
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 188.184.3.56

This content was downloaded on 16/02/2016 at 16:01

Please note that terms and conditions apply.

Optimizing CMS build infrastructure via Apache Mesos

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 062013

(http://iopscience.iop.org/1742-6596/664/6/062013)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/6
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Optimizing CMS build infrastructure via Apache

Mesos

David Abdurachmanov1, Alessandro Degano2, Peter Elmer3, Giulio
Eulisse1, David Mendez4, Shahzad Muzaffar1 on behalf of the CMS
collaboration.
1 Fermilab, Batavia, IL 60510, USA
2 Università di Torino
3 Department of Physics, Princeton University, Princeton, NJ 08540, USA
4 Universidad de los Andes, Bogotá, Colombia

E-mail: Giulio.Eulisse@cern.ch

Abstract.
The Offline Software of the CMS Experiment at the Large Hadron Collider (LHC) at CERN

consists of 6M lines of in-house code, developed over a decade by nearly 1000 physicists, as well
as a comparable amount of general use open-source code. A critical ingredient to the success of
the construction and early operation of the WLCG was the convergence, around the year 2000,
on the use of a homogeneous environment of commodity x86-64 processors and Linux.

Apache Mesos is a cluster manager that provides efficient resource isolation and sharing
across distributed applications, or frameworks. It can run Hadoop, Jenkins, Spark, Aurora, and
other applications on a dynamically shared pool of nodes.

We present how we migrated our continuous integration system to schedule jobs on a
relatively small Apache Mesos enabled cluster and how this resulted in better resource usage,
higher peak performance and lower latency thanks to the dynamic scheduling capabilities of
Mesos.

1. Current build infrastructure
CMS Core Software group is responsible for the whole release engineering process for the CMS
Offline Software, CMSSW. In particular this includes:

• Release building and packaging, for both production releases and bi-daily integration builds
for production and experimental branches alike.

• Unit testing and reduced release validation for integration builds.

• Automated Testing and Continuous Integration of updates as provided by various
collaborators under the form of Github Pull Requests.

• Running additional web based QA and documentation tools.

• Deployment of nightly integration builds via CVMFS to the collaboration.

CMS builds up to 21 releases per day on Scientific Linux 6 (SLC6) alone, including production
releases, development ones and experimental branches. In the last month (April 7, 2015 – May
7, 2015) we had over 294 active pull requests tested (eventually multiple times) and integrated in

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062013 doi:10.1088/1742-6596/664/6/062013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



our release branches and integration. A total of over 8,000 pull requests have been processed by
our Continuous Integration machinery since we started using Github in the middle of 2013. [1]

To handle the automated QA and release workflows, the CMS build infrastructure currently
consists of a cluster of 284 virtual cores and 540 GB of memory provisioned in the CERN
OpenStack based cloud. [2]

The QA procedures, the Continuous Integration are performed in an automatic manner via
Jenkins [3], an OpenSource continuous integration system.

Moreover the group is responsible for maintaining a number of web services, mostly serving
build artifacts like installation RPMs, log files and ROOT files resulting from the tests.

2. Old, statically partitioned, build infrastructure architecture
In the past in order to handle the load we could simply statically partition our OpenStack
quota to have a good balance between the size of the build cluster and the size of the services.
Moreover we provisioned build machines which were big enough for building a release with high
level of parallelism, in order to reduce the build latency, but still small enough to avoid wasting
to much CPU time when Jenkins scheduled non parallel jobs on them, wasting their potential.

Moreover due to the fact that it’s not possible to cross compile SLC5 releases on SLC6, in
the past some of the resources need to be assigned to SLC5 builds, which results in a net loss of
efficiency since SLC5 builds are occasional but needed to be delivered with the same latency of
SLC6 ones so we do not have much margin in overcommitting the SLC5 infrastructure.

While the static partitioning of the cluster has been sufficient for a long period, we wish to
improve both the latency for critical builds (i.e. development builds or tests on pull requests for
development builds) and improve the overall cluster utilization, with the aim of reducing the
number of resources needed.

