not performed.
For this reason, as well as the fact that the Λ0

b decays have broad mass distributions, the
contribution is explicitly included in the mass fit described in the next section. Expected
yields for both B → J/ψh+h− and Λ0

b → J/ψph− background decays are given in Table 1.

5 Fit to the invariant mass distribution

After adding simulated B0 → J/ψπ+π−, B0
s → J/ψπ+π−, B0

s → J/ψK+K−,
and Λ0

b → J/ψpK− events with negative weights, the remaining sample consists of
B0 → J/ψK+π−, B0

s → J/ψK−π+, Λ0
b → J/ψpπ− decays, and combinatorial background.
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These four modes are statistically disentangled through a fit to the J/ψK−π+ invariant
mass. The combinatorial background is described by an exponential distribution, the
Λ0
b → J/ψpπ− decay by the Amoroso distribution [36] and the B0 and B0

s signals by the
double-sided Hypatia distribution [37],

I(m,µ, σ, λ, ζ, β, a1, a2, n1, n2) ∝
A

(B+m−µ)n1
if m− µ < −a1σ ,

C
(D+m−µ)n2

if m− µ > a2σ ,

((m− µ)2 + δ2)
1
2
λ− 1

4 eβ(m−µ)Kλ− 1
2

(
α
√

(m− µ)2 + δ2
)

otherwise ,

(1)

where Kν(z) is the modified Bessel function of the second kind, δ ≡ σ
√

ζ Kλ(ζ)
Kλ+1(ζ)

,

α ≡ 1
σ

√
ζ Kλ+1(ζ)

Kλ(ζ)
, and A,B,C,D are obtained by imposing continuity and differentia-

bility. This function is chosen because the event-by-event uncertainty on the mass has
a dependence on the particle momenta. The estimate of the number of B0 → J/ψK+π−

decays lying under the B0
s peak is very sensitive to the modelling of the tails of the B0

peak. The fitted fraction is in good agreement with the estimate from simulation.
In the fit to data, the mean and resolution parameters of both the B0

s and B0 Hypatia
functions are free to vary. All the remaining parameters, namely λ, a1, n1, a2 and n2, are
fixed to values determined from fits to B0

s and B0 simulated events. All the Λ0
b → J/ψpπ−

shape parameters are fixed to values obtained from fits to simulated Λ0
b → J/ψpπ− events,

while the exponent of the combinatorial background is free to vary.
Due to the small expected yield of Λ0

b → J/ψpπ− decays compared to those of the
other modes determined in the fit to data, and to the broad distribution of Λ0

b → J/ψpπ−

decays across the J/ψK−π+ invariant mass spectrum, its yield is included in the fit as a
Gaussian constraint using the expected number of events and its uncertainties, as shown
in Table 1.

From studies of simulated (MC) samples, it is found that the resolution of B0
s and B0

mass peaks depends on both mK−π+ and cos(θµ), where θµ is one of the helicity angles
used in the angular analysis as defined in Sect. 6. The fit to the J/ψK−π+ invariant mass
spectrum, including the evaluation of the sWeights, is performed separately in twenty
bins, corresponding to four mK−π+ bins of 35 MeV/c2 width, and five equal bins in cos(θµ).
The overall B0

s and B0 yields are obtained from the sum of yields in the twenty bins, giving

NB0 = 208656± 462 (stat)+78
−76 (syst) , (2)

NB0
s

= 1808± 51 (stat)+38
−33 (syst) , (3)

where the statistical uncertainties are obtained from the quadratic sum of the uncertainties
determined in each of the individual fits. Systematic uncertainties are discussed in Sect. 8.
The correlation between the B0 and B0

s yields in each bin are found to be smaller than 4%.
The ratio of the B0

s and B0 yields is found to be NB0
s
/NB0 = (8.66±0.24(stat)+0.18

−0.16 (syst))×
10−3. Figure 2 shows the sum of the fit results for each bin, overlaid on the J/ψK−π+

mass spectrum for the selected data sample.
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Figure 2: The J/ψK−π+ invariant mass distribution with the sum of the fit projections in the 20
mK−π+ and cos(θµ) bins. Points with error bars show the data. The projection of the fit result
is represented by the solid blue line, and the contributions from the different components are
detailed in the legend. At this scale the contribution of the Λ0

b → J/ψpπ− is barely visible. All
the other peaking background components are subtracted as described in the text.

6 Angular analysis

6.1 Angular formalism

This analysis uses the decay angles defined in the helicity basis. The helicity angles are
denoted by (θK , θµ, ϕh), as shown in Fig. 3. The polar angle θK (θµ) is the angle between
the kaon (µ+) momentum and the direction opposite to the B0

s momentum in the K−π+

(µ+µ−) centre-of-mass system. The azimuthal angle between the K−π+ and µ+µ− decay
planes is ϕh. The definitions are the same for B0

s or B0
s decays. They are also the same

for B0 → J/ψK∗0 decays.
The shape of the angular distribution of B0

s → J/ψK∗0 decays is given by Ref. [38],

dΓ(θK , θµ, ϕh)

dΩ
∝
∑
αµ=±1

∣∣∣∣∣
|λ|<J∑
λ,J

√
2J + 1

4π
HJ
λe
−iλϕhd1

λ,αµ(θµ)d1
−λ,0(θK)

∣∣∣∣∣
2

, (4)

where λ = 0,±1 is the J/ψ helicity, αµ = ±1 is the helicity difference between the muons,
J is the spin of the K−π+ system, H are the helicity amplitudes, and d are the small
Wigner matrices.

The helicity amplitudes are rotated into transversity amplitudes, which correspond to
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final P eigenstates,

AS = H0
0 , (5)

A0 = H1
0 , (6)

A‖ =
1√
2

(H1
+ +H1

−) , (7)

A⊥ =
1√
2

(H1
+ −H1

−) . (8)

The distribution in Eq. 4 can be written as the sum of ten angular terms, four corresponding
to the square of the transversity amplitude of each final state polarisation, and six
corresponding to the cross terms describing interference among the final polarisations.

The modulus of a given transversity amplitude, Ax, is written as |Ax|, and its phase as
δx. The convention δ0 = 0 is used in this paper. The P–wave polarisation fractions are
fi = |Ai|2/(|A0|2 + |A‖|2 + |A⊥|2), with i = 0, ‖,⊥ and the S–wave fraction is defined as
FS = |AS|2/(|A0|2 + |A‖|2 + |A⊥|2 + |AS|2). The distribution of the CP -conjugate decay
is obtained by flipping the sign of the interference terms which contain |A⊥|. For the
CP -conjugate case, the amplitudes are denoted as Ai. Each Ai and the corresponding Ai
are related through the CP asymmetries, as described in Sect. 6.3.

