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Abstract

A search for the production of a heavy B quark, having electric charge −1/3 and vec-
tor couplings to W, Z, and H bosons, is carried out using proton-proton collision data
recorded at the CERN LHC by the CMS experiment, corresponding to an integrated
luminosity of 19.7 fb−1. The B quark is assumed to be pair produced and to decay
in one of three ways: to tW, bZ, or bH. The search is carried out in final states with
one, two, and more than two charged leptons, as well as in fully hadronic final states.
Each of the channels in the exclusive final-state topologies is designed to be sensitive
to specific combinations of the B quark-antiquark pair decays. The observed event
yields are found to be consistent with the standard model expectations in all the fi-
nal states studied. A statistical combination of these results is performed, and upper
limits are set on the cross section of the strongly produced B quark-antiquark pairs as
a function of the B quark mass. Lower limits on the B quark mass between 740 and
900 GeV are set at a 95% confidence level, depending on the values of the branching
fractions of the B quark to tW, bZ, and bH. Overall, these limits are the most stringent
to date.
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1 Introduction
The discovery of a Higgs boson [1–3] has intensified the search for physics beyond the stan-
dard model (SM). Various extensions of the SM predict the existence of new heavy quarks,
which arise quite naturally in grand unification schemes [4] and in composite Higgs [5, 6], little
Higgs [7–10], and top quark condensate [11] models. The couplings to the SM gauge bosons
of the left- and right-handed components of these quarks are symmetric, so they are called
vectorlike [12]. Vectorlike quarks may be singlets, doublets, or triplets under the electroweak
SU(2) × U(1) transformation [13]. They have bare mass terms that are invariant under the
electroweak gauge transformation [14]. Moreover, their couplings to the scalar sector are inde-
pendent of mass. Thus, the existence of vectorlike quarks is not ruled out by the recent discov-
ery of a Higgs boson, in contrast to additional quarks in more conventional fourth-generation
models [15].

In several beyond the standard model scenarios, vectorlike quarks are considered partners of
the top and bottom quarks [16]. Both the charged-current [17] and the flavor changing neutral
current (FCNC) [18, 19] decay processes are allowed. The ratio of the predicted rates depends
on the model: in some models the FCNC process dominates [20]; in others the two modes are
comparable in rate.

This paper describes the search for a vectorlike B quark of electric charge −1/3, using data
recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of
8 TeV at the CERN LHC in 2012. It is assumed that B quark-antiquark pairs are produced
strongly for B quark masses within the range of this search, which extends to 1 TeV. The B
quark may decay either via the charged-current process B → tW or via the FCNC processes
B→ bZ and B→ bH. Feynman diagrams for the B quark pair production and decay processes
are shown in Fig. 1. Searches are performed in several different final states, including those
containing single leptons, lepton pairs (dileptons) of opposite or identical charge, three or more
leptons, or consisting entirely of hadronic activity without any identified leptons. We search
for an excess of events over the backgrounds in mutually exclusive final states and set limits
on the pair-production cross section for all values of the B quark branching fractions with the
constraint B(B→ tW) + B(B→ bZ) + B(B→ bH) = 1.
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Figure 1: Feynman diagrams for the dominant B quark pair-production process (top) and for
the B quark decay modes (bottom).

Experimental searches for a vectorlike B quark have previously been reported by experiments
at the Fermilab Tevatron and the CERN LHC. A 95% CL lower limit on the mass of the B
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quark was set at 268 GeV by the CDF Collaboration [21]. Recently the ATLAS Collaboration set
lower limits on the B quark mass ranging from 575 to 813 GeV, for different combinations of
the B quark branching fractions [22]. The present analysis improves upon these existing results,
setting the most stringent limits to date on the mass of the vectorlike B quark.

The paper is divided into several sections. Section 2 gives an overview of the CMS detector.
Section 3 describes the details of the simulations used for signal and background processes.
Section 4 describes the reconstruction of physics objects and the event selections specific to
each individual channel considered in this analysis. Section 5 describes background estimation
techniques for each of the channels, as well as the specific methods used to discriminate the B
quark signal from the background, while Sec. 6 describes the systematic uncertainties evaluated
for each channel and their treatment in combination. Finally, Sec. 7 provides further details on
the combination of analysis channels and Sec. 8 presents the results obtained from this analysis.
A summary is presented in Sec. 9.

2 CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter, each composed of a barrel and two end cap sections. Muons are mea-
sured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.
Extensive forward calorimetry complements the coverage provided by the barrel and end cap
detectors. The first level of the CMS trigger system, composed of custom hardware proces-
sors, uses information from the calorimeters and muon detectors to select the most interesting
events in a fixed time interval of less than 4 µs. The high-level trigger processor farm further
decreases the event rate from around 100 kHz (the maximum allowed output from the first
level) to around 400 Hz, before data storage. A more detailed description of the CMS detector,
together with a definition of the coordinate system used and the relevant kinematic variables,
can be found in Ref. [23].

3 Signal and background simulation
The following section details the simulation methods used to generate events for modeling the
signal and background processes. One of the main backgrounds in many of the channels is
SM tt production. This process is simulated with the MADGRAPH v5.1.1 event generator [24],
using the CTEQ6L1 parton distribution function (PDF) [25]. Events are interfaced with PYTHIA

v6 [26] for shower modeling and hadronization. These simulation methods are used for the
W+jets and Z+jets samples, in addition to SM tt production. For W+jets and Z+jets events, up
to four additional partons are allowed at the matrix element level during generation.

Diboson processes WW, WZ, and ZZ are generated with PYTHIA 6.424, and single top quark
processes (tW, s-channel, and t-channel) are generated using POWHEG 1.0 [27–30] and inter-
faced with PYTHIA for shower modeling and hadronization. Both the diboson and single top
processes are generated with the CTEQ6M PDF set. The rare processes ttW, ttZ, and tbZ are
simulated with MADGRAPH v5.

