Search for a high mass neutral Higgs boson using the ATLAS detector

Graham Cree Carleton University

on behalf of the ATLAS Collaboration

SUSY2015 - Aug. 28th

After the 125GeV Higgs boson discovery, an important question remains:

Is this the only Higgs boson?

→ Extensions to the SM predict additional heavy Higgs boson(s) we could observe in proton-proton collisions at the LHC

In this presentation: The latest search limits from ATLAS of heavy neutral Higgs decaying in the diboson channels, using 20.3/fb at $\sqrt{s}=8\,TeV$

- $H \rightarrow \gamma \gamma$ (July 2014: Phys. Rev. Lett. 113, 171801)
- $H \to ZZ$ (July 2015: <u>arXiv:1507.05930</u>)
- H o WW (August 2015: Preliminary results to be submitted)

Graham Cree SUSY2015

As one discovery channel for the 125GeV Higgs, $H \to \gamma \gamma$ has additional importance in high mass searches (Phys. Rev. Lett. 113, 171801)

→ resonant signal on smooth background: clean search!

Signal Model:

- double-sided Crystal Ball with parameters fit on different simulated mass points
- All production modes use same PDF

Graham Cree SUSY2015

- Parameterized by pol-2 in sliding window
- Shape/window choice:
 - Fit S+B on background only spectrum
 - signal yield bias < 20% stat. error

Backgrounds:

Composition in data:

$$\gamma\gamma(83.7\%), \ \gamma \ jet(15.1\%), \ jet \ jet(1.2\%)$$

Where $\gamma\gamma$ includes doubly-converted DY $Z\to ee$

Composition derived using a 2Dx2D sideband method in isolation vs identification for both photons [arXiv:1107.0581]

Statistical Interpretation

• Limits are $95\%CL_s$ using the $\,q_{\mu}\,$ test statistic

Narrow-width approximation

For different mass hypotheses find limits on:

$$\sigma_{fid} \cdot BR(X \to \gamma \gamma) = \frac{N_{data}}{C_X \mathcal{L}}$$

Efficiency factor derived from MC ggF samples $C_X = \frac{N_{MC}^{reco}}{N_{MC}^{fid}}$

MC samples have $\Gamma_H = 4\,MeV$

5

Limits in Narrow Width Approximation

Largest excess corresponds to $z_0=2.2\,$ at $m_X=530\,GeV$

The other discovery channel for the 125 GeV Higgs, $H \to ZZ$, is a powerful probe to search for additional heavy Higgs

Four decay channels enter ATLAS' search (arXiv:1507.05930)

$$H \to ZZ \to \ell\ell\ell\ell$$
, $\ell\ell qq$, $\ell\ell\nu\nu$, $\nu\nu qq$

Some background processes modelled using MC simulation:

Others use data-driven estimates, often fit simultaneously between channels:

Graham Cree SUSY2015

Analysis outline:

• Each channel ($\ell\ell\ell\ell,\ell\ell qq,\ell\ell
u
u,
u
u qq$) has a discriminating variable sensitive to $\,m_H$

- Distributions are made for signal & background in each channel
- Channels separate categories for ggF and VBF production based on additional jets in the event (except: $\nu\nu qq$ does not model VBF)
- Additional sub-channels designed to improve sensitivity based on lepton flavour, jet categorization

Graham Cree SUSY2015 8

Statistical Interpretation

- The four channels enter a simultaneous fit
- Limits are $95\%CL_s$ using the \tilde{q}_{μ} test statistic
- Both interpretations derived using MC samples with $\Gamma_H = 4\,MeV$

Model-independent (narrow width) interpretation

No assumption is made on relative contribution of ggF and VBF to production

For different mass hypotheses find limits on parameters of interest:

$$\sigma_{ggF} * BR(H \to ZZ)$$

 $\sigma_{VBF} * BR(H \to ZZ)$

2HDM interpretation

Type-I and Type-II considered

Relative contribution of ggF and VBF, and branching ratios are fixed by 2HDM

Limits set in parameter space of m_H , $tan\beta$, $cos(\beta - \alpha)$

Parameter ranges are set such that $\Gamma_H < 0.5\% m_H$ and the light Higgs couplings are not enhanced by more than 3 times the Standard Model

ggF limits 530 fb @ 195 GeV 8 fb @ 950 GeV **VBF limits**310 fb @ 195 GeV
9 fb @ 950 GeV