3. Apache Mesos: a dynamic approach to cluster partitioning
The latency and resource utilization problems we are facing are actually a common issue in the
industry, where static partitioning of resources is the typical cause of resource overcommitting
and the following low cluster utilization.

Big names in the industry (e.g. Google [4]) have long solved the problem with proprietary
solutions which provide more dynamic cluster scheduling, however recently a number of open-
source projects have emerged trying to provide the same kind of functionality. In particular we
decided to evaluate a resource manager called Apache Mesos [5] (just Mesos from now on).

Mesos originated from the research done at UC Berkeley [6] which has then been brought to
production by Twitter. As the project evolved it got incubated as part of the Apache Foundation
Incubator, successfully graduating from it in 2013 [7], and it’s therefore now distributed as
flagship project under the Apache License. It is commonly used by other big internet companies
like Apple, eBay, Vimeo, and universities like UCSF and UC Berkeley.

Mesos cluster architecture consists of two sets of nodes, masters which coordinate the work,
and slaves which execute it. In particular Mesos is a so called two-level scheduler: the slave nodes
offer their available resources to masters which are then responsible for handling them to the
so called frameworks standalone software components which are responsible for the application
specific scheduling policy. When proposed a resource offer, a framework can decide whether to
accept it or not, and in case it does it can specify which and how many tasks it would like to
create for the given resource offer. This allows for more fine tuned scheduling of resources and
for application aware scheduling and has been demonstrated in very large scale (thousands of
nodes) setups.

On the back-end, Mesos masters uses Apache ZooKeeper (just ZooKeeper from now on) [8]
to provide a fault tolerant, distributed, setup when multiple masters are used.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062013 doi:10.1088/1742-6596/664/6/062013

2



Moreover, recent improvements allow Mesos to take advantage of a relatively modern Linux
feature, known as containers, to isolate the payload task being executed by the slaves. Containers
are middle ground entities between processes and virtual machines. Like processes, they run
all on top of the same Linux kernel, however they are completely isolated one from the other,
having each their own separate resources and runtime. In particular one of the most popular
engines supported by Mesos is Docker [9], which is quickly gaining industry acceptance and
whose usage CMS itself is exploring [10].

A number of Mesos frameworks are available and open-sourced, in particular a simple PaaS
called Marathon [11], which allows two spawn build nodes on demand for the Jenkins continuous
integration system [12] and a number of frameworks to dynamically provision resources for Big
Data stacks like Apache Hadoop [13], Apache Spark [14] or databases like Apache Cassandra [15]
or Elasticsearch [16].

4. New cluster architecture
We decided to redesign our build infrastructure to take advantage of Mesos and Docker.

The new cluster uses only two static partitions which from which from now on we will refer
to as masters and slaves. The machine belonging to those two partitions are provisioned as
virtual machines in CERN OpenStack infrastructure [2] and their configuration and deployment
is handled using the CERN Puppet / Foreman setup [17].

4.1. Masters
The masters run on three separate virtual machines, each positioned in a different OpenStack
availability zone, in a high-availability setup, so that we can gracefully handle the loss of one
machine, with no service interruption, which is considered enough for our purpose.

Each master runs the following services:

• Mesos master service: Mesos masters are responsible for scheduling services on the rest
of the cluster.

• ZooKeeper: ZooKeeper is used by Mesos to keep track of the distributed state of the
masters, effectively providing high availability to the system.

• The Marathon PaaS: Marathon is responsible for scheduling services running on our
cluster, dynamically choosing their placement based on the provided set of rules and
constraint. It acts as a cluster level init or upstart daemon. By using either Marathon GUI
or its REST interface an administrator can request to start a process or a Docker container,
eventually in multiple copies, and Marathon will take care of starting and monitoring such
a process, ensuring it’s restarted in case it dies. Moreover it exposes the location of the
various services via a REST based API so that the front-end proxies can use it for service
discovery and redirect traffic to it. A custom made wrapper script is used to generate the
front-end configuration.