Normalizations for the background processes are initially set according to theoretical predic-
tions, and are allowed to vary within the corresponding uncertainties during cross section limit
extraction. For W+jets and Z+jets processes, we use the calculations found in Refs. [31–33]. For
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tt and single top samples, we normalize using cross sections calculated in Refs. [34] and [35], re-
spectively. Finally, for diboson and rare processes we use cross sections computed in Refs. [36]
and [37, 38], respectively.

To model the kinematic properties of the pp→ BB signal process, we use samples of simulated
events produced with the MADGRAPH v5 generator and CTEQ6L1 PDF set, allowing for up
to two additional partons in the final state of the hard scatter matrix element. The generated
events are then interfaced with PYTHIA v6 for parton shower modeling and hadronization.

Samples are generated for B quark masses between 500 and 1000 GeV, in steps of 50 GeV, for
each of the six distinct combinations of decay products: tWtW, tWbZ, tWbH, bZbZ, bHbZ, and
bHbH. The standard model final states identical to those listed here are not considered, as the
rates are negligible relative to the other background processes. By reweighting events from
these different samples, an arbitrary combination of branching fractions to tW, bZ, and bH can
be probed. To normalize the simulated samples to expected event yields, we use cross sections
computed to next-to-next-to-leading order (NNLO) using both HATHOR [39] and TOP++2.0
[40]. The numerical values used for the B quark pair-production cross sections as a function of
mass, generated with TOP++2.0, are listed in Table 1.

Table 1: Production cross sections for pp→ BB, used to normalize simulated signal samples to
expected event yields. The cross sections are computed to NNLO with Top++2.0 [40].

M(B) [GeV] Cross section σ [pb]
450 1.153
500 0.590
550 0.315
600 0.174
650 0.0999
700 0.0585
750 0.0350
800 0.0213
850 0.0132
900 0.00828
950 0.00525
1000 0.00336

Finally, to reproduce the LHC running conditions, simulated events are reweighted to match
the observed distribution of the number of reconstructed primary vertices per bunch crossing
in data.

4 Event reconstruction
Events from the LHC collision data or from simulation are reconstructed using the particle
flow (PF) algorithm [41, 42], which collects information from all subdetectors to reconstruct all
detected particles in an event. Events are required to have at least one reconstructed vertex. The
interaction vertex with the largest sum of the transverse momentum squared p2

T of associated
tracks is considered the primary interaction vertex. Charged particles originating from other
vertices due to additional inelastic proton-proton collisions within the same bunch crossing
(pileup) are rejected.

Electron candidates are reconstructed from clusters of energy deposited in the ECAL matched
to charged particle trajectories identified in the tracker [43]. Electrons and muons with pT above
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30 GeV and pseudorapidity |η| < 2.4 are accepted, excluding electrons with 1.44 < |η| < 1.57,
in the transition region between the ECAL barrel and end cap. The muon candidates are recon-
structed using information from the tracker and the muon spectrometer. Muon candidates are
required to have only a small amount of energy deposited in the calorimeters. Further quality
requirements are imposed on the muon tracks and the fit to the matched segments in the muon
detectors [44]. Only tracks originating from the primary interaction vertex are considered.

Electron and muon candidates are reconstructed and identified based on quality selection re-
quirements, while hadronically decaying tau leptons (τh) are identified using the Hadron Plus
Strip (HPS) [45] algorithm, which relies on hadrons and photons to construct the various tau
lepton hadronic decay modes. The HPS PF tau leptons are required to have pT > 20 GeV and
|η| < 2.3. Additionally, we require τh to be separated by ∆R =

√
(∆η)2 + (∆φ)2 > 0.1 from

electron and muon candidates, where φ is the azimuthal angle.

The isolation of the lepton candidates (including electrons, muons, and decays of tau leptons
to electrons or muons) is measured by the activity in a cone of aperture ∆R around the lepton
direction at the primary vertex. The pT of charged particles originating at the primary vertex
and the pT of the neutral particles and photons are summed in this cone (excluding the lepton
candidate itself) to obtain the isolation variable. Contributions to the neutral hadron and pho-
ton energy components due to pileup interactions are subtracted. For the electron isolation, this
contribution is determined using the jet area technique [46], which computes the transverse en-
ergy density of neutral particles using the median of the neutral energy distribution in a sample
of jets with pT > 3 GeV. In the case of the muons, the pileup energy density from neutral parti-
cles is estimated to be half of that from charged hadrons, based on measurements performed in
jets [47]. The difference between the isolation algorithms arises because electrons and muons
are reconstructed using different techniques. Electrons, with large energy deposition in the
calorimeters, behave similarly to jets in this respect, while the reconstruction of muons relies
more heavily on tracking information. The isolation value, defined as the energy reconstructed
in a cone of ∆R = 0.3 (0.4) around an electron (muon) candidate, is required to be less than
0.15 (0.12) times the electron (muon) pT for the lepton to be considered isolated. The lepton
identification and isolation conditions remove most of the nonprompt lepton backgrounds.

Particles are clustered to form hadronic jets using the anti-kT algorithm [48] with a distance
parameter of 0.5. Throughout this paper such clusters are referred to as AK5 jets. The AK5
jets with pT > 30 GeV and |η| < 2.4 are selected, with further requirements that the jet has
at least two associated tracks and that at least 1% of the jet energy fraction is measured in the
calorimeters, to remove poorly reconstructed jets. Jet energy corrections are applied; these are
derived from simulation and are matched to measurements in data [49].

Jets arising from the hadronization of b quarks (b jets) are identified using the combined sec-
ondary vertex (CSV) b-tagging algorithm [50], which uses information from tracks and sec-
ondary vertices associated with jets to compute a likelihood-based discriminator to distinguish
between jets from b quarks and those from charm or light quarks and gluons. The b-tagging
discriminator returns a value between 0 and 1, with higher values indicating a higher probabil-
ity of the jet to originate from a bottom quark. A discriminator threshold is chosen which gives
a b-tagging efficiency of about 70%, with a mistagging rate of about 1.5% for jets originating
from light-flavor quarks or gluons with pT in the range of 80–120 GeV. The b-tagging efficiency
is measured in data and simulation, and corrections are applied to simulated events to account
for any differences, as a function of pT and η [51]. The missing transverse momentum vector is
defined as the projection on the plane perpendicular to the beams of the negative vector sum of
the momenta of all reconstructed particles in an event. Its magnitude is referred to as ET/ . The
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quantity ST is defined as the scalar sum of the pT of the jets, lepton pT, and ET/ in the event.