2HDM Type-I

2HDM Type-II

2HDM Type-I

2HDM Type-II

 $H \to WW$ also very powerful due to high branching ratio (~60% for masses probed) Two decay channels enter ATLAS' search:

$$H \to WW \to \ell \nu \ell \nu, \ \ell \nu qq$$

Different backgrounds dominate different channels: $WW,\ Top,\ W+jets,\ multijet$

Where possible, estimations are data-driven. General approach:

- · build control regions to enrich each background
- extrapolation factors bring the fit result from the CR to the yield in the SR

Graham Cree SUSY2015 13

- Analyses split into categories designed to increase sensitivity
- Signal production modes and background sources vary by category

 $\ell
u \ell
u$ is split by

- same/different flavour leptons
- $N_{jets} = 0, 1, \ge 2$

 $\ell
u q q$ is split by

flavour/charge of lepton

Each channel calculates a mass discriminant on which the final fit is done:

Statistical Interpretation

• Both channels $\ell\nu\ell\nu$, $\ell\nu qq$ enter combined limit setting

Narrow-Width Approximation

Width of resonance is fixed for all mass at $\Gamma_H = 4.07 MeV$

No assumption is made on relative contribution of ggF and VBF to production

Standard Model Width Scenario

Width of resonance is the SM Higgs boson width for that mass $\Gamma_H = \Gamma_H^{SM}$

No assumption is made on relative contribution of ggF and VBF to production

Intermediate-Width Scenario

Width of resonance intermediate to above - parameterized as $\Gamma_H = \kappa'^2 \cdot \Gamma_{H,SM}$

Limits in Narrow Width Approximation $\Gamma_H = 4.07 MeV$

ggF limits

~900 fb @ 300 GeV ~20 fb @ 1500 GeV

VBF limits

~230 fb @ 300 GeV ~6 fb @ 1500 GeV

Limits in Standard Model-like scenario with

$$\Gamma_H = \Gamma_H^{SM}$$

ggF limits

~1100 fb @ 300 GeV ~40 fb @ 1000 GeV

VBF limits

~250 fb @ 300 GeV ~20 fb @ 1000 GeV

Limits in Intermediate-Width Scenario with $\Gamma_H = (20\%, 40\%, 80\%) \cdot \Gamma_H^{SM}$

n.b. limit on $\frac{\sigma}{\kappa'^2}BR$ to separate otherwise overlapping results

Summary

Shown here were searches for high-mass neutral Higgs bosons decaying in the diboson channels using the full 20.3/fb of ATLAS data at $\sqrt{s}=8\,TeV$

- ullet $H o \gamma\gamma$: limits set on $\sigma_{fid} \cdot BR(X o \gamma\gamma)$ for narrow resonances up to 600GeV.
- ${}^{ullet} H o ZZ$: limits set on $\sigma_{ggF(VBF)} \cdot BR(X o ZZ)$ for narrow resonances up to 1 TeV. Limits are also set in the 2HDM context providing the strongest ever exclusions in some of the parameter space probed. [See backup for MSSM interpretations]
- $H \to WW$: limits set on $\sigma_{ggF(VBF)} \cdot BR(X \to WW)$ for narrow resonances up to 1.5 TeV, and SM-width resonances up to 1 TeV. Limits are also set for intermediate widths for masses up to 1 TeV.

$$H \to \gamma \gamma$$

The following slides all come from <u>Phys. Rev. Lett. 113, 171801</u> + auxiliary figures unless otherwise noted

Systematics

TABLE II. Summary of the systematic uncertainties

		1.0	11 77	
$Signal\ and\ Higgs\ boson\ yield$		$Z\ component\ of\ Drell-Yan$		
Luminosity	2.8%	Normalization ^b	9–25%	
Trigger	0.5%	Peak position ^b	1.5 – 3.5%	
γ identification ^a	1.6 – 2.7%	Template shape ^b	1.5 – 3%	
γ isolation ^a	1-6%	Higgs boson background		
Energy resolution ^{ab}	10 – 40%	Cross-section ^c	9.6%	
Signal and Higgs boson peak position		Branching ratio	4.8%	
Energy scale	0.6%	C_X factor		
$Continuum \ \gamma \gamma, \ \gamma j, \ jj, \ DY$		Topology ^a	3–15%	
Signal bias ^a	1–67 events	Pile-up & U. E.a	1.4 – 3.2%	

^a mass-dependent.