6.2 Partial-wave interference factors

In the general case, the transversity amplitudes of the angular model depend on the K−π+

mass (mK−π+). This variable is limited to be inside a window of ±70 MeV/c2 around the
K∗0 mass. Figure 4 shows the efficiency-corrected mK−π+ spectra for B0

s and B0 using the
nominal sets of sWeights.

In order to account for the mK−π+ dependence while keeping the framework of an
angular-only analysis, a fit is performed simultaneously in the same four mK−π+ bins
defined in Sect. 5. Different values of the parameters |AS|2 and δS are allowed for each
bin, but the angular distribution still contains mass-dependent terms associated with the
interference between partial-waves. If only the S–wave and P–wave are considered, such

θµ

µ+µ−K−π+
θK

y

ϕh
x

z

π+

µ−

µ+

B0
s

K−

Figure 3: Representation of helicity angles as discussed in the text.
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interference terms correspond to the following complex integrals,∫ mHKπ
mLKπ
P × S∗ Φ εm(mKπ) dmKπ√∫ mHKπ

mLKπ
|P|2 Φ εm(mKπ) dmKπ

∫ mHKπ
mLKπ
|S|2 Φ εm(mKπ) dmKπ

= CSPe
−iθSP , (9)

where m
L(H)
Kπ is the lower (higher) limit of the bin, εm(mKπ) is the acceptance for a K−π+

candidate with mass mKπ (see Appendix A for a discussion on the angular acceptance),
Φ stands for the phase space, and P (S) is the P–wave (S–wave) propagator. The phase
space term is computed as

Φ =
p q

m2
Kπ

, (10)

where p denotes the K∗0 momentum in the B0
s rest frame and q refers to the K− momentum

in the K∗0 rest frame.
The phase θSP is included in the definition of δS but the CSP factors, corresponding

to real numbers in the interval [0, 1], have to be computed and input to the angular fit.
The contribution of D–wave (J = 2) in the mK−π+ range considered is expected to be
negligible. Therefore the nominal model only includes S–wave and P–wave. To determine
the systematic uncertainty due to possible D–wave contributions, CSD and CPD factors
are also computed, using analogous expressions to that given in Eq. 9. The Cij factors are
calculated by evaluating numerically the integrals using the propagators outlined below,
and are included as fixed parameters in the fit. A systematic uncertainty associated to the
different possible choices of the propagator models is afterwards evaluated.
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Figure 4: Efficiency corrected mK−π+ distribution for B0
s shown in squares (red) and B0 shown

in circles (black) using sWeights computed from the maximum likelihood fit to the J/ψK−π+

invariant mass spectrum.

The S–wave propagator is constructed using the LASS parametrisation [39], consisting
of a linear combination of the K∗0(1430)0 resonance with a non-resonant term, coming
from elastic scattering. The P–wave is described by a combination of the K∗(892)0 and
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Table 2: The CSP, CSD and CPD factors calculated in each of the four mK−π+ bins around the
K∗0 peak.

Bin mK−π+ range ( MeV/c2) CSP CSD CPD

0 [826, 861] 0.968 ± 0.017 0.9968 ± 0.0030 0.9827 ± 0.0048
1 [861, 896] 0.931 ± 0.012 0.9978 ± 0.0021 0.9402 ± 0.0048
2 [896, 931] 0.952 ± 0.012 0.9983 ± 0.0016 0.9421 ± 0.0056
3 [931, 966] 0.988 ± 0.011 0.9986 ± 0.0012 0.9802 ± 0.0066

K∗1 (1410)0 resonances using the isobar model [40], and the D–wave is assumed to come from
the K∗2(1430)0 contribution. Relativistic Breit-Wigner functions, multiplied by angular
momentum barrier factors, are used to parametrise the different resonances. Table 2
contains the computed CSP, CSD and CPD factors.

6.3 CP asymmetries

The direct CP violation asymmetry in the B0
(s) decay rate to the final state f(s) i, with

fs,i = J/ψ (K−π+)i and fi = J/ψ (K+π−)i, is defined as

ACPi (B0
(s) → f(s) i) =

|A(s) i|2 − |A(s) i|2
|A(s) i|2 + |A(s) i|2

, (11)

where A(s) i are the transversity amplitudes defined in Sect. 6.1 and the additional index s
is used to distinguish the B0

s and the B0-meson. The index i refers to the polarisation of
the final state (i = 0, ‖,⊥, S) and is dropped in the rest of this section, for clarity.

The raw CP asymmetry is expressed in terms of the number of observed candidates by

ACPraw(B0
(s) → f(s)) =

Nobs(f (s))−Nobs(f(s))

Nobs(f (s)) +Nobs(f(s))
. (12)

Both asymmetries in Eq. 11 and Eq. 12 are related by [41]

ACP (B0
(s) → f(s)) ' ACPraw(B0

(s) → f(s))− ζ(s)AD(f)− κ(s)AP(B0
(s)) , (13)

where AD(f) is the detection asymmetry, defined as in Eq. (16), AP(B0
(s)) is the B0

(s)−B0
(s)

production asymmetry, defined as in Eq. (15), ζ(s) = +1(−1) and κ(s) accounts for the
dilution due to B0

(s)−B0
(s) oscillations [42]. The κ(s) factor is evaluated by

κ(s) =

∫∞
0
e−Γ(s)tcos

(
∆m(s)t

)
ε(t)dt∫∞

0
e−Γ(s)tcosh

(
∆Γ(s)

2
t
)
ε(t)dt

, (14)

where ε(t) is the time-dependent acceptance function, assumed to be identical for the
B0
s → J/ψK∗0 and B0 → J/ψK∗0 decays. The symbols Γ(s) and ∆m(s) denote the decay

width and mass differences between the B0
(s) mass eigenstates.
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The B0
(s)−B0

(s) production asymmetry is defined as

AP

(
B0

(s)

)
≡
σ
(
B0

(s)

)
− σ

(
B0

(s)

)
σ
(
B0

(s)

)
+ σ

(
B0

(s)

) , (15)

where σ is the B0
(s) production cross-section within the LHCb acceptance. The production

asymmetries reported in Ref. [43] are reweighted in bins of B0
(s) transverse momentum to

obtain

AP(B0) = (−1.04± 0.48 (stat)± 0.14 (syst)) % ,

AP(B0
s ) = (−1.64± 2.28 (stat)± 0.55 (syst)) % .