At very high Lorentz boost, the products of hadronically decaying bosons may be merged
into a single reconstructed jet. In this regime, the W, Z, or Higgs bosons are identified as jets
clustered with the Cambridge-Aachen algorithm [52, 53] using a larger distance parameter of
0.8 [54]. In this paper, they are referred to as CA8 jets. For bosons with pT above approximately
200 GeV, decay products are expected to be clustered into a single CA8 jet. Each CA8 jet can be
decomposed into constituent subjets using a jet pruning algorithm [55] to resolve those decay
products. The pruning algorithm removes soft and wide-angle components of the jet during
a reclustering, and the last iteration of the clustering process is reversed to identify two subjet
candidates within each pruned jet. Jet properties such as jet mass, N-subjettiness [56] (used to
determine the consistency of a jet with N hypothesized subjets), and the mass drop, defined
as the ratio of the most massive subjet to the mass of the pruned jet, are used to identify these
bosons.

The trigger selection for each channel entering the combination can be different, depending
on the final state of interest. For the single-lepton channel, two trigger selections are utilized:
either a single electron with pT > 27 GeV or a single muon with pT > 40 GeV. For both of the
lepton pair channels, as well as the multilepton channel, three trigger algorithms are used for
final states including two electrons, two muons, or one electron and one muon. In each of these
dilepton trigger algorithms, events are selected if the highest-pT lepton has pT > 17 GeV and
the second-highest pT lepton has pT > 8 GeV. No charge requirement is applied in the trigger
selection, allowing these trigger algorithms to be used in all three channels with two or more
leptons. Finally, the all-hadronic channel uses a trigger algorithm requiring the total scalar pT
sum of reconstructed jets (with pT > 30 GeV and |η| < 3.0) in the detector to be greater than
750 GeV. The offline requirements for each channel of the analysis are designed to be fully
efficient given these trigger requirements. Differences in the trigger selections used between
analysis channels lead to small differences in the total amount of integrated luminosity utilized
in each channel.

The details of the event selections for each individual analysis channel are given in the follow-
ing subsections. Table 2 summarizes these channels in terms of their defining characteristics:
the number of selected leptons, the discriminating variable used for limit setting, as well as the
decay mode of the B quark for which the channel is most sensitive.

Table 2: A summary of analysis channels entering the combination, along with the number
of selected leptons, the variable used for signal discrimination, and the B quark decay mode
providing the best sensitivity for the channel.

Number of leptons Discriminating variable Best decay mode
Lepton+jets 1 ST tW
Same-sign dilepton 2 ST tW
Opposite-sign dilepton 2 M(`` b) bZ
Multilepton ≥3 ST tW, bZ
All-hadronic 0 HT bH

4.1 Lepton+jets channel

Charged leptons from the decays of W and Z bosons are selected using the criteria described in
Sec. 4, and are required to be isolated from jets. The lepton trajectories are also required to have
a transverse impact parameter of less than 0.02 cm and a longitudinal impact parameter of less
than 1 cm in magnitude, relative to the primary vertex. The final selection requires events to
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have exactly one isolated lepton and at least four jets with pT > 200, 60, 40, 30 GeV, respectively,
of which at least one is a bottom jet. The minimum number of jets and the jet pT requirements
are selected to enhance sensitivity to the BB signal with B → tW decays. To further suppress
the SM backgrounds, we use the centrality, C, defined as the scalar sum of the pT of the jets
divided by the scalar sum of the jet energies, requiring C > 0.4. We require events to have
ET/ > 20 GeV. Corrections due to differing trigger, lepton, and b jet identification efficiencies in
data and simulation are applied to simulated events.

Events are divided into categories containing 0, 1, or ≥2 tagged hadronically decaying W, Z,
or Higgs bosons using the CA8 jets. The identification criteria for these signatures require
the CA8 jet to have pT greater than 200 GeV and to be matched to an AK5 jet. The AK5 jets
matched to CA8 jets are then excluded from b-tagging requirements. The two subjets identi-
fied with the pruning algorithm [55] are required to have an invariant mass between 50 and
150 GeV, to be consistent with a W, Z, or Higgs boson. To further reduce SM backgrounds, the
mass drop is required to be less than 0.4. The efficiency of this heavy-boson tagging algorithm
is approximately 50% [57], and correction factors are applied to compensate for efficiency dif-
ferences between data and simulation. To discriminate the B quark signal from the expected
backgrounds, the ST distribution is used.

4.2 Same-sign lepton pair channel

Events enter the same-sign (SS) dilepton channel if they contain two leptons (ee, µµ, and eµ)
having the same electric charge. Events containing an additional reconstructed electron, muon,
or tau lepton candidate are removed from the final selection. This channel is optimized for B→
tW decays, but maintains some sensitivity for bZ and bH decays. In events with a top quark
and a W boson, high hadronic activity is expected in addition to the lepton pair, and therefore
events are included in the signal region only if they contain four or more jets in addition to the
lepton pair.

In this channel the B quarks are not fully reconstructed. Instead, to discriminate signal from
background, the ST distribution is used. Events with ET/ > 30 GeV are categorized into five ST
bins (0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1.2, and ST > 1.2 TeV) for each of the dilepton channels.

