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1 Introduction

Measurements that involve mixing and time-dependent CP asymmetries in decays of neutral B
mesons require the identification of their flavour content at production. This is achieved via various
flavour tagging algorithms that exploit information from the rest of the pp collision event. Same-
side (SS) taggers look for particles produced in association with the signal B meson during the
hadronization of the b quark [1]. The d or s partner of the light valence quark of the signal B
has a roughly 50% chance of hadronizing into a charged pion or kaon. Since b quarks are mostly
produced in bb pairs, the flavour content of the signal B meson can also be deduced from available
information on the opposite-side (OS) b hadron, whose flavour is the opposite of the signal B
meson at the production time. OS muon and electron taggers look for leptons originating from
semileptonic b→ cW transitions of the b hadron, and an OS kaon tagger looks for kaons coming
from b→ c→ s transitions. A vertex-charge tagger reconstructs the decay vertex of the OS b
hadron and predicts its charge by weighting the charges of its decay products according to their
transverse momentum. The OS taggers employed by LHCb are described in ref. [2] and the SS
taggers in refs. [3, 4]. This paper reports a new flavour tagging algorithm for the LHCb experiment
that relies on reconstructed decays of charm hadrons produced in the OS b hadron decay. For the
development and evaluation of the tagging algorithm, signal B meson and charm hadron candidates
are reconstructed using data from 3 fb−1 of integrated luminosity collected by LHCb at 7TeV and
8TeV centre-of-mass energies in 2011 and 2012, respectively.

The performance of a flavour tagging algorithm is defined by its tagging efficiency, εtag, mistag
fraction, ω , and dilution, D= 1−2ω . For a simple tagging algorithm with discrete decisions – B0,
B0, or untagged – these metrics are directly related to the numbers of rightly tagged (R), wrongly
tagged (W ), and untagged events (U) in a signal sample:

εtag =
R+W

R+W +U
, ω =

W
R+W

, D =
R−W
R+W

. (1.1)

– 1 –
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The performance of the flavour tagging algorithms is improved by assigning confidence weights to
their tagging decisions. For each tagger, a multivariate classifier is trained using simulated data to
distinguish between correct and incorrect decisions [2]. The inputs to the classifier are a selection
of kinematic and geometric quantities describing the tagging track(s), the signal B meson, and the
event. This classifier then calculates a predicted mistag probability η for each decision made. The
predicted mistag probability is calibrated to data using an appropriate flavour self-tagged mode,
such as B+→ J/ψ K+, or a mode involving neutral B oscillation, which self-tags its flavour at
the decay-time, such as B0→ J/ψ K∗0 or B0

s→ D−s π+ [4, 5] (the use of charge-conjugate modes
is implied throughout this paper). This calibration procedure provides a function ω(η), which
relates the actual mistag probability ω to the predicted mistag probability η . Weighting each signal
candidate by 1− 2ω(η) leads to an improved effective mistag fraction ω and associated dilution
D = 1− 2ω . The statistical power of a CP asymmetry measurement using a tagging algorithm is
proportional to the effective tagging efficiency (or tagging power) εeff, defined as

εeff = εtagD2. (1.2)

The typical combined tagging power of the current set of OS tagging algorithms used by LHCb
is approximately 2.5% [3, 6–8]. Any augmentation to this tagging power increases the statistical
precision achievable in CP measurements at LHCb.

2 Detector and simulation

The LHCb detector [9, 10] is a single-arm forward spectrometer covering the pseudorapidity range
between 2 and 5, designed for the study of particles containing b or c quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp in-
teraction region [11], a large-area silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4Tm, and three stations of silicon-strip detectors and straw drift tubes [12]
placed downstream of the magnet. The tracking system provides a measurement of momentum, p,
of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0%
at 200GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter,
is measured with a resolution of (15 + 29/pT)µm, where pT is the component of the momen-
tum transverse to the beam, in GeV/c. Different types of charged hadrons in the momentum range
2–100 GeV/c are distinguished using information from two ring-imaging Cherenkov detectors [13].
Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons
are identified by a system composed of alternating layers of iron and multiwire proportional cham-
bers [14]. The online event selection is performed by a trigger [15], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software stage,
which applies a full event reconstruction.