The κ(s) factor in Eq. 14 is determined by fixing ∆Γ(s), ∆m(s) and Γ(s) to their world
average values [30] and by fitting the decay time acceptance ε(t) to the nominal data
sample after applying the B0 sWeights, in a similar way to Ref. [44]. It is equal to 0.06%
for B0

s decays, and 41% for B0. This reduces the effect of the production asymmetries to
the level of 10−5 for B0

s → J/ψK∗0 and 10−3 for B0 → J/ψK∗0 decays.
Other sources of asymmetries arise from the different final-state particle interactions

with the detector, event reconstruction and detector acceptance. The detection asymmetry,
AD(f), is defined in terms of the detection efficiencies of the final states, εdet, as

AD(f) ≡ εdet(f)− εdet(f)

εdet(f) + εdet(f)
. (16)

The detection asymmetry, measured in bins of the K+ momentum in Ref. [45], is weighted
with the momentum distribution of the kaon from the B0

(s) → J/ψK∗0(K∗0) decays to give

AD(B0) = ( 1.12± 0.55 (stat)) % ,

AD(B0
s ) = (−1.09± 0.53 (stat)) % .

7 Measurement of B(B0
s → J/ψK∗0)

The branching fraction B(B0
s → J/ψK∗0) is obtained by normalising to two different

channels, B0
s → J/ψφ and B0 → J/ψK∗0, and then averaging the results. The expression

B(B0
s → J/ψK∗0)× B(K∗0 → K+π−)

B(Bq → J/ψX)× B(X → h+h−)
=

NB0
s→J/ψK∗0

NBq→J/ψX
× εBq→J/ψX

εB0
s→J/ψK∗0

× fq
fs
, (17)

is used for the normalisation to a given Bq → J/ψX decay, where N refers to the yield of
the given decay, ε corresponds to the total (reconstruction, trigger and selection) efficiency,
and fq = fs(fd) are the B0

s (B
0)-meson hadronisation fractions.

10



The event selection of B0
s → J/ψφ candidates consists of the same requirements as

those for B0
s → J/ψK∗0 candidates (see Sect. 3), with the exception that φ candidates are

reconstructed in the K+K− state so there are no pions among the final state particles. In
addition to the other requirements, reconstructed φ candidates are required to have mass
in the range 1000 < mK−K+ < 1040 MeV/c2 and to have a transverse momentum in excess
of 1 GeV/c2.

7.1 Efficiencies obtained in simulation

A first estimate of the efficiency ratios is taken from simulated events, where the particle
identification variables are calibrated usingD∗± decays. The efficiency ratios estimated from
simulation, for 2011 (2012) data, are εMC

B0→J/ψK∗0/ε
MC
B0
s→J/ψK∗0

= 0.929±0.012 (0.927±0.012)

and εMC
B0
s→J/ψφ

/εMC
B0
s→J/ψK∗0

= 1.991± 0.025 (1.986± 0.027).

7.2 Correction factors for yields and efficiencies

The signal and normalisation channel yields obtained from a mass fit are affected by the
presence of a non-resonant S–wave background as well as interference between S–wave and
P–wave components. Such interference would integrate to zero for a flat angular acceptance,
but not for experimental data that are subject to an angle-dependent acceptance. In
addition, the efficiencies determined in simulation correspond to events generated with an
angular distribution different from that in data; therefore the angular integrated efficiency
also needs to be modified with respect to simulation estimates. These effects are taken
into account using a correction factor ω, which is the product of the correction factor to
the angular-integrated efficiency and the correction factor to the P–wave yield:

NB0
s→J/ψK∗0

NBq→J/ψX
× εBq→J/ψX

εB0
s→J/ψK∗0

=
NB0

s→J/ψK∗0

NBq→J/ψX
×

εMC
Bq→J/ψX

εMC
B0
s→J/ψK∗0

× ωBq→J/ψX

ωB0
s→J/ψK∗0

, (18)

where NB0
s→J/ψK∗0 , NBq→J/ψX are the yields obtained from the mass fits,

εMC
Bq→J/ψX , ε

MC
B0
s→J/ψK∗0

are the efficiencies obtained in simulation, and ω is calculated as

ωBq→J/ψX =
FX
Bq→J/ψX

cBq→J/ψX
, (19)

where FX
Bq→J/ψX is the fraction of the P–wave X resonance in a given Bq → J/ψX decay

(related to the presence of S–wave and its interference with the P–wave), and cBq→J/ψX is
a correction to εMC

Bq→J/ψX due to the fact that the simulated values of the decay parameters
differ slightly from those measured. The values obtained for the ω correction factors are

ωB0
s→J/ψK∗0 = 1.149± 0.044 (stat)± 0.018 (syst) ,

ωB0→J/ψK∗0 = 1.107± 0.003 (stat)± 0.038 (syst) ,

ωB0
s→J/ψφ = 1.013± 0.002 (stat)± 0.007 (syst) .
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7.3 Normalisation to B0
s → J/ψφ

The study of penguin pollution requires the calculation of ratios of absolute ampli-
tudes between B0

s → J/ψK∗0 and B0
s → J/ψφ. Thus, normalising B(B0

s → J/ψK∗0) to
B(B0

s → J/ψφ) is very useful. This normalisation is given by

B(B0
s → J/ψK∗0)

B(B0
s → J/ψφ)

=
NB0

s→J/ψK−π+

NB0
s→J/ψK+K−

×
εMC
B0
s→J/ψφ

εMC
B0
s→J/ψK∗0

×
ωB0

s→J/ψφ

ωB0
s→J/ψK∗0

× B(φ→ K+K−)

B(K∗0 → K−π+)
, (20)

where B(K∗0 → K−π+) = 2/3 and B(φ → K+K−) = (49.5 ± 0.5)% [30]. Using
NB0

s→J/ψK−π+ as given in Eq. 3, and NB0
s→J/ψK+K− = 58 091 ± 243 (stat) ± 319 (syst)

as obtained from a fit to the invariant mass of selected B0
s → J/ψφ candidates, where

the signal is described by a double-sided Hypatia distribution and the combinatorial
background is described by an exponential distribution, a value of

B(B0
s → J/ψK∗0)

B(B0
s → J/ψφ)

=
(
4.05± 0.19(stat)± 0.13(syst)

)
%

is obtained.

7.4 Normalisation to B0 → J/ψK∗0

The normalisation to B0 → J/ψK∗0 is given by

B(B0
s → J/ψK∗0)

B(B0 → J/ψK∗0)
=
NB0

s→J/ψK−π+

NB0→J/ψK+π−
× fd
fs
×
εMC
B0→J/ψK∗0

εMC
B0
s→J/ψK∗0

× ωB0→J/ψK∗0

ωB0
s→J/ψK∗0

, (21)

where NB0→J/ψK+π− and NB0
s→J/ψK−π+ are given in Eq. 2 and Eq. 3, respectively, and

ωB0→J/ψK∗0

ωB0
s→J/ψK∗0

= 0.963± 0.036 (stat)± 0.031 (syst) ,

resulting in a value of

B(B0
s → J/ψK∗0)

B(B0 → J/ψK∗0)
= (2.99± 0.14 (stat)± 0.12 (syst)± 0.17 (fd/fs)) % , (22)

where the third uncertainty comes from the hadronisation fraction ratio
fd/fs = 3.86± 0.22 [7].