4.3 Opposite-sign lepton pair channel

In this channel, optimized for the B decaying to a Z boson and b quark, the Z boson candidates
are reconstructed from pairs of electrons or muons having opposite electric charge, with the
identification and isolation criteria previously described. The two highest pT leptons of the
same flavor but opposite charge are used. The pairwise invariant mass of these two objects,
M(``), where ` represents an electron or a muon, is required to be in the range of 60–120 GeV,
consistent with lepton pairs originating from a Z boson decay. Furthermore, the Z → `+`−

candidates are required to have pT(``) > 150 GeV. Events are further required to have at
least one b jet with pT > 80 GeV. The requirements are optimized to select Z bosons and b
jets originating from the decay of a heavy B quark (>500 GeV), where the decay products are
expected to have large pT. The kinematic properties of one B quark are reconstructed from the
Z boson and the highest-pT b jet, with M(`` b) used to discriminate the B quark signal. The
invariant mass distributions of the B quark candidates for different M(B) are shown in Fig. 2.
A signal peak can be identified over a continuous falling background. This reconstruction
strategy allows the other B quark from the BB quark-antiquark pair to decay into bZ, bH, or
tW.
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Figure 2: The reconstructed mass of the B quark candidate in the opposite-sign lepton pair
channel, using the invariant mass of the dilepton and b jet in simulated events.

4.4 Multilepton channel

Events in this channel must have at least three leptons, consisting of electrons, muons, or tau
leptons decaying into fully hadronic states (τh). The highest pT (leading) electron or muon is
required to have pT > 20 GeV and the subleading leptons are required to have pT > 10 GeV.
The pT selection criteria are chosen such that the triggers are fully efficient on these events.

We sort multilepton events into exclusive categories based on the number of leptons, lepton
flavor, and relative charges, as well as the kinematic quantity ST. First, we separate events
containing hadronically decaying tau leptons, as their reconstruction is less efficient and this
results in lower-purity categories.

Next, we classify each event in terms of the maximum number of opposite-sign and same-
flavor (OSSF) lepton pairs that can be made by using each lepton only once. For example, both
µ+µ−µ− and µ+µ−e− contain only one pair of OSSF leptons and are denoted OSSF1, µ+µ+e−

contains no such OSSF pair and is denoted OSSF0, while µ+µ−e+e− contains two such pairs
and is denoted OSSF2. Thus orthogonal categories of events are defined that contain 0, 1, or
2 OSSF lepton pairs. These categories are further divided, depending on whether or not a
lepton pair has M(``) in the range 75–105 GeV, consistent with a Z boson decay. Same-flavor
dilepton pairs consistent with low-mass resonances are excluded from the search region with a
requirement of M(``) > 12 GeV.

4.5 All-hadronic channel

The final channel contributing to the search for B quarks includes events reconstructed in an
all-hadronic topology, to increase sensitivity to the bH decay mode of the B vectorlike quark.
The search in this channel is designed for Higgs bosons decaying to a pair of b quarks. Because
of the high mass of the B quark, the Higgs boson is expected to be highly Lorentz boosted;
consequently the b quarks from the Higgs boson decay have a small angular separation. To re-
construct this signature, jet substructure algorithms are used. The Higgs boson is reconstructed
using a single CA8 jet. This jet is required to have pT > 300 GeV. The pruned jet mass is re-
quired to be in the range 90 < M(jet) < 140 GeV, to be consistent with the Higgs boson mass.
The N-subjettiness observables τ2 and τ1 [56] are used to further increase the purity of events
containing the two-prong decay of the Higgs boson in the H → bb decay mode. We require
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the condition τ2/τ1 < 0.5 to ensure that jets containing two distinct deposits of energy (subjets)
are selected as the H → bb candidates. Finally, the two identified subjets are required to be
individually b tagged using the CSV algorithm. Jets satisfying all of these criteria are known as
H-tagged jets. At least one reconstructed H-tagged jet is required for the final event selection.

Events are also required to have at least one additional b-tagged jet, to reconstruct the b quark
originating directly from the B quark decay. Events are categorized according to the number
of b-tagged jets: exactly one or at least two. To further reduce background contributions to the
event selection, a requirement is made on HT, defined for this channel as the scalar pT sum of
all AK5 jets with pT above 50 GeV. A requirement of HT > 950 GeV maintains a high signal
sensitivity while eliminating most of the multijet background.

5 Estimation of backgrounds
In this section we describe the variety of the methods used to estimate the background contribu-
tions for each of the channels contributing to the search. Detailed descriptions of the systematic
uncertainties applied to these methods, and shown in the figures presented here, can be found
in Sec. 6.

5.1 Lepton+jets channel

The dominant background contribution to the lepton+jets analysis is SM top quark pair pro-
duction, accounting for 77% of the expected background yield. Other processes also contribute,
including W/Z+jets, single top quark, diboson, and tt plus vector boson production, which to-
gether account for 17% of the expected background yield. The electroweak backgrounds are
taken from simulation. The remaining contribution to the background estimation is due to
multijet events. To model and estimate the contribution from these processes, control samples
in data are used. The ST shape is taken from a multijet-enriched region defined by the selection
of nonisolated leptons, or in the case of electrons, those failing the identification criteria. The
ST shapes from nonisolated leptons and isolated leptons were compared for several kinematic
selections in both channels and were found to be consistent. The normalization is obtained
by fitting the ET/ distribution in data individually in the 0, 1, and ≥ 2 boson categories. The
electroweak backgrounds are constrained to their expected cross sections and allowed to float
within uncertainties, while the multijet normalization is allowed to float freely in these fits.

Events are categorized based on the flavor of the identified lepton, as well as the number of
identified heavy-boson-tagged jets (V tags), including 0, 1, and ≥2. Figure 3 shows the ST
distributions for these categories, which are used for signal discrimination in this channel.

5.2 Same-sign lepton pair channel

The background contributions for the dilepton channel with same-sign leptons are divided
into distinct categories. The first category includes events with two prompt leptons having
the same charge. This category of events represents an irreducible background composed of
various SM processes, including ttW, ttZ, diboson, and triboson production. These background
contributions are modeled using simulated events.

A second category of background events arises when the charge of one of the leptons from
an oppositely charged pair is mismeasured, which happens most frequently in the same-sign
ee channel. To model this contribution, the charge misidentification rate is measured using
a control sample enhanced in Z+jets and tt events having two leptons in the final state. The
charge misidentification rate is extracted from the ratio of the number of events in this selection
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Figure 3: The ST distributions in the 0, 1, and ≥ 2 V-tag categories in the electron+jets channel
(left) and muon+jets channel (right). The uncertainty bands shown include statistical and all
systematic uncertainties, added in quadrature for each single bin. The horizontal bars on the
data points indicate the bin width. The difference between the observed and expected events
divided by the total statistical and systematic uncertainty of the background prediction (pull)
is shown for each bin in the lower panels.
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having same-sign lepton pairs to the number of events having those of opposite sign. This
contribution to the background model is then normalized by selecting opposite-sign lepton
pairs in the signal region and multiplying by this charge misidentification rate.