In the simulation, pp collisions are generated using PYTHIA [16, 17] with a specific LHCb
configuration [18]. Decays of hadronic particles are described by EVTGEN [19], in which final-
state radiation is generated using PHOTOS [20]. The interaction of the generated particles with the
detector, and its response, are implemented using the GEANT4 toolkit [21] as described in ref. [22].

– 2 –
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3 Tagging potential of OS charm hadrons

In events containing a signal B decay, the opposite-side D+, D0, and Λ+
c charm hadrons are pri-

marily produced through the quark-level b→ c transition. The charge of the D+ or Λ+
c determines

the flavour of the b hadron parent. For D0 decays through the dominant Cabibbo-favoured process
D0 → K−X , the kaon charge determines the flavour of the charm hadron, and thereby that of the
parent B hadron (the effect of D0 mixing is negligible). The OS charm tagging algorithm uses
charm hadron candidates reconstructed in a number of decay modes, chosen for their relatively
large branching fractions, listed in table 1. These include fully reconstructed hadronic modes with
a single charged kaon in the final state, partially reconstructed hadronic modes with an unobserved
neutral pion, and partially reconstructed semileptonic modes. Table 1 also reports the breakdown
of the charm tagger’s performance by decay mode. The relative rate and relative power of each
mode are the amounts that it contributes to the algorithm’s total tagging rate εtag and tagging power
εeff, which are presented in section 6 and table 3. The algorithm predicts the flavour of the sig-
nal B meson using the charge of the kaon in the same manner as the OS kaon tagger; however,
the selection based on the reconstruction of c hadrons (rather than the selection of kaons based
on their individual kinematic properties) results in a different set of selected kaons and provides a
complementary source of tagging information.

Several effects contribute an irreducible component to the mistag probability for the OS charm
tagging algorithm. The dominant impact comes from B0–B0 oscillation and from the contribu-
tions of “wrong sign” charm hadrons produced in b→ ccq transitions. The impact of Cabibbo-
suppressed D0 → K+X decays is negligible, as these typically produce additional kaons and do
not mimic modes used by the tagging algorithm, and doubly Cabibbo-suppressed decays such as
D0→ K+π− have a negligibly small branching fraction. Accounting for relative production rates
of b hadrons, neutral B oscillation, and branching fractions of the decay modes used in the tagger,
the irreducible mistag probabilities for D0, D+ and Λ+

c modes are estimated to be 23%, 19%, and
6%, respectively.

In addition to the irreducible mistag probability arising from physics effects, the charm hadron
candidates are contaminated by combinatorial and partially reconstructed b and c hadron back-
ground that can lead to an incorrect flavour tag result. For each mode, the charm tagger uses a
multivariate algorithm that combines geometric and kinematic quantities and properties of the c
hadron candidate and its daughters. The resulting discriminating variable is used both to suppress
the combinatorial background and to predict the corresponding mistag probability for the survi-
ving candidate.

4 Selection of charm candidates

Charm decay candidates are formed by combining kaon, pion, and proton candidates that satisfy
particle identification criteria. These particles are required to have momentum p > 1000MeV/c,
transverse momentum with respect to the beam axis pT > 100MeV/c, and to be significantly
displaced from any PV. For the candidates in the partially reconstructed modes and the decay
D0→ K−π+π+π−, which contain large combinatorial backgrounds, more stringent requirements
are imposed on the displacement of the final-state particles from the PV. In addition, particles are
required to have pT > 150MeV/c for candidates in the mode D0→ K−π+π+π−.

– 3 –
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Table 1. Decay modes used in the OS charm tagger. The symbol Hc stands for any c hadron. The definition
of the two right-most columns is given in the text.