7.5 Computation of B(B0
s → J/ψK∗0)

By multiplying the fraction given in Eq. 22 by the branching fraction of the decay
B0 → J/ψK∗0 measured at Belle2, (1.29± 0.05 (stat)± 0.13 (syst))× 10−3 [46], and taking

2The result from Belle was chosen rather than the PDG average, since it is the only B(B0 → J/ψK∗0)
measurement that subtracts S–wave contributions.
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into account the difference in production rates for the B+B− and B0B0 pairs at the Υ(4S)
resonance, i.e. Γ(B+B−)/Γ(B0B0) = 1.058± 0.024 [7], the value

B(B0
s → J/ψK∗0)d = (3.95±0.18 (stat)± 0.16 (syst)± 0.23 (fd/fs)

±0.43 (B(B0 → J/ψK∗0)))× 10−5

is obtained, where the fourth uncertainty arises from B(B0 → J/ψK∗0). A second estimate
of this quantity is found via the normalisation to B(B0

s → J/ψφ) [32], updated with the
value of fd/fs from Ref. [7] to give B(B0

s → J/ψφ) = (1.038± 0.013 (stat)± 0.063 (syst)±
0.060 (fd/fs))× 10−3, resulting in a value of

B(B0
s → J/ψK∗0)φ =

(
4.20± 0.20 (stat)± 0.13 (syst)± 0.36 (B(B0

s → J/ψφ))
)
× 10−5 ,

where the third uncertainty comes from B(B0
s → J/ψφ). Both values are compatible within

uncorrelated systematic uncertainties and are combined, taking account of correlations, to
give

B(B0
s → J/ψK∗0) = (4.14± 0.18 (stat)± 0.26 (syst)± 0.24 (fd/fs))× 10−5 ,

which is in good agreement with the previous LHCb measurement [16], of (4.4+0.5
−0.4± 0.8)×

10−5.

8 Results and systematic uncertainties

Section 8.1 presents the results of the angular fit as well as the procedure used to estimate
the systematic uncertainties, while in Sect. 8.2 the results of the branching fraction
measurements and the corresponding estimated systematic uncertainties are discussed.

8.1 Angular parameters and CP asymmetries

The results obtained from the angular fit to the B0
s → J/ψK∗0 events are given in Table 3

and Table 4 for the P–wave and S–wave parameters, respectively. For comparison, the
previous LHCb measurements [16] of f0 and f‖ were 0.50± 0.08± 0.02 and 0.19+0.10

−0.08± 0.02,
respectively. The angular distribution of the signal and the projection of the fitted
distribution are shown in Fig. 5. The statistical-only correlation matrix as obtained from
the fit to data is given in Appendix B. The polarisation-dependent CP asymmetries are
compatible with zero, as expected in the SM. The polarisation fractions are in good
agreement with the previous measurements [16] performed on the same decay mode by the
LHCb collaboration using data corresponding to an integrated luminosity of 0.37 fb−1.

Various sources of systematic uncertainties on the parameters of the angular fit are
studied, as summarised in Table 3 and Table 4 for the P–wave and S–wave parameters.
Two classes of systematic uncertainties are defined, one from the angular fit model and
another from the mass fit model. Since the angular fit is performed on the data weighted
using the signal sWeights calculated from the fit to the J/ψK−π+ invariant mass, biases on
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the mass fit results may be propagated to the sWeights and thus to the angular parameters.
Overall, two sources of systematic uncertainties dominate: the angular acceptance and the
correlation between the J/ψK−π+ invariant mass and θµ.

8.1.1 Systematic uncertainties related to the mass fit model

To determine the systematic uncertainty arising from the fixed parameters in the description
of the J/ψK−π+ invariant mass, these parameters are varied inside their uncertainties, as
determined from fits to simulated events. The fit is then repeated and the widths of the B0

s

and B0 yield distributions are taken as systematic uncertainties on the branching fractions.
Correlations among the parameters obtained from simulation are taken into account in
this procedure. For each new fit to the J/ψK−π+ invariant mass, the corresponding set of
sWeights is calculated and the fit to the weighted angular distributions is repeated. The
widths of the distributions are taken as systematic uncertainties on the angular parameters.
In addition, a systematic uncertainty is added to account for imperfections in the modelling
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Figure 5: Fitted signal distributions compared with the weighted angular distributions with B0
s

sWeights. Points with error bars show the data. The projection of the fit result is represented by
the solid black line, and the contributions from the different amplitude components are described
in the legend.
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Table 3: Summary of the measured B0
s → J/ψK∗0 P–wave properties and their statistical and

systematic uncertainties. When no value is given, it means an uncertainty below 5× 10−4, except
for the two phases, δ‖ (rad) and δ⊥ (rad), in which case the uncertainty is below 5× 10−3.

f0 f‖ δ‖ δ⊥ ACP0 ACP‖ ACP⊥

Fitted value 0.497 0.179 −2.70 0.01 −0.048 0.171 −0.049

Statistical uncertainties 0.025 0.027 0.16 0.11 0.057 0.152 0.096

Angular acceptance
0.018 0.008 0.02 0.01 0.009 0.017 0.008

(simulation statistics)

Angular acceptance
0.015 0.007 0.17 0.10 0.007 — 0.015

(data–simulation differences)

CSP factors — 0.001 — — 0.001 0.002 0.002

D–wave contribution 0.004 0.003 — — 0.002 0.015 0.002

Background
0.004 0.002 0.02 0.01 0.004 +0.012

−0.004 0.002
angular model
Mass parameters and

— — — — 0.001 0.001 —
B0 contamination
Mass–cos(θµ)

0.007 0.006 0.07 +0.02
−0.04 0.014 +0.009

−0.012 0.016
correlations

Fit bias — 0.001 0.01 0.07 0.003 0.002 0.005

Detection
— — — — 0.005 0.005 0.006

asymmetry
Production

— — — — — — —
asymmetry

Quadratic sum of
0.025 0.013 0.19 +0.012

−0.013 0.020 +0.028
−0.027 0.025

systematic uncertainties

Total uncertainties 0.035 0.030 0.25 +0.016
−0.017 0.060 0.154 0.099

of the upper tail of the B0 and B0
s peaks. Indeed, in the Hypatia distribution model, the

parameters a2 and n2 take into account effects such as decays in flight of the hadron, that
affect the lineshape of the upper tail and could modify the B0 leakage into the B0

s peak.
The estimate of this leakage is recalculated for extreme values of those parameters, and
the maximum spread is conservatively added as a systematic uncertainty.