Finally, there can be events passing the selection containing either one or two nonprompt lep-
tons that pass the analysis lepton criteria. To estimate this background contribution a looser
lepton selection is applied, where the isolation requirement is relaxed for electrons; the iso-
lation, impact parameters, and track quality requirements are relaxed for muons. Leptons
passing these relaxed criteria are known as “loose” leptons, while those passing the signal
region selection are known as “tight” leptons. Using data events, misidentification rates for
nonprompt leptons to be reconstructed as tight leptons are measured ( fi, where i is 1 for the
leading and 2 for the subleading nonprompt lepton), along with the rates for prompt leptons
to be reconstructed as tight leptons (pi, where i is the index of the prompt lepton in this case).
Using these loosened selection criteria, the expected yields for events containing 0, 1, or 2 non-
prompt leptons (N f f , Np f / f p, Npp, respectively, where the subscript f refers to misidentified
leptons) can be computed by using the observed numbers of events containing 0, 1, or 2 loose
leptons (NTT, NTL/LT, NLL, respectively), according to the relation shown in Eq. (1):(

Npp Np f N f p N f f
)
=
(

NLL NTL NLT NTT
)

×


(1− p1)(1− p2) p1(1− p2) (1− p1)p2 p1 p2
(1− p1)(1− f2) p1(1− f2) (1− p1) f2 p1 f2
(1− f1)(1− p2) f1(1− p2) (1− f1)p2 f1 p2
(1− f1)(1− f2) f1(1− f2) (1− f1) f2 f1 f2


−1

. (1)

After using this method to estimate the background from the contributions containing non-
prompt leptons, the ST distribution is used to discriminate signal events from background.
The ST distributions for the dielectron, dimuon, and electron-muon channels are shown in Fig.
4.

5.3 Opposite-sign lepton pair channel

The main background in the opposite-sign dilepton channel is from the inclusive Z+jets pro-
cess (93%), with the remaining fraction due to tt+jets and diboson processes. Instead of using
simulated events, control samples in data are used to predict the normalization and shape of
the M(``b) spectrum of the background. The background is estimated from data using an
ABCD method to predict the bZ invariant mass distribution M(``b) in the signal region, la-
beled B, using control regions A, C, and D. The classification of the events into region A, B, C,
or D is made using event selection variables that are largely uncorrelated for the background
samples. The two variables chosen are the number of jets, Njets, and the b-tagging discrimina-
tor of the highest pT jet in the event. With an identified Z boson decaying leptonically, there
will be at least two jets expected in signal events, providing discrimination power against SM
background processes.

The selections used are (i) either Njets = 1 or Njets > 1 and (ii) events with the leading jet
either passing or failing the b-tagging discriminator threshold (>0.679). These selections di-
vide the Njets vs. b-tagging discriminator plane into the four regions shown in Fig. 5. The
signal contribution outside the signal region B was found to be negligible using simulated
event samples. Under the hypothesis of complete noncorrelation between Njets and the b-
tagging discriminator, the number of background events in the signal region would be given
by NB = NA × ND/NC, where NX is the number of events in the corresponding region. How-
ever, residual correlation between the two variables is present and must be taken into account
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Figure 4: The ST distributions used for signal discrimination in the same-sign dilepton channel.
The distribution is shown for the three dilepton categories used: dielectron (top left), dimuon
(top right), and electron-muon (bottom). The horizontal bars on the data points indicate the bin
width. The difference between the observed and expected events divided by the total statistical
and systematic uncertainty of the background prediction (pull) is shown for each bin in the
lower panels.



12 5 Estimation of backgrounds

jetsN
1 2 3 4 5 6

C
SV

 d
is

cr
im

in
at

or
 v

al
ue

0

0.2

0.4

0.6

0.8

1

A

B

C

D

I

J

K

L

 (8 TeV)-119.7 fb

CMS
-e+ e→Z

Data

jetsN
1 2 3 4 5 6

C
SV

 d
is

cr
im

in
at

or
 v

al
ue

0

0.2

0.4

0.6

0.8

1

A

B

C

D

I

J

K

L

 (8 TeV)-119.7 fb

CMS
-µ+µ →Z

Data

Figure 5: The event distribution in the plane of Njets vs the b-tagging discriminator value, used
to define the regions A, B, C, and D for the opposite-sign dilepton Z → e+e− (left) and Z →
µ+µ− (right) channels. The region B is the signal region while the others constitute the control
regions. The regions I, J, K, and L are used for estimation of systematic uncertainties. All other
selection criteria used to select the B quark candidates have been applied. The area of each bar
is proportional to the number of events in a given bin of the distribution of Njets vs b-tagging
discriminator.

in the background estimation procedure. The correlation is measured from data using an alter-
native set of control regions defined using the following criteria: (i) Njets = 1 or Njets > 1 and
(ii) 0.244 < b-tagging discriminator < 0.679 or b-tagging discriminator < 0.244 for the leading
jet. This classification divides the Njets vs the b-tagging discriminator plane into four regions,
labeled I, J, K, and L, as shown in Fig. 5. These four regions are completely contained within
the previously defined regions A and C. The ratio C = NJ NK/NI NL is equal to 1 if Njets and the
b-tagging discriminator variables are perfectly uncorrelated, and is used to quantify the degree
of correlation between the two. The number of background events, taking into account the
correlations, is given by NB C. The values of C were measured to be 1.29± 0.08 for Z → e+e−

and 1.38± 0.07 for the Z → µ+µ− channels, where the uncertainties are statistical and related
to the sample sizes in the regions I, J, K, and L. These factors are significantly different from
unity, implying some degree of correlation between Njets and the b-tagging discriminator. Clo-
sure tests were performed with simulated samples, as well as with data control samples with
selections orthogonal to those for the regions described above. The values of the correlation
factors obtained were consistent within uncertainties and stable with respect to the variation of
the b-tagging discriminator values within ±10%.