• HAProxy: HAProxy is a fast and easy solution for load balancing proxy which we use as
a front-end to redirect to our services. A cronjob running every few minutes is responsible
for reading the back-end information and update the configuration so that various requests
are redirected to the correct host in the slave cluster.

• nginx: since HAProxy does not support SSL termination, in case we need it, we use the
nginx web service for this purpose, however, even when this is required, we leave redirection
part to HAProxy.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062013 doi:10.1088/1742-6596/664/6/062013

3



4.2. Slaves
The slaves cluster is comprised of nodes running the Mesos slave client and on which Docker
was previously deployed via Puppet. They are responsible for running the tasks scheduled by
the Mesos masters.

In general tasks are running inside a Docker container, which actually allows us to separate
the configuration of the slaves from the configuration of the application running on it. This
means for example that we can run SLC5 Jenkins builders inside a Docker container which runs
on top of a SLC6 machine, eliminating the special need for a SLC5 build cluster.

In line of principle each node is equal to the other and this is generally true for the case in
which the application does not need to store a large state for a long period of time. This is in
particularly true for Jenkins builders, which are expendables. For applications which do have a
long standing state, e.g. an Elasticsearch cluster or a web server, we make sure that the machine
which hosts the data has a special attribute set, so that Mesos can easily schedule the service
to the correct back-end. An alternative which will soon be possible is to use Mesos dynamic
resources extension which will allow to specify not only job needs in terms of CPU or memory,
but also persistent disk storage.

For security reasons, each node cannot talk directly to each other, but it has to go through
the front-end interface.

In its current incarnation our Mesos cluster setup uses the OpenStack based CERN Cloud
for provisioning machines however we have plans to experiment with real hardware, at least for
the stateless builders, since bare metal seem to provide better performance than standard build
machines due to the fact building a large project like CMSSW is an I/O intensive tasks due to
the large number of files being compiled and linked.

5. Notable Mesos frameworks and their utilizations
5.1. Provisioning slaves with Jenkins Mesos plug-in
Given the fact that CMS Build Infrastructure heavily relies on Jenkins to drive the release
integration and QA process, one of the main advantages of Mesos is the availability of a Jenkins
plug-in which allows provisioning new slaves as a required. In particular the plug-in allows to
define multiple queues, each with a separate label associated and each with different requirements
in terms of CPU and memory usage. Together with the fact that Jenkins allows programmatic
definition of labels attached to a job, this allows fine grained scheduling where, for example, more
recent releases are assigned to a queue with a larger share of the CPU budget. Moreover the
ability to assign a Docker container to a queue allows reducing the issues deriving from build
machines being deployed at different times and therefore potentially having slightly different
setups.

5.2. Deploying services with Marathon and Docker
Mesos would not be to much different from a normal batch-system, however, if it did not provide
the ability to execute long running services, either running natively inside a Docker container. In
particular the Mesos framework Marathon provides a simple setup where services can be defined
via a JSON formatted file, passed to the service via its REST API. The JSON file contains
information like which executable to launch or alternatively which Docker container to spawn.
Additional configuration options allow to define port and volume mappings for the application,
and to specify how many copies are requested. Moreover Marathon allows the service manager
to specify placement constraints so that, for example, a given instance of a web server is started
on a machine where the data is actually located or it allows to horizontally scale an application
by forcing all the instances to run on a different server. For example this is actively used in our
setup to launch a Elasticsearch database running on a three node cluster where we store build
logs and information. The whole cluster configuration, including the actual location of spawn

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062013 doi:10.1088/1742-6596/664/6/062013

4



services on the cluster and their port mappings, are available via Marathon REST API and can
therefore be used for service discovery and automated configuration. Finally, in order to improve
the experience of deploying a new service Marathon it is possible to navigate deployment history
and roll back to previous configurations. The flexibility of the system is demonstrated by the
fact it’s easy to actually deploy a new Mesos and Marathon cluster using Mesos and Marathon
itself. This is in particular an interesting feature which could be used to provide very dynamic
opportunistic usage of resources by launching and reshaping Mesos Clusters on top of a parent
stable cluster and providing an entry-point to each cluster to different users.