Systematic uncertainties due to the fixed yields of the B0
s → J/ψK+K−,

B0
s → J/ψπ+π−, B0 → J/ψπ+π−, and Λ0

b → J/ψpK− peaking backgrounds,3 are evalu-

3The yields of the subtracted backgrounds can be considered as fixed, since the sum of negative weights
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Table 4: Summary of the measured B0
s → J/ψK∗0 S–wave properties and their statistical and

systematic uncertainties. When no value is given, it means an uncertainty below 5× 10−4, except
for the four phases related to the S–wave component, δS (rad), in which case the uncertainty is
below 5× 10−3. The mK−π+ binning definition is identical to the one given in Table 2.

ACPS
mbin0
K−π+ mbin1

K−π+ mbin2
K−π+ mbin3

K−π+

FS δS FS δS FS δS FS δS

Fitted value 0.167 0.475 0.54 0.080 −0.53 0.044 −1.46 0.523 −1.76

Statistical uncertainties 0.114 +0.108
−0.112 0.16 +0.031

−0.025
+0.25
−0.21

+0.042
−0.029

+0.22
−0.19

+0.109
−0.112

+0.13
−0.14

Angular acceptance
0.028 0.039 0.03 0.012 0.065 0.015 0.10 0.065 0.06

(simulation statistics)

Angular acceptance
0.015 0.058 0.08 0.019 0.18 0.027 0.27 0.006 0.04

(data–simulation differences)

CSP factors — 0.002 0.01 0.001 — 0.002 — 0.001 0.01

D–wave contribution 0.008 0.010 0.02 0.005 0.03 0.008 0.08 0.002 0.04

Background
0.001 0.002 0.01 +0.000

−0.001 0.01 — 0.03 +0.002
−0.000

+0.07
−0.04angular model

Mass parameters and
0.001 0.001 0.01 — — — — — —

B0 contamination
Mass–cos(θµ) +0.023

−0.029
+0.040
−0.028 0.05 0.003 0.04 +0.006

−0.016 0.02 +0.009
−0.011 0.03

correlations

Fit bias 0.004 0.005 0.01 0.003 0.02 0.007 0.032 0.015 0.01

Detection
0.005 — — — — — — — —

asymmetry
Production

— — — — — — — — —
asymmetry

Quadratic sum of +0.041
−0.044

+0.081
−0.076 0.10 0.023 0.20 +0.033

−0.036 0.30 0.068 +0.11
−0.09systematic uncertainties

Total uncertainties +0.120
−0.122 0.135 0.19 +0.039

−0.034
+0.32
−0.29

+0.054
−0.047

+0.37
−0.35

+0.128
−0.131 0.17

ated by repeating the fit to the invariant mass varying the normalisation of all background
sources by either plus or minus one standard deviation of its estimated yield. For each of
the new mass fits, the angular fit is repeated using the corresponding new sets of sWeights.
The deviations on each of the angular parameters are then added in quadrature.

Correlations between the J/ψK−π+ invariant mass and the cosine of the helicity angle
θµ are taken into account in the nominal fit model, where the mass fit is performed in five
bins of cos(θµ). In order to evaluate systematic uncertainties due to these correlations,
the mass fit is repeated with the full range of cos(θµ) divided into four or six equal bins.

used to subtract them is constant in the nominal fit.
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For each new mass fit, the angular fit is repeated using the corresponding set of sWeights.
The deviations from the nominal result for each of the variations are summed quadratically
and taken as the systematic uncertainty.

8.1.2 Systematic uncertainties related to the angular fit model

In order to account for systematic uncertainties due to the angular acceptance, two distinct
effects are considered, as in Ref. [8]. The first is due to the limited size of the simulation
sample used in the acceptance estimation. It is estimated by varying the normalisation
weights 200 times following a Gaussian distribution within a five standard deviation range
taking into account their correlations. For each of these sets of normalisation weights,
the angular fit is repeated, resulting in a distribution for each fitted parameter. The
width of the resulting parameter distribution is taken as the systematic uncertainty. Note
that in this procedure, the normalisation weights are varied independently in each mK−π+

bin. The second effect, labelled as data-simulation corrections in the tables, accounts for
differences between the data and the simulation, using normalisation weights that are
determined assuming the amplitudes measured in Ref. [47]. The difference with respect to
the nominal fit is assigned as a systematic uncertainty. The uncertainties due to the choice
of model for the CSP factors are evaluated as the maximum differences observed in the
measured parameters when computing the CSP factors with all of the alternative models,
as discussed below. Instead of the nominal propagator for the S–wave, a combination of
the K∗0 (800)0 and K∗0 (1430)0 resonances with a non-resonant term using the isobar model
is considered, as well as a K-matrix [48] version. A pure phase space term is also used, in
order to account for the simplest possible parametrisation. For the P–wave, the alternative
propagators considered are the K∗(892)0 alone and a combination of this contribution
with the K∗1(1410)0 and the K∗1(1430)0 using the isobar model.

In order to account for the absence of D–wave terms in the nominal fit model a new fit
is performed, including a D–wave component, where the related parameters are fixed to
the values measured in the K∗2 (1430)0 region. The differences in the measured parameters
between the results obtained with and without a D–wave component are taken as the
corresponding systematic uncertainty.

The presence of biases in the fit model itself is studied using parametric simulation. For
this study, 1000 pseudoexperiments were generated and fitted using the nominal shapes,
where the generated parameter values correspond to the ones obtained in the fit to data.
The difference between the generated value and the mean of the distribution of fitted
parameter values are treated as a source of systematic uncertainty.

Finally, the systematic uncertainties due to the fixed values of the detection and
production asymmetries are estimated by varying their values by ±1 standard deviation
and repeating the fit.
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8.2 Branching fraction

Several sources of systematic uncertainties on the branching fraction measurements are
studied, summarised along with the results in Table 5: systematic uncertainties due to the
external parameter fd/fs and due to the branching fraction B(φ→ K+K−); systematic
uncertainties due to the ratio of efficiencies obtained from simulation and due to the angular
parameters, propagated into the ω factors (see Sect. 8.1); and systematic uncertainties
affecting the B0

s → J/ψK∗0 and B0 → J/ψK∗0 yields, which are determined from the fit to
the J/ψK+π− invariant mass and described in Sect. 8.1. Finally, a systematic uncertainty
due to the B0

s → J/ψφ yield determined from the fit to the J/ψK+K− invariant mass
distribution, described in Sect. 7.3, is also taken into account, where only the effect due
to the modelling of the upper tail of the B0

s peak is considered (see Sect. 8.1.1). For the
computation of the absolute branching fraction B(B0

s → J/ψK∗0) (see Sect. 7.5), two
additional systematic sources are taken into account, the uncertainties in the external
parameters B(B0 → J/ψK∗0) and B(B0

s → J/ψφ).