While the above procedure is used to predict the total number of background events, the shape
of the M(``b) background distribution is assumed to be the same in the signal region and the
region A. This assumption is justified by examining the M(``b) distributions in the signal
region and in region A, using simulated events. The shapes obtained are consistent within the
uncertainties in each. The total event yields in data and the estimated background are given
in Table 3. The uncertainty in this background estimation is given by a combination of the
statistical and systematic sources described in Sec. 6.

The expected yields for the signal with different B quark masses and two different values of the
branching fraction, 100% and 50%, for B → bZ are given in Table 4. Since we require exactly
one opposite-charge lepton pair, the probability of identifying a B quark does not depend on
the decay of the other B quark. Figure 6 shows the mass spectra of the reconstructed B quark
candidates, and the estimated background. The expected B quark signals, for M(B) = 450 and
700 GeV, are also shown. The error bars on the expected background are due to the statistical
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Table 3: Expected background yields and observed number of events in data in the opposite-
sign dilepton channel. The background is obtained from data. The background uncertainties
include both statistical and systematic components.

Z→ e+e− Z→ µ+µ−

Expected background 379± 70 534± 79
Observed events 334 542

Table 4: Expected signal event yields in the opposite-sign dilepton channel, shown for B quark
masses M(B) from 450 to 800 GeV and for two values of the branching fraction.

B(B→ bZ) = 100% B(B→ bZ) = 50%
M(B) [GeV] Z→ e+e− Z→ µ+µ− Z→ e+e− Z→ µ+µ−

450 214±13 336±16 102±4 162±5
500 122±7 209±9 56±2 94±3
550 76±4 114±5 33±1 54±2
600 36±2 66±3 17.6±0.7 30.8±0.9
650 23±1 41±2 11.0±0.4 19.5±0.6
700 14.1±0.7 25.9±1.0 6.5±0.2 12.0±0.3
750 7.6±0.4 15.5±0.6 3.6±0.1 7.4±0.2
800 4.8±0.3 9.9±0.4 2.2±0.1 4.6±0.1
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Figure 6: The invariant mass of reconstructed B quark candidates in the opposite-sign dilepton
Z → e+e− (left) and Z → µ+µ− (right) channels. The estimated background is shown by the
solid line, along with the total uncertainty (hatched area). The last bin of the histograms con-
tains all events with M(``b) > 1000 GeV. The signal contribution is shown for two B quark
masses. The difference between the observed and expected events divided by the total statisti-
cal and systematic uncertainty of the background prediction (pull) is shown for each bin in the
lower panels.

uncertainties as well as the uncertainty from the background estimation method. The over-
all normalization of the background agrees with the observed number of events. The M(``b)
distributions in both the Z→ e+e− and the Z→ µ+µ− channels show some discrepancies be-
tween data and expectation in a few bins, caused by a flavor dependence in the reconstructed
M(``j) distribution observed in Z+jets events. The control region A is more enriched in light
quark flavors than the signal region B, leading to the observed discrepancy. A systematic un-
certainty is applied to cover this effect, based on the shape differences observed between the
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control regions I and J in data. In simulation, these regions were found to have relative flavor
content similar to the regions A and B.

5.4 Multilepton channel

In multilepton channels, the level of the SM background contribution varies considerably across
event categories. The categories with hadronic tau decays or OSSF lepton pairs suffer from
larger background contributions than the others. Therefore, we improve sensitivity to new
physics by separating categories with low and high background contributions. We categorize
events with three leptons separately from those with four or more leptons. Events with identi-
fied b jets, having higher background from tt events, are classified separately.

We consider backgrounds from rare processes such as ttW, ttZ, tbZ, where simulated events
are used. The main SM background sources in multilepton+jet events include dilepton pro-
cesses such as Z+jets, VV+jets, and tt+jets production with a misidentified lepton that passes
selection criteria, and processes containing two leptons and an additional off-shell photon that
undergoes a conversion, giving another reconstructed lepton. The above backgrounds are esti-
mated using simulated events, except for the Z+jets and W+W−+jets backgrounds, which are
estimated from data, as described below.

Backgrounds from tt enriched processes are estimated from simulation, after validation in
single-lepton and dilepton control regions. In the single-lepton control region, exactly one iso-
lated muon with pT ≥ 30 GeV, at least three jets (one of which is b tagged), and ST ≥ 300 GeV
are required. The dilepton control region requires an eµ combination and is used to compare
kinematic variables such as ST (see Fig. 7), HT, and ET/ between data and simulation. In this
channel, HT is defined as the scalar sum of selected jet pT values. Additionally, the distribu-
tion of the number of jets is reweighted to match data for both the single-lepton and dilepton
control regions.

Standard model WZ+jets and ZZ+jets production where both bosons decay leptonically can
produce three prompt and isolated leptons with large HT and ET/ . This class of background
is irreducible since its final state cannot be distinguished from the signal scenario. Simulated
events are used to model this background contribution. We scale the simulation to match the
measured lepton efficiencies and ET/ resolution. We verify the simulation by comparing to
a data sample enriched in WZ production, the dominant contribution to trilepton signatures
from VV+jets. The WZ events are selected by requiring three leptons, 50 < ET/ < 100 GeV, a
Z boson candidate with M(`+`−) in the range 75–105 GeV, and HT < 200 GeV. We apply a
constant scale factor of 1.14 to the WZ simulation, chosen to normalize the simulation to data
in the region 50 < ET/ < 100 GeV for the observed transverse mass of the W boson, shown in
Fig. 7.