Decay mode Relative rate Relative power
D0→ K−π+ 10.0% 24.0%
D0→ K−π+π+π− 5.9% 8.4%
D+→ K−π+π+ 10.3% 2.6%
Hc→ K−π+X 69.7% 61.5%
Hc→ K−e+X 0.5% 0.2%
Hc→ K−µ+X 3.4% 0.3%
Λ+

c → p+K−π+ 0.2% 2.4%

Charm hadron candidates are required to pass a number of selection requirements. These
include a maximum distance of closest approach between each pair of daughter tracks and a min-
imum quality of the decay vertex fit. Each candidate is required to be well separated from any PV
and to have a trajectory that leads back to the best PV, chosen to be the PV for which the impact
parameter significance of the charm hadron is smallest. The invariant mass of the charm hadron
candidate is required to be consistent with the known mass of the corresponding charm hadron,
within 100MeV/c2 for the Λ+

c channel and 50MeV/c2 for all other fully reconstructed D decay
modes. For the partially reconstructed D→ K−π+X modes, the K−π+ mass is required to be in
a

[
−400MeV/c2,+0MeV/c2

]
window around the known D0 mass or in a window of ±50MeV/c2

around the K∗(892)0 resonance. The former is favoured by the invariant mass distribution of K−π+

pairs from the quasi-two body decay D0→ K−ρ+, and the latter selects D→ K∗(892)0X decays.
Charm candidates surviving these criteria still contain significant background contamination, which
must be further reduced in order to lower the mistag probability of the algorithm.

For each mode, an adaptive-boosted decision tree (BDT) [23, 24] is used both to suppress
background candidates and to estimate mistag probabilities. The inputs to the BDT are variables
describing the decay kinematics, decay vertex and displacement, and particle identification infor-
mation on the decay products. A variable related to the decay-time is calculated from the dis-
tance between the c hadron’s decay vertex and the corresponding best PV; this approximates the
sum of the decay-times of the c hadron and its parent b hadron. The BDT algorithms are trained
using Monte Carlo (MC) simulations of bb events containing B+→ J/ψ K+, B0→ J/ψ K∗0, and
B0

s→ J/ψ φ decays on the signal side and inclusive decays of the b hadron on the opposite-side.
These B decays are used to model the various sources and amounts of background when recon-
structing OS c hadrons recoiling against signal B decays.

The output of the BDT, along with the simulation record of candidate identification, is used to
compute the predicted mistag probability η for each c hadron candidate. Candidates with η < 45%
are used in the flavour tagging decision. Removing candidates that fail this criterion significantly
reduces the computing time of the algorithm at little cost to tagging performance. In cases where
multiple charm candidates are present, the candidate with the lowest predicted mistag probability
is retained. The combined efficiency of these requirements for retaining tagged events is (59.00±
0.07)% and (53.4±0.3)% in simulation and data, respectively.

– 4 –
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5 Calibration

While simulated data are used to develop and optimize the charm tagging algorithm, its perfor-
mance is calibrated with collision data by comparing the algorithm’s predictions to the known
flavours of signal B candidates, according to the procedure detailed in ref. [2]. The calibration
parameters p0, p1, ∆p0, and ∆p1 are defined by

ω = p0 + p1 (η−〈η〉)
∆ω = ∆p0 +∆p1 (η−〈η〉)

where 〈η〉 is the average predicted mistag probability, ω is the actual mistag probability averaged
over B+ and B− signal mesons, and ∆ω is the excess mistag probability for B+ mesons with respect
to B− mesons; equivalent definitions hold for B0/B0 signal. In the ideal case, the offset parameter
p0 should equal 〈η〉, and so the related parameter δ p0 = p0−〈η〉 is often more convenient.

A calibration of the algorithm has been performed using the flavour self-tagged mode B+→
J/ψ K+. The signal candidates are selected by combining pairs of oppositely charged muons, with
invariant mass consistent with the known J/ψ mass, with charged kaons, and are required to pass
a set of cuts to obtain a good signal to background ratio [2]. When multiple candidates are present
for a single event, that with the best decay vertex fit is kept. A fit to the reconstructed B+ mass
distribution is used to separate signal and background via the sPlot procedure, which computes
signal and background weights for each candidate [25]. The empirical model for the signal is a sum
of two Crystal Ball functions [26], while background is modeled by an exponential distribution. A
total of 1.1×106 signal candidates in this channel are found in the full dataset. The parameters p0

and p1 are determined by splitting the data into 13 bins of η between 0.19 and 0.45, calculating
ωi and η̄i (the average η) in each bin, and performing a linear fit to the set of values (ωi, η̄i).
The calibration parameters ∆p0 and ∆p1 are obtained from fits to the B+ and B− data each split
into 5 bins of η . The quantities ∆ωi and η̄i are calculated in each of the 5 bins, and a linear fit
is performed to the set of values (∆ωi, η̄i). These fits are shown in Figs. 1 and 2. The resulting
calibration parameters are given in table 2.