Table 5: Summary of the measured values for the relative branching fractions and their statistical
and systematic uncertainties.

Relative branching fraction
B(B0

s→J/ψK∗0)
B(B0→J/ψK∗0) (%)

B(B0
s→J/ψK∗0)

B(B0
s→J/ψφ) (%)

Nominal value 2.99 4.05
Statistical uncertainties 0.14 0.19
Efficiency ratio 0.04 0.05
Angular correction (ω) 0.09 0.07
Mass model (effect on the yield) 0.06 0.08
fd/fs 0.17 —
B(φ→ K+K−) — 0.04
Quadratic sum (excluding fd/fs) 0.12 0.13
Total uncertainties 0.25 0.23

9 Penguin pollution in φs

9.1 Information from B0
s → J/ψK∗0

Following the strategy proposed in Refs. [9, 11, 13], the measured branching fraction,
polarisation fractions and CP asymmetries can be used to quantify the contributions
originating from the penguin topologies in B0

s → J/ψK∗0. To that end, the transition
amplitude for the B0

s → J/ψK∗0 decay is written in the general form

A
(
B0
s → (J/ψK∗0)i

)
= −λAi

[
1− aieiθieiγ

]
, (23)
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where λ = |Vus| = 0.22548+0.00068
−0.00034 [6] and i labels the different polarisation states. In the

above expression, Ai is a CP -conserving hadronic matrix element that represents the tree
topology, and ai parametrises the relative contribution from the penguin topologies. The
CP -conserving phase difference between the two terms is parametrised by θi, whereas their
weak phase difference is given by the angle γ of the Unitarity Triangle.

Both the branching fraction and the CP asymmetries depend on the penguin parameters
ai and θi. The dependence of ACPi is given by [9]

ACPi = − 2ai sin θi sin γ

1− 2ai cos θi cos γ + a2
i

. (24)

To use the branching fraction information an observable is constructed [9]:

Hi ≡
1

ε

∣∣∣∣A′iAi
∣∣∣∣2 Φ

(
mJ/ψ
m
B0
s

,
mφ
m
B0
s

)
Φ

(
mJ/ψ
m
B0
s

,
mK∗0
m
B0
s

) B(B0
s → J/ψK∗0)theo

B(B0
s → J/ψφ)theo

fi
f ′i
, (25)

=
1− 2ai cos θi cos γ + a2

i

1 + 2εa′i cos θ′i cos γ + ε2a′2i
,

where f
(′)
i represents the polarisation fraction,

ε ≡ λ2

1− λ2
= 0.0536± 0.0003 [6] , (26)

and Φ(x, y) =
√

(1− (x− y)2)(1− (x+ y)2) is the standard two-body phase-space func-
tion. The primed quantities refer to the B0

s → J/ψφ channel, while the non-primed ones
refer to B0

s → J/ψK∗0. The penguin parameters a′i and θ′i are defined in analogy to ai and
θi, and parametrise the transition amplitude of the B0

s → J/ψφ decay as

A
(
B0
s → (J/ψφ)i

)
=

(
1− λ2

2

)
A′i
[
1 + εa′ie

iθ′ieiγ
]
. (27)

Assuming SU(3) flavour symmetry, and neglecting contributions from exchange and
penguin-annihilation topologies, 4 which are present in B0

s → J/ψφ but have no counterpart
in B0

s → J/ψK∗0, we can identify

a′i = ai , θ′i = θi . (28)

The contributions from the additional decay topologies in B0
s → J/ψφ can be probed

using the decay B0 → J/ψφ [13]. The current upper limit on its branching fraction is
B(B0 → J/ψφ) < 1.9×10−7 at 90% confidence level (C.L.) [50], which implies that the size
of these additional contributions is small compared to those associated with the penguin
topologies.

4We follow the decomposition introduced in Ref. [49].
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The Hi observables are constructed in terms of the theoretical branching fractions
defined at zero decay time, which differ from the measured time-integrated branching
fractions [51] due to the non-zero decay-width difference ∆Γs of the B0

s meson system [7].
The conversion factor between the two branching fraction definitions [51] is taken to be

B(B → f)theo

B(B → f)
=

1− y2
s

1− ysηi cos(φSM
s )

, (29)

where ηi is the CP eigenvalue of the final state, and ys = ∆Γs/2Γs. Taking values for Γs,
∆Γs and φSM

s from Refs. [6,7], the conversion factor is 1.0608±0.0045 (0.9392±0.0045) for
the CP -even (-odd) states. For the flavour-specific B0

s → J/ψK∗0 decay ηi = 0, resulting
in a conversion factor of 0.9963± 0.0006. The ratios of hadronic amplitudes |A′i/Ai| are
calculated in Ref. [52] following the method described in Ref. [53] and using the latest
results on form factors from Light Cone QCD Sum Rules (LCSR) [54]. This leads to

H0 = 0.98± 0.07 (stat)± 0.06 (syst)± 0.26 (|A′i/Ai|) ,
H‖ = 0.90± 0.14 (stat)± 0.08 (syst)± 0.21 (|A′i/Ai|) ,
H⊥ = 1.46± 0.14 (stat)± 0.11 (syst)± 0.28 (|A′i/Ai|) .

Assuming Eq. 28 and external input on the Unitarity Triangle angle γ =
(
73.2+6.3

−7.0

)◦
[6],

the penguin parameters ai and θi are obtained from a modified least-squares fit to {ACPi , Hi}
in Eq. 24 and Eq. 25. The information on γ is included as a Gaussian constraint in the fit.
The values obtained for the penguin parameters are

a0 = 0.04+0.95
−0.04 , θ0 =

(
40+140
−220

)◦
,

a‖ = 0.32+0.57
−0.32 , θ‖ = −

(
15+148
−14

)◦
,

a⊥ = 0.44+0.21
−0.27 , θ⊥ =

(
175+11

−10

)◦
.

For the longitudinal polarisation state the phase θ is unconstrained. Correlations between
the experimental inputs are ignored, but the effect of including them is small. The
two-dimensional confidence level contours are given in Fig. 6. This figure also shows,
as different (coloured) bands, the constraints on the penguin parameters derived from
the individual observables entering the χ2 fit. The thick inner darker line represents the
contour associated with the central value of the input quantity, while the outer darker
lines represent the contours associated with the one standard deviation changes. For
the parallel polarisation the central value of the H observable does not lead to physical
solutions in the θ‖–a‖ plane, and the thick inner line is thus absent.