Off-shell photon conversions can produce a lepton with very low pT that will not pass the selec-
tion criteria or will not be reconstructed. Drell-Yan processes with such conversions can lead to
a significant background for the three-lepton category. A measurement of the extrapolation fac-
tors for photon conversions to electrons or muons is performed using data events. We measure
the extrapolation factors in a control region devoid of signal events, with low HT and ET/ . The
ratio of the number of events with |M(`+`−`′±)−M(Z)| < 15 GeV or |M(`+`−`±)−M(Z)| <
15 GeV to the number of events with |M(`+`−γ)−M(Z)| < 15 GeV defines the extrapolation
factor, which is 2.1± 0.3% (0.7 ± 0.1%) for electrons (muons). The measured extrapolation fac-
tors are then used to estimate the background in the signal region from the observed number of
`+`−γ events in the search region. The lepton selections of this channel strongly reject external
conversions, where an on-shell photon converts to an `+`− pair in the material of the detector.
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Figure 7: The transverse mass MT distribution of events in a control sample of the multilepton
analysis, enriched in WZ by requiring an OSSF pair with M(``) in the Z boson mass window
and 50 < ET/ < 100 GeV (left). The ST distribution for events containing an opposite-sign
eµ pair in the tt control region of the multilepton analysis (right). Uncertainties include both
statistical and systematic contributions. The difference between the observed and expected
events divided by the total statistical and systematic uncertainty of the background prediction
(pull) is shown for each bin in the lower panels.

We use data to estimate background contributions from processes with two genuine leptons
and one or more misidentified leptons such as Z(``)+jets and W+W−(``+ ET/ )+jets. In order
to estimate background from jets producing misidentified light-lepton candidates that appear
to be prompt and isolated, we use data events containing two reconstructed leptons and an
additional isolated track. This contribution is then scaled by an extrapolation factor relating
isolated tracks to lepton candidates from jets. This light-lepton extrapolation factor is mea-
sured in control samples where no signal is expected, such as in the low-ET/ or low-HT regions.
We measure the extrapolation factor between isolated tracks and electron (muon) candidates
to be 0.7± 0.2% (0.6± 0.2%), using a data sample dominated by Z+jets. The contribution from
backgrounds containing a misidentified third lepton is determined by multiplying the number
of events containing isolated tracks in the sample with two leptons by the light-lepton extrapo-
lation factor. Similarly, we estimate misidentified background contributions for the four-lepton
selection by examining two-lepton events with two additional isolated tracks. Since the light-
lepton misidentification rates vary with the b quark content across the control samples, the rate
is determined as a function of the impact parameter distribution of nonisolated tracks in data.

Unlike electrons and muons, hadronically decaying tau leptons cannot be easily identified
without an isolation requirement. Therefore, the dominant background in tau identification is
from jets reconstructed as τh candidates. To measure this contribution, we loosen the isolation
requirements on reconstructed tau leptons to get an extrapolation factor between nonisolated
taus and isolated taus. We extrapolate the sideband region, 6 < I < 15 GeV, to a signal region,
I < 2 GeV, where I is defined as the amount of energy reconstructed in a cone of ∆R < 0.3
around the tau lepton candidate, excluding the tau lepton candidate itself. We measure the
extrapolation factor for jets reconstructed as taus, defined as the ratio of the number of tau
candidates in the signal region to the number in the sideband region, to be 20± 6%. The ratio
is applied to a selection of events in a sideband region containing two light leptons and a tau
lepton to estimate the contribution from misidentified τh candidates.

Events are divided into categories based on the reconstructed objects, using the background
estimates described above. These categories include the number of identified leptons, number
of identified tau leptons, number of b-tagged jets, and number of Z bosons reconstructed with
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an OSSF lepton pair. Figure 8 shows the ST distribution for two of these event categories.
To further discriminate the B quark signal from SM background events, the ST distribution is
divided into several individual bins: 0–0.3, 0.3–0.6, 0.6–1.0, 1.0–1.5, 1.5–2.0, and >2.0 TeV. These
bins are chosen such that the SM backgrounds fall mainly in the lowest two ST bins, while the
signal events occupy the higher ST bins. Each of these bins is used as the basis for a counting
experiment in the final analysis; no further shape discrimination is used within an individual
ST bin.
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Figure 8: Distributions of ST for two event categorizations in the multilepton channel: (top)
three leptons, no tau leptons, at least one b-tagged jet, and no reconstructed Z boson candi-
date; (bottom) four leptons, one tau lepton, no b-tagged jets, and one reconstructed Z boson
candidate. Uncertainties include both statistical and systematic contributions. The data-driven
contribution includes contributions from two genuine leptons and one or more misidentified
leptons. The horizontal bars on the data points indicate the bin width.

5.5 All-hadronic channel

The dominant background for the all-hadronic channel comes from SM multijet production.
The smaller tt+jets background is obtained from simulation, with corrections to account for
differences between data and simulation. The nontop multijet background is obtained from
the data. For the multijet background, an ABCD method is used to categorize events into four
different categories.

First, events are sorted into categories with H-tagged jets or “anti-H-tagged” jets. Events may
contain H-tagged jets, as described in Sec. 4.5. For events not containing H-tagged jets, the
criteria of anti-H-tagged jets are defined as follows. Pruned CA8 jets are selected such that
both the pruned subjets have the b-tagging discriminator variable between 0.244 and 0.679.
All other criteria are the same as those for the H-tagged jets. This sideband of the b-tagging
discriminator variable selects jets enriched in backgrounds with a negligible contribution from
signal events.

Next, the pruned mass of the leading H-tagged jet or anti-H-tagged jet defines the second
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selection. Higgs boson candidates, i.e., H-tagged jets with 90 < Mpruned < 140 GeV form the
first category of events. This is the signal region, labeled as B. Events with Mpruned < 80 GeV
form the second category, labeled as A. Likewise anti-H-tagged events are categorized into
the C and D categories depending on whether the leading anti-H-tagged jet satisfies 90 <
Mpruned < 140 GeV or Mpruned < 80 GeV, respectively.

Since the event classification variables are uncorrelated, the relation NB = NA NC/ND gives the
background yields NB in the signal region B based on the yields NA,C,D in the sideband regions
A, C, or D, respectively.