6. Advantages of the new setup
We believe that from the architectural point of view, the new setup has mainly three advantages:

• Clear separation between infrastructure and application deployment.

• Painless redundancy and high-availability.

• Larger nodes.

Separation of concerns in particular improves reliability of the whole infrastructure during
upgrades. By having dockerized applications running on the cluster we are not in the need
of updating them as we update the infrastructure itself, following CERN/IT upgrades pace.
Moreover, high-availability allows us to update one component at the time, without having
to sacrifice service uptime. Finally the fact we can dynamically use part of a slave allows us
to reshape our cluster to have virtual machines with more cores with the consequent higher
performance in case of parallel workloads, without sacrificing resources in case of sequential
ones.

7. Conclusions and future work
We have successfully setup a Mesos cluster and used it to launch jobs via Jenkins and to deploy
services via Marathon. While the system does comes with a non trivial learning curve and
it’s still an evolving product, Mesos has proven itself to be a reliable method to unify cluster
resources and provides high availability.

Work continues in migrating our build infrastructure to Mesos, in particular to migrate larger
jobs to it.

Given the fact Mesos is specifically thought as a way to have multiple clients access the
same cluster resources, future work can also be expected in the direction of sharing resources
of the build infrastructure cluster with other parties within and outside CMS, establishing
collaboration, for example, with the Release and QA teams of other experiments. In order to do
so an economic model of how the cluster resources are shared among competing parties would
be required.

Acknowledgements
This work was partially supported by the National Science Foundation, under Cooperative
Agreement PHY-1120138, and by the U.S. Department of Energy.

References
[1] Giulio Eulisse, Shahzad Muzaffar, David Abdurachmanov, and David Mendez. Rise of the build

infrastructure. J. Phys.: Conf. Ser., 513(5):052009, jun 2014.
[2] http://openstack.cern.ch.
[3] https://jenkins-ci.org.
[4] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune, and John Wilkes.

Large-scale cluster management at Google with Borg. In Proceedings of the European Conference on
Computer Systems (EuroSys), Bordeaux, France, 2015.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062013 doi:10.1088/1742-6596/664/6/062013

5

http://openstack.cern.ch
https://jenkins-ci.org


[5] http://mesos.apache.org.
[6] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony Joseph, Randy Katz, Scott

Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI’11,
pages 295–308, Berkeley, CA, USA, 2011. USENIX Association.

[7] https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces45.
[8] http://https://zookeeper.apache.org.
[9] https://docker.io.

[10] Giulio Eulisse, Tommaso Boccali, Enrico Mazzoni, and Daniele Bonacorsi. Containerization of CMS
applications with Docker. In To appear in Proceedings of ISCG 2015, 2015.

[11] https://mesosphere.github.io/marathon.
[12] http://jenkinsci.github.io/mesos-plugin/.
[13] https://github.com/mesos/hadoop.
[14] https://spark.apache.org/docs/1.2.0/running-on-mesos.html.
[15] https://github.com/mesosphere/cassandra-mesos.
[16] https://github.com/mesosphere/elasticsearch-mesos.
[17] http://cern.ch/config.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062013 doi:10.1088/1742-6596/664/6/062013

6

http://mesos.apache.org
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces45
http://https://zookeeper.apache.org
https://docker.io
https://mesosphere.github.io/marathon
http://jenkinsci.github.io/mesos-plugin/
https://github.com/mesos/hadoop
https://spark.apache.org/docs/1.2.0/running-on-mesos.html
https://github.com/mesosphere/cassandra-mesos
https://github.com/mesosphere/elasticsearch-mesos
http://cern.ch/config