^b category-dependent.

^c factorization scale + PDF uncertainties [1307.1347]

$H \rightarrow \gamma \gamma$ Event Selection

- Primary Vertex with at least 2 tracks with pT>0.4GeV
- Two photons with $E_T>22GeV$, $|\eta|<2.37$ excluding barrel/endcap transition region with poor efficiency $1.37<|\eta|<1.56$
- ID: Shower shape criteria used to achieve efficiencies ranging from 70 99%
- Calorimeter isolation: $E_T^{iso} < 6\,GeV$ using a cone of $\Delta R = 0.4$
- Track Isolation: $p_T^{iso} < 2.6\,GeV$ using a cone of $\Delta R = 0.2$
- Invariant mass: $E_T^{\gamma_{1(2)}}/m_{\gamma\gamma}>0.4(0.3)$

The Fiducial Cuts (used to calculate C_X) are identical except the following:

- Transition region $1.37 < |\eta| < 1.56$ is included
- Both isolation requirements replaced by requiring $~p_T^{iso(no~\nu)} < 12\,GeV~$ in a cone of $\Delta R = 0.4$

Graham Cree SUSY2015 21

$$C_X = \frac{N_{MC}^{reco}}{N_{MC}^{fid}}$$

22

- $\cdot C_X$ from ggF is used in final fit
- Systematic uncertainty covers largest spread per bin in this plot

$H \rightarrow ZZ$

The following slides all come from <u>arXiv:1507.05930</u> + auxiliary figures unless otherwise noted

ggF mode		VBF mode		
Systematic source	Effect [%] Systematic source Eff			
$m_H = 200 \text{ GeV}$				
$gg \to ZZ$ K-factor uncertainty	27	$gg \to ZZ$ acceptance	13	
Z +hf $\Delta \phi$ reweighting	5.3	Jet vertex fraction $(\ell \ell q q / \nu \nu q q)$	13	
Luminosity	5.2	$gg \to ZZ$ K-factor uncertainty	13	
Jet energy resolution $(\ell \ell qq/\nu \nu qq)$	3.9	$Z + \text{jets } \Delta \phi$ reweighting	7.9	
QCD scale $gg \to ZZ$	3.7	Jet energy scale η modelling $(\ell \ell q q / \nu \nu q)$	(q) 5.3	

Systematics

Luminosity	5.2	$gg \rightarrow ZZ$ K-factor uncertainty				
Jet energy resolution $(\ell \ell q q / \nu \nu q q)$	3.9	$Z + \text{jets } \Delta \phi \text{ reweighting}$				
QCD scale $gg \to ZZ$	3.7	Jet energy scale η modelling $(\ell\ell qq/\nu\nu qq)$				
$m_H = 400 \text{ GeV}$						
qq o ZZ PDF	21	$Z + \text{jets estimate } (\ell\ell\nu\nu)$	34			
QCD scale $qq \to ZZ$	13	Jet energy resolution $(\ell\ell\ell\ell\ell\nu\nu)$	6.5			
$Z + \text{jets estimate } (\ell\ell\nu\nu)$	13	VBF $Z + \text{jets } m_{\ell\ell jj}$	5.5			
Signal acceptance ISR/FSR $(\ell\ell\ell\ell\ell\nu\nu)$	7.8	Jet flavour composition $(\ell\ell\ell\ell/\ell\ell\nu\nu)$				
$Z + b\bar{b}, Z + c\bar{c}, p_{\mathrm{T}}^{\ell\ell}$	5.6	Jet vertex fraction $(\ell \ell q q / \nu \nu q q)$				
$m_H = 900 \text{ GeV}$						
Jet mass scale $(\ell\ell qq)$	7	$Z + \text{jets estimate } (\ell\ell\nu\nu)$	19			
$Z + jj p_{\mathrm{T}}^{Z} \text{ shape } (\nu \nu qq)$	5.6	Jet mass scale $(\ell\ell qq)$	8.7			
qq o ZZ PDF	$4.3 \mid Z + jj p_{\mathrm{T}}^{\ell\ell} \text{ shape}$		7.3			
QCD scale $qq \to ZZ$	3.5 Jet energy resolution $(\ell\ell\ell\ell/\ell\ell\nu\nu)$		4.4			
Luminosity	2.6	Jet flavour composition $(VV/Signal)$	2.6			