When decomposed into its different sources, the angle φs takes the form

φs,i = −2βs + φBSM
s + ∆φ

J/ψφ
s,i (a′i, θ

′
i) , (30)

where −2βs is the SM contribution, φBSM
s is a possible BSM phase, and ∆φ

J/ψφ
s,i is a shift

introduced by the presence of penguin pollution in the decay B0
s → J/ψφ. In terms of the
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Figure 6: Limits on the penguin parameters ai and θi obtained from intersecting contours derived
from the CP asymmetries and branching fraction information in B0

s → J/ψK∗0. Superimposed
are the confidence level contours obtained from a χ2 fit to the data. Shown are the longitudinal
(top), parallel (middle) and perpendicular (bottom) polarisation.
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penguin parameters a′i and θ′i, the shift ∆φ
J/ψφ
s,i is defined as

tan(∆φ
J/ψφ
s,i ) =

2εa′i cos θ′i sin γ + ε2a′2i sin(2γ)

1 + 2εa′i cos θ′i cos γ + ε2a′2i cos(2γ)
. (31)

Using Eqs. 28 and 31, the fit results on ai and θi given above constrain this phase shift,
giving

∆φ
J/ψφ
s,0 = 0.003 +0.084

−0.011 (stat) +0.014
−0.009 (syst) +0.047

−0.030 (|A′i/Ai|) ,
∆φ

J/ψφ
s,‖ = 0.031 +0.047

−0.037 (stat) +0.010
−0.013 (syst)±0.032 (|A′i/Ai|) ,

∆φ
J/ψφ
s,⊥ = −0.045±0.012 (stat)±0.008 (syst) +0.017

−0.024 (|A′i/Ai|) ,

which is in good agreement with the values measured in Ref. [15], and with the predictions
given in Refs. [12–14].

The above results are obtained assuming SU(3) flavour symmetry and neglecting con-
tributions from additional decay topologies. Because aie

iθi represents a ratio of hadronic
amplitudes, the leading factorisable SU(3)-breaking effects cancel, and the relation be-
tween aie

iθi and a′ie
iθ′i is only affected by non-factorisable SU(3)-breaking. This can be

parametrised using two SU(3)-breaking parameters ξ and δ as

a′i = ξ × ai , θ′i = θi + δ . (32)

The above quoted results assume ξ = 1 and δ = 0. The dependence of the uncertainty
on ∆φ

J/ψφ
s,i on the uncertainty on ξ is illustrated in Fig. 7, while the dependence on the

uncertainty on δ is negligible for the solutions obtained for {ai, θi}.

9.2 Combination with B0 → J/ψρ0

The information on the penguin parameters obtained from B0
s → J/ψK∗0 can be comple-

mented with similar information from the SU(3)-related mode B0 → J/ψρ0 [15]. Both
modes describe a b̄→ c̄cd̄ transition, and are related by exchanging the spectator s↔ d
quarks. The decay amplitude of B0 → J/ψρ0 is also parametrised as

A
(
B0 → (J/ψρ0)i

)
= −λÃi

[
1− ãieiθ̃ieiγ

]
, (33)

which is the equivalent of Eq. 23. In contrast to B0
s → J/ψK∗0, however, ãi and θ̃i also

include contributions from exchange and penguin-annihilation topologies, which are present
in B0 → J/ψρ0 but have no counterpart in B0

s → J/ψK∗0. Assuming SU(3) symmetry,
and neglecting the contributions from the additional decay topologies in B0

s → J/ψφ and
B0 → J/ψρ0, the relation in Eq. 28 can be extended to

a′i = ai = ãi , θ′i = θi = θ̃i , (34)

which allows a combined fit to be performed to the CP asymmetries and branching fraction
information in B0

s → J/ψK∗0 and B0 → J/ψρ0.
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Figure 7: Dependence of the uncertainty on the penguin shift ∆φ
J/ψφ
s,i on the uncertainty on ξ.

The bands correspond to the 68% C.L. The longitudinal (top), parallel (middle) and perpendicular
(bottom) polarisations are shown.
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The B0 → J/ψρ0 decay exhibits decay-time-dependent CP violation, which is described
by two parameters, the direct CP asymmetry Ci, which in the SU(3) limit is related to
ACPi as Ci = −ACPi , and the mixing-induced CP asymmetry Si. Their dependence on the
penguin parameters ãi and θ̃i is given by

Ci =
2 ãi sin θ̃i sin γ

1− 2 ãi cos θ̃i cos γ + ã2
i

, (35)

Si = −ηi
[

sinφd − 2 ãi cos θ̃i sin(φd + γ) + ã2
i sin(φd + 2γ)

1− 2 ãi cos θ̃i cos γ + ã2
i

]
, (36)

where ηi is the polarisation-dependent CP eigenvalue of the B0 → J/ψρ0 decay, and φd
is a CP -violating phase arising from the interference between B0–B0 mixing and the
subsequent B0 decay. The use of Si to constrain the penguin parameters ai and θi requires
external information on the CP phase φd. The most precise value of φd is determined
from B0 → J/ψK0 decays, but this determination is also affected by penguin pollution.
A recent study of the penguin effects in B+ → J/ψπ+, B+ → J/ψK+, B0 → J/ψπ0 and
B0 → J/ψK0

S decays is performed in Ref. [13], with the latest numerical update [52],
including the results from Refs. [6, 55,56], leading to φd = 0.767± 0.029 rad.

In addition, a second set of Hi observables can be constructed by replacing
B0
s → J/ψK∗0 by B0 → J/ψρ0 in Eq. 25. To minimise the theoretical uncertainties

associated with the use of these Hi observables, the strategy proposed in Ref. [13] is
adopted. That is, the relation∣∣∣∣A′iAi

∣∣∣∣ ≡ ∣∣∣∣ A′i(B0
s → J/ψφ)

Ai(B0
s → J/ψK∗0)

∣∣∣∣ =

∣∣∣∣ A′i(B0
s → J/ψφ)

Ai(B0 → J/ψρ0)

∣∣∣∣ (37)

between the hadronic amplitudes in B0
s → J/ψK∗0 and B0 → J/ψρ0 is assumed, and

therefore relying on theoretical input from LCSR is no longer needed. Instead, the ratio
|A′/A| can be determined directly from the fit, providing experimental information on this
quantity. Effectively, the three CP asymmetry parameters ACPi , Ci and Si determine the
penguin parameters ai and θi. Thus, this result for ai and θi predicts the values of the two
observables Hi(B