A cross-check of the calibration has been carried out using a B0→ J/ψ K∗0 control sample.
For this calibration, B0–B0 oscillation must be taken into account. The Hypatia function [27] is
used to model the signal’s mass distribution, while the background is modeled with a sum of two
exponential functions. A set of simultaneous fits to the B0 lifetime distribution in bins of η is
performed, in which p0, p1, ∆p0, and ∆p1 are parameters of the fit model. In each bin, the raw
B0–B0 mixing asymmetry is defined as

Amixing =
N (D = P)−N (D 6= P)
N (D = P)+N (D 6= P)

, (5.1)

where D is the B meson flavour at decay-time and P is the production flavour predicted by the
charm tagger. The amplitude of this asymmetry is governed by the actual mistag fraction ωi in
the bin, while the bin’s average predicted mistag probability is η̄i. The fit attempts to match the
calibrated value ω(η̄i) to ωi in each bin by adjusting the calibration parameters. A projection of the
fitted model to the mixing asymmetry is shown in Fig. 3. The values of the calibration parameters
obtained from the fit are given in table 2. The parameters are compatible with those obtained in the
B+→ J/ψ K+ mode, with the total χ2 per degree of freedom equal to 0.65.

– 5 –
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Figure 1. Mistag probability ω as a function of the predicted mistag probability η for the B+→ J/ψ K+ data
sample. A straight line fit to extract the parameters p0 and p1 is superimposed. The dark (green) and light
(yellow) bands are the regions within 1σ and 2σ of the fitted value, respectively.
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Figure 2. Excess mistag probability ∆ω as a function of the predicted mistag probability η for the B+→
J/ψ K+ data sample. A straight line fit to extract the parameters ∆p0 and ∆p1 is superimposed. The dark
(green) and light (yellow) bands are the regions within 1σ and 2σ of the fitted value, respectively.
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Figure 3. Raw B0–B0 mixing asymmetry (defined in eq. 5.1) vs. decay-time for the B0→ J/ψ K∗0 data
sample. The amplitude of the asymmetry is diluted due to mistagging by the charm tagger. The mixing
asymmetry from the fit is superimposed.

Table 2. Calibration parameters as determined from the B+→ J/ψ K+ and B0→ J/ψ K∗0 control samples.
For both calibration modes, the average predicted mistag probability 〈η〉 is 0.379. The first uncertainties are
statistical and the second are systematic. The systematic uncertainties are evaluated using simulation.

Sample δ p0 (10−3) p1 ∆p0 (10−3) ∆p1

B+→ J/ψ K+ −25±3±3 1.00±0.06±0.02 15±5±4 −0.08±0.12±0.04
B0→ J/ψ K∗0 −18±8±3 1.16±0.17±0.02 23±11±4 0.21±0.25±0.04

The relatively small yield of the decay B0
s→D−s π+ precludes performing a data-driven calibra-

tion on a B0
s mode. Therefore, in order to ensure that the algorithm performs similarly for B0

s chan-
nels as well as B+ and B0 channels, separate calibrations to simulated B+→ J/ψ K+, B0→ J/ψ K∗0,
and B0

s→ J/ψ φ events are performed. Where statistically significant differences between the cal-
ibration parameters in the three channels are found, a systematic uncertainty, corresponding to
half of the maximum difference, is assigned to the parameter. These systematic uncertainties are
roughly the size of the statistical uncertainties for the parameters p0 and ∆p0, but are negligible
for p1 and ∆p1. The propagation of these uncertainties results in a 0.011% absolute systematic
uncertainty on the tagging power, comparable to its statistical uncertainty.

Other sources of systematic uncertainty on calibration parameters have been investigated and
found to have negligible effect. These include the potential effect of the chosen model of the
invariant B mass distribution for the channel B+→ J/ψ K+. Two alternative models of the mass
distribution were used and gave nearly identical results.