Physics process	$H \to ZZ$ search final state	Generator	Cross-section normalization	PDF set	Tune			
W/Z boson + jets								
$Z/\gamma^* \to \ell^+\ell^-/\nu\bar{\nu}$	$\ell\ell\ell\ell/\ell\ell u ell qq^\dagger/ u u qq$	Alpgen 2.14 Sherpa 1.4.1	NNLO NNLO	CTEQ6L1 NLO CT10	AUET2 Sherpa default			
$W \to \ell \nu$	$\ell\ell u u$	Alpgen 2.14 Sherpa 1.4.1	NNLO NNLO	CTEQ6L1 NLO CT10	AUET2 Sherpa default			
	Top quark							
$tar{t}$	$\ell\ell\ell\ell/\ell\ell qq/ u u qq$ $\ell\ell u u$	Powheg-Box r2129 MC@NLO 4.03	NNLO+NNLL	NLO CT10	Perugia2011C AUET2			
s-channel and Wt	$\ell\ell\ell\ell/\ell\ell qq/ u u qq$	Powheg-Box r1556 MC@NLO 4.03	NNLO+NNLL	NLO CT10	Perugia2011C AUET2			
t-channel	all	AcerMC 3.8	NNLO+NNLL	CTEQ6L1	AUET2			
Dibosons								
$qar{q} o ZZ(*)$	$\ell\ell qq/ u u qq$ $\ell\ell\ell\ell/\ell\ell u u$	Powheg-Box r1508 Powheg-Box r1508	NLO NNLO QCD NLO EW	NLO CT10 NLO CT10	AUET2 AUET2			
$\mathrm{EW}\ qar{q}\ (o h) o ZZ(*) + 2j$	$\ell\ell\ell\ell$	MadGraph 5 1.3.28		CTEQ6L1	AUET2			
$gg \ (\to h^*) \to ZZ$	$\ell\ell\ell\ell$ $\ell\ell u u$	MCFM 6.1 GG2VV 3.1.3	$\begin{array}{c} \text{NNLO} \\ \text{(for } h \to ZZ) \end{array}$	NLO CT10 NLO CT10	AU2 AU2			
$q\bar{q}\to WZ$	$\ell\ell u u/\ell\ell qq/ u u qq$ $\ell\ell\ell\ell$	Powheg-Box r1508 Sherpa 1.4.1	NLO	NLO CT10	AUET2 Sherpa default			
$q\bar{q} \to WW$	all	Powheg-Box r1508	NLO	NLO CT10	AUET2			
$m_h=125~{\rm GeV~SM~Higgs~boson~(background)^{\ddagger}}$								
$q\bar{q} o Zh o \ell^+\ell^-b\bar{b}/\nu\bar{\nu}b\bar{b}$	$\ell\ell qq/ u u qq$	Рутніа 8.165	NNLO	CTEQ6L	AU2			
$gg \rightarrow Zh \rightarrow \ell^+\ell^-b\bar{b}/\nu\bar{\nu}b\bar{b}$	$\ell\ell qq/ u u qq$	Powheg-Box r1508	NLO	CT10	AU2			
Signal								
$gg \rightarrow H \rightarrow ZZ(*)$ $q\bar{q} \rightarrow H + 2j;$ $H \rightarrow ZZ(*)$	all all	Powheg-Box r1508 Powheg-Box r1508		NLO CT10 NLO CT10	AU2 AU2			
$q\bar{q} \to (W/Z)H;$ $H \to ZZ(*)$	$\ell\ell\ell\ell$	Рутніа 8.163	_	CTEQ6L1	AU2			