0
s → J/ψK∗0) and Hi(B

0 → J/ψρ0). By comparing these two quantities
with the branching fraction and polarisation information on B0

s → J/ψK∗0, B0 → J/ψρ0

and B0
s → J/ψφ, the hadronic amplitude ratios |A′i/Ai| can be determined. The impact of

the Hi observables on the penguin parameters ai and θi is negligible in the combined fit.
For the combined analysis of B0

s → J/ψK∗0 and B0 → J/ψρ0 a modified least-squares
fit is performed. External inputs on γ =

(
73.2+6.3

−7.0

)◦
[6] and φd = 0.767 ± 0.029 rad [52]
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are included as Gaussian constraints in the fit. The values obtained from the fit are

a0 = 0.01+0.10
−0.01 , θ0 = −

(
83+97
−263

)◦
,

∣∣∣∣A′0A0

∣∣∣∣ = 1.195+0.074
−0.056 ,

a‖ = 0.07+0.11
−0.05 , θ‖ = −

(
85+72
−63

)◦
,

∣∣∣∣∣A
′
‖

A‖

∣∣∣∣∣ = 1.238+0.104
−0.080 ,

a⊥ = 0.04+0.12
−0.04 , θ⊥ =

(
38+142
−218

)◦
,

∣∣∣∣A′⊥A⊥
∣∣∣∣ = 1.042+0.081

−0.063 ,

with the two-dimensional confidence level contours given in Fig. 8, which also shows the
constraints on the penguin parameters derived from the individual observables entering
the χ2 fit as different bands. Note that the plotted contours for the two H observables do
not include the uncertainty due to |A′/A|.

The results on the penguin phase shift derived from the above results on ai and θi are

∆φ
J/ψφ
s,0 = 0.000+0.009

−0.011 (stat) +0.004
−0.009 (syst) rad ,

∆φ
J/ψφ
s,‖ = 0.001+0.010

−0.014 (stat)±0.008 (syst) rad ,

∆φ
J/ψφ
s,⊥ = 0.003+0.010

−0.014 (stat)±0.008 (syst) rad .

These results are dominated by the input from the CP asymmetries in B0 → J/ψρ0, and
show that the penguin pollution in the determination of φs is small.

10 Conclusions

Using the full LHCb Run I data sample, the branching fraction, the polarisation fractions
and the direct CP violation parameters in B0

s → J/ψK∗0 decays have been measured. The
results are

B(B0
s → J/ψK∗0) = (4.14± 0.18(stat)± 0.26(syst)± 0.24(fd/fs))× 10−5

f0 = 0.497 ± 0.025 (stat) ± 0.025 (syst)
f‖ = 0.179 ± 0.027 (stat) ± 0.013 (syst)

ACP0 (B0
s → J/ψK∗0) = −0.048 ± 0.057 (stat) ± 0.020 (syst)

ACP‖ (B0
s → J/ψK∗0) = 0.171 ± 0.152 (stat) ± 0.028 (syst)

ACP⊥ (B0
s → J/ψK∗0) = −0.049 ± 0.096 (stat) ± 0.025 (syst) ,

which supersede those of Ref. [16], with precision improved by a factor of 2− 3. The shift
on φs due to penguin pollution is estimated from a combination with the B0 → J/ψρ0

channel [15], and is found be to compatible with the result from the earlier analysis.
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Appendices

A Angular acceptance

To take into account angular acceptance effects, ten normalisation weights, ξij, are com-
puted and embedded in the normalization integral of the angular distribution given in
Eq. 4 following the procedure described in Ref. [57]. Using the transversity amplitude
basis, the fitting PDF can be written as

dΓ(θK , θµ, ϕh)

dΩ
=

∑
i

∑
j≤iRe[AiA∗j Fij(θK , θµ, ϕh)]∑

k

∑
l≤kRe[AkA∗l

∫
Fkl(θ′K , θ

′
µ, ϕ

′
h) εΩ(θ′K , θ

′
µ, ϕ

′
h) dΩ′]

, (38)

where the real or imaginary angular functions Fij(θK , θµ, ϕh) are obtained when combin-
ing Eq. 4 and Eq. 5-8, and where εΩ(θK , θµ, ϕh) denotes the angular acceptance. The
normalization weights correspond to the integrals

ξij =

{∫
Re[Fij(θK , θµ, ϕh)] εΩ(θK , θµ, ϕh) dΩ, if Fij ∈ R ,∫
Im[Fij(θK , θµ, ϕh)] εΩ(θK , θµ, ϕh) dΩ, if Fij ∈ I .

(39)

In the absence of acceptance effects, the normalisation weights related to the interference
terms are equal to zero by definition, whereas those related to each polarisation amplitude
squared are equal to unity. Eight sets of normalisation weights are calculated separately,
one for each mK−π+ bin and kaon charge.

In order to correct both for imperfections in the detector simulation and for the
absence of any S–wave component in the simulation sample, the weights are refined using
an iterative procedure where the angular acceptance is re-evaluated recursively until it
does not change significantly. Table 6 gives one set of normalisation weights after the

Table 6: Corrected angular acceptance weights for K−π+ events lying in the first mK−π+ bin.
The ξij weights are normalised with respect to the ξ00 weight.

ij ξij/ξ00

1 (00) 1.000
2 (‖‖) +1.379± 0.029
3 (⊥⊥) +1.388± 0.030
4 (‖⊥) +0.035± 0.019
5 (0‖) −0.003± 0.012
6 (0⊥) +0.010± 0.011
7 (SS) +1.190± 0.019
8 (S‖) −0.042± 0.017
9 (S⊥) +0.029± 0.016

10 (S0) −0.929± 0.024
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iterative procedure. The effect of this correction is below one standard deviation for all
the normalisation weights except for the (S0) weight. This is expected due to the rapid
efficiency drop close to cos θK = 1 which directly impacts the (S0) weight. At each step
of this procedure the simulation sample is corrected both for the absence of an S–wave
component and for the imperfections in the detector simulation. For the first correction,
the angular fit result to data is used, whereas for the second the kaon and muon track
momentum distributions of data are used. In both cases the correction is implemented by
assigning weights to each event of the simulation sample.

B Correlation matrix

The statistical-only correlation matrix of the angular parameters obtained from the fit to
data, as described in Sect. 8.1, is given in Table 7. Here, the superscript l = 0, 1, 2, 3 in F l

S

and δlS represent the number of the mK−π+ bin as defined in Table 2.
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Table 7: Statistical correlation matrix for the parameters from the angular fit.
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J. Garra Tico47, L. Garrido36, D. Gascon36, C. Gaspar38, R. Gauld55, L. Gavardi9, G. Gazzoni5,
D. Gerick11, E. Gersabeck11, M. Gersabeck54, T. Gershon48, Ph. Ghez4, S. Giaǹı39, V. Gibson47,
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