There are additional systematic uncertainties related to flavour tagging that must be considered
in a CP asymmetry analysis. These include differences between the signal channel sample and cal-
ibration channel sample in phase space distribution, event multiplicity, number of primary vertices,

– 7 –
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Figure 4. Distribution of the calibrated predicted mistag probability ω(η) for the B+→ J/ψ K+ data sample.

Table 3. Tagging efficiencies (εtag), effective mistag fractions (ω), and tagging powers (εeff) in the various
data samples studied. The first uncertainties are statistical and the second are systematic. The sample labeled
Simulation is the training sample of simulated B+→ J/ψ K+, B0→ J/ψ K∗0, and B0

s→ J/ψ φ decays, which
has negligible statistical uncertainties.

Sample εtag ω εeff

Simulation 4.88% 37.0% 0.33%
B+→ J/ψ K+ (3.11±0.02)% (34.6±0.3±0.3)% (0.30±0.01±0.01)%
B0→ J/ψ K∗0 (3.32±0.04)% (35.0±0.8±0.3)% (0.30±0.03±0.01)%
B0→ D−π+ (4.11±0.03)% (34.4±0.4±0.3)% (0.40±0.02±0.01)%
B0

s→ D−s π+ (3.99±0.07)% (34.4±0.6±0.3)% (0.39±0.03±0.01)%

or other variables. These differences would require corrections and would introduce tagging-related
systematic uncertainties. Such effects are dependent on the signal channel and selection, and must
be determined separately for each analysis.

6 Performance

The distribution of η after calibration for the B+→ J/ψ K+ control sample is shown in Fig. 4. The
tagging efficiency, mistag fraction, and the tagging power of the charm tagger are reported in table 3
for the training sample of simulated B→ J/ψ X decays and for both calibration channels. The
propagated statistical uncertainty of the calibration parameters dominates the statistical uncertainty
of the tagging power. The overall tagging power is slightly higher in simulation than in data, due
to differences in the distributions of input variables. The tagging powers in the two B→ J/ψ X
calibration channels are consistent.

Table 3 also reports the tagging metrics for the decays B0→ D−π+ and B0
s→ D−s π+. Fits to

the mass distributions of the signal candidates are performed to separate signal from background.

– 8 –
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In each fit, the signal is modeled by a sum of two Crystal Ball functions and the combinatorial
background is described by an exponential function. Several fully and partially reconstructed
backgrounds are also modeled in the fit to the B0

s → D−s π+ sample. The tagging efficiency for
these samples is found to be higher than for the samples of B→ J/ψ X decays, due to correlations
between the kinematics of the signal B and the opposite-side charm hadrons. The effective mistag
fraction for these samples is consistent with that on the B→ J/ψ X samples. The net effect is an
increased tagging power for these B→DX decays, similar to that observed for other opposite-side
tagging algorithms [7, 28].

To use the charm tagger in a physics analysis, the flavour tagging information from the charm
tagger can be combined with information from other tagging algorithms. Assessing the actual
gain in performance depends on the method of combination and calibration, as well as on the set of
tagging algorithms being combined. Due to correlations with other tagging algorithms, in particular
the OS kaon and vertex-charge taggers, the maximum possible increase in tagging power after the
addition of the charm tagging algorithm is less than its individual tagging power. The performance
of the combination of the current OS tagging algorithms with and without the addition of the charm
tagger has been measured on the B+→ J/ψ K+ data sample. The absolute net gain in tagging power
using the current combination algorithm is found to be around 0.11%, compared to the current total
OS tagging power of about 2.5% [3, 6–8].

7 Conclusion

An algorithm has been developed that determines the flavour of a signal b hadron at production
time by reconstructing opposite-side charm hadrons from a number of decay channels. The flavour
tagger uses boosted decision tree algorithms trained on simulated data, and has been calibrated
and evaluated on data using the self-tagged decay B+ → J/ψ K+. Its tagging power for data in
this channel is found to be (0.30± 0.01(stat)± 0.01(syst))%. The calibration has been cross-
checked using the decay B0→ J/ψ K∗0, giving consistent results. The tagging power is found to
be higher for the decays B0→ D−π+ and B0

s→ D−s π+, at (0.40± 0.02(stat)± 0.01(syst))% and
(0.39±0.03(stat)±0.01(syst))%, respectively.
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k Università di Roma Tor Vergata, Roma, Italy
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