Monte Carlos used in analysis

$H \rightarrow ZZ \rightarrow \ell\ell\ell\ell$

- Only channel which includes search for VH production: included for $\,m_H < 200\,GeV$
- · Due to high resolution, only channel using unbinned likelihood fit
- Split in 3 production categories based on jets in event
- ggF split further into 4 channels to improve resolution $(4e, 4\mu, 2e2\mu, 2\mu2e)$
- Dominant background qq o ZZ estimated using MC corrected to NNLO
- Other backgrounds:

gg
ightarrow ZZ estimated using MC corrected to NNLO

 $Z+Jets, t\bar{t}$ estimated using fits to $m_{\ell\ell}$ distributions in control regions with inverted cuts for $\ell\ell\mu\mu$ or fits on inner detector variables in relaxed control regions for $\ell\ell ee$ which are then extrapolated to the signal region

observable: invariant mass $\,m_{\ell\ell\ell\ell}$

25

$H o ZZ o \ell\ell\nu\nu$

- Events contain exactly 2 very high quality leptons with $76 < m_{\ell\ell}/GeV < 106$, and no additional high p_T leptons
- Events categorized as ggF or VBF based on additional jets
 - VBF: $m_{jj} > 550 \, GeV$
 - ggF: maximum 1 jet $p_T > 30\,GeV, \; \eta_j < 2.5$
- Drell-Yan Z production suppressed by cut on $\Delta\phi\left(\vec{p}^{\ell\ell},\vec{E}_T^{miss}\right)$
- Boosed Z's enriched by requiring $\,\Delta\phi_{\ell\ell} < 1.4\,$

observable: transverse mass $\,m_T^{ZZ}$

$$\left(m_T^{ZZ}\right)^2 = \left(\sqrt{m_Z^2 + \left|p_T^{\ell\ell}\right|^2} + \sqrt{m_Z^2 + \left|E_T^{miss}\right|^2}\right)^2 - \left|\vec{p}_T^{\ell\ell} + \vec{E}_T^{miss}\right|^2$$

- Backgrounds
 - gg/qq o ZZ estimated as in $\ell\ell\ell\ell$
 - $\cdot \ WZ$ estimated using MC (Powheg), validated on data containing additional leptons
 - $WW,\ t\bar{t},\ Wt,\ Z\to \tau\tau$ estimated from data using $e^\pm\mu^\mp$ pairs
 - Z+Jets is estimated from data using an ABCD method on $\Delta\phi\left(\vec{p}^{\ell\ell},\vec{E}_T^{miss}
 ight)$ and $\Delta\phi_{\ell\ell}$

$H \to ZZ \to \ell\ell qq$

- Events contain exactly 2 very high quality leptons with $83 < m_{\ell\ell}/GeV < 99$, and no additional high p_T leptons
- ggF events are sub-categorized as *resolved* or *merged* to account that at high m_H , the jets from $Z \to q \bar q$ decay will overlap and not be resolved
- In the resolved channel, events are sub-categorized based on number of b-tagged jets
- Backgrounds:

 $Z+Jets\,$ shape from MC, normalizations (in each category above) are nuisance params in final fit. Control regions are built by inverting cuts on $m_{jj}\,$ and building pdfs in the b-tagging category.

ZZ/WZ taken from MC simulation; differences between generators treated as systematic uncertainty. Top estimated using $e^{\pm}\mu^{\mp}$ pairs; top scaling fit simultaneously during final combination.

observable: transverse mass $\, m_{\ell\ell j(j)} \,$ in the merged (resolved) channel

$H \to ZZ \to \nu \nu qq$

- Events contain no leptons (as defined in $\ell\ell qq$ search)
- Require $E_T^{miss} > 160 \, GeV$, $70 < m_{jj}/GeV < 105$
- To suppress multijet backgrounds, require

$$\Delta\phi(\vec{E}_T^{miss}, \vec{p}_T^{miss}) < \pi/2 \ , \ \Delta\phi(\vec{E}_T^{miss}, j_{nearest}) > 0.6$$

- Search divided into categories from number of b-tagged jets
- Sensitivity improved by a floating cut on $\,p_T^{\jmath}\,$ increasing linearly with the test mass m_H
- Jet momenta are scaled to bring $m_{jj} o m_Z$

observable: transverse mass
$$m_T^{ZZ}$$

$$\left(m_T^{ZZ}\right)^2 = \left(\sqrt{m_Z^2 + \left|p_T^{jj}\right|^2} + \sqrt{m_Z^2 + \left|E_T^{miss}\right|^2}\right)^2 - \left|\vec{p}_T^{jj} + \vec{E}_T^{miss}\right|^2$$
 the range of m_T^{ZZ} used in fit depends on m_H

Backgrounds:

W+Jets estimated from data using CR with exactly 1 loose muon, in each of several b-tagging categories of the jets

Z+Jets $\,$ same as with $\ell\ell qq$ with an additional CR containing exactly 2 loose muons

A further E_T^{miss} dependant function corrects the MC shape

WW/WZ, Top same as other channels

2HDM Overview [arXiv:1106.0034]

 $egin{array}{ccccc} \Phi_1 & \Phi_2 \ Type\,I: & u,d,\ell \ Type\,II: & d,\ell & u \ \end{array}$

Two doublets Φ_1, Φ_2 couple to fermions as:

5 physical Higgs bosons: CP-even h, H, one CP-odd A, two charged H^{\pm} assumed to be the 125GeV Higgs high-mass Higgs under search

Additional parameters:

- $tan \beta$ ratio between vacuum expectation value of two doublets
- $oldsymbol{\circ}$ mixing angle of doublets
- → HZZ coupling proportional to $cos(\beta \alpha)$
- ightharpoonup Alignment Limit cos(eta-lpha)
 ightarrow 0 leaves the h indistinguishable from a SM Higgs

2HDM considered in presented limits:

$$m_h = 125 \, GeV, \quad m_A = m_H = m_{H^{\pm}}, \quad m_{12}^2 = m_A^2 \, tan\beta/(1 + tan\beta^2)$$

Graham Cree SUSY2015 29

MSSM Interpretations

as defined in 1307.1347, 1302.7033, 1101.0593

The value of m_A fully determines the value of m_H . For the lightstau model the trilinear coupling was set to $A_T = A_t$. The vertical dashed grey lines indicate contours of constant m_H , while the horizontal dashed purple lines indicate contours of constant m_h (for the hMSSM model $m_h = 125$ GeV for the entire phase space shown, so the constant m_h contours are not shown).

$$H \to WW$$

The following slides all represent ATLAS Preliminary results: to be submitted

$H \to WW \to \ell \nu \ell \nu$

Signal Regions

$H \to WW \to \ell \nu \ell \nu$

Control Regions

WW Control Regions

only different flavour final state is used

Top Control Regions

in 1-jet category, only different-flavour final state is used

in 2+jet category, both different/same-flavour finals states are used

Signal Regions

Signal regions have a mass hypothesisspecific selection to enhance sensitivity

applying 500 GeV selection

0.6Ы

300

400

800

 $m_{l\nu jj}$ [GeV]

600

500

700

Statistics used

(summarized from <u>arXiv:1503.07622</u>, <u>arXiv:1007.1727</u>)

$$CL_s$$

$$\frac{\int_{q_{obs}}^{\infty} f(q|\mu, \hat{\hat{\theta}}(\mu, obs)) dq}{\int_{q_{obs}}^{\infty} f(0|\mu, \hat{\hat{\theta}}(0, obs)) dq} = 5\%$$

modified confidence interval (not actually a confidence interval) which protects against downwards fluctuations excluding arbitrarily small signal strengths

$$q_{\mu} \begin{cases} -2\ln\lambda(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases}$$

$$\tilde{q}_{\mu} \begin{cases} -2\ln\tilde{\lambda}(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases}$$

 \Rightarrow test statistics for upper limit setting. Defined around physical limitation $\mu>0$, and common sense limitations - observing $\hat{\mu}>\mu$ should be treated as signal-like

$$\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})} \qquad \qquad \tilde{\lambda}(\mu) \quad \begin{cases} \lambda(\mu) & \hat{\mu} \geq 0 \\ \frac{L(\mu, \hat{\hat{\theta}})}{L(0, \hat{\hat{\theta}})} & \hat{\mu} < 0 \end{cases}$$