Closure tests of the background estimation method were performed separately using simula-
tion and data, with a control sample consisting of events with no b jets. For the b-jet veto,
events with AK5 jets with pT > 30 GeV and having a b-tagging discriminant value greater than
0.244 are rejected. The b-jet veto criteria applied are stricter than the selection criteria of b jets
used for selecting signal events, thus the control sample is orthogonal to the signal sample. In
this case, the region B still contains Higgs candidates and the rest of the sidebands A, C, and D
are as defined above, but without any b jet.

In the b-jet-vetoed sample, two separate event categories are defined: one with exactly one
AK5 jet with pT > 80 GeV, and the other with ≥2 AK5 jets with pT > 80 GeV. In both the
simulated sample and in the data, the estimated and actual numbers of background events in
the signal region B are found to be in agreement. Furthermore, the distributions of HT for the
predicted and the actual background are consistent within measurement uncertainties. The
predicted and actual background yields in the data control sample are given in Table 5, while
the agreement in the predicted and actual background HT distributions is shown in Fig. 9.

Table 5: Closure test of the background estimation method for the all-hadronic channel, in the
data using a control sample with no b jets. The background is estimated from the sideband
regions A, C, and D. The product NA (NC/ND) is compared with the actual background ob-
served in region B in the data. The uncertainties correspond to the statistical uncertainties from
limited sample sizes. The agreement obtained is within the uncertainties.

Yields in 1 jet category Yields in ≥2 jet category
Background estimation 2059± 70 2456± 79
True background 2087 2449

After closure tests are performed, the ABCD background estimation method is applied to the
signal region, and the estimated backgrounds in the 1 b jet, the ≥2 b jets, and combined cate-
gories are shown in Table 6. The background estimated in this way is in agreement with the
observed number of events. The HT distributions in the categories with 1 and ≥2 b jets are
shown in Fig. 10 and show agreement in both shape and normalization with the observed HT
distributions. The uncertainty in the background estimation is propagated from the statistical
uncertainties of the samples in the sideband regions and also includes the statistical uncertain-
ties in the control samples. No additional systematic uncertainty has been assigned. Upper
limits on the BB cross section are derived using these distributions.

6 Systematic uncertainties
Several sources of systematic uncertainty are considered when testing for the presence of B
quark signal events. These uncertainties include those associated with detector measurements
such as jet and lepton reconstruction and the luminosity determination, as well as theoretical
uncertainties in the cross section due to the choice of renormalization and factorization scales.
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Figure 9: Background closure test in the data control samples of the all-hadronic analysis with
no b jets and exactly one AK5 jet with pT > 80 GeV (left) and with ≥2 AK5 jets with pT >
80 GeV (right). The red data points represent the actual background as derived from data. The
blue dashed line represents the predicted background, with the hatched area depicting the
corresponding uncertainty. The difference between the observed and predicted background
divided by the total uncertainty in the background prediction (pull) is shown for each bin in
the lower panels.

Table 6: Estimated background and the event yields in the data for the 1 b jet, ≥2 b jets, and
combined event categories in the all-hadronic channel. The uncertainties in the background
yields are obtained by propagating the statistical uncertainties from the sideband samples.

Yields after Yields in 1 b-tagged Yields in ≥2 b-tagged
full selection category category

Estimated background 872+49
−55 825+47

−52 46+4
−11

Data 903 860 43

Finally, there are uncertainties specific to individual analyses, such as those arising from back-
ground estimation methods using data. In this section we detail the sources of systematic
uncertainty affecting the various analyses of individual channels of which the results are then
combined for the overall result. Table 7 summarizes these sources.

The jet energy scale and the jet energy resolution uncertainties are taken as fully correlated
between each of the individual channels. These uncertainties are associated with the calibra-
tion of the jet energy response in the detector readout. This calibration procedure, which is
dependent on jet pT and pseudorapidity, leads to an approximately 10% uncertainty in the nor-
malization of event yields. This uncertainty is applied on an event-by-event basis, resulting in
an additional shape effect. As we observe a difference between the simulated jet energy resolu-
tion and the jet energy resolution measured in data, we smear the jet energies in simulation to
reflect the energy resolution observed in data. This procedure introduces a small uncertainty
in the shape of jet kinematic properties in simulated events, including a normalization effect of
less than 5%.

In addition to the uncertainty in the measurement of integrated luminosity of 2.6% [58], several
scale factors (SF) are applied to simulated events to reflect the differences with data in recon-
struction efficiencies for various objects used in the event selections. The uncertainties in these
SF measurements are applied to the relevant events. These uncertainties vary for individual
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Table 7: Nuisance parameters applied to the statistical combination. They are listed separately
for each individual channel, and the X symbol is used if they are applied to that given chan-
nel. If a nuisance parameter is taken as correlated between channels, the X� symbol is shown.
In some cases, several systematic uncertainties are combined into a single nuisance parameter
(for example, in the case of combined lepton categories); in such instances, the • symbol is used
to denote the presence of a systematic uncertainty combined with others in a distinct nuisance
parameter. The∼ symbol has been used to denote systematic uncertainties that have negligible
effects on the analysis results. The “Combined systematic uncertainty” entry represents a con-
tribution composed of other sources listed in the table, applied as a single nuisance parameter
during limit extraction.

Lepton+jets OS dilepton SS dilepton Multilepton All hadronic
Jet energy scale X� X� X� X� X�
Jet energy resolution X� X� X� ∼ X�
V-tag SF X X
tt matching scale X •
tt renormalization/factorization scales X •
b-tagging SF X� • X� •
Light-jet-tagging SF • •
Integrated luminosity X� X� X� X� X�
Lepton reconstruction X X X •
tt cross section X� X�
QCD normalization X
Trigger efficiency X X X • X
Pileup uncertainty ∼ X� X� ∼ X�
Background component from data X X •
PDF uncertainty ∼ ∼ X • X
ET/ resolution X
Initial-state radiation X
Combined systematic uncertainty X X X X
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Figure 10: The HT distributions in the 1 b jet (left) and the ≥ 2 b jets event categories (right)
for the all-hadronic analysis. The blue solid line depicts the estimated background, with the
hatched area showing the measured uncertainty in the background. The signal contributions
for two B quark mass points, 500 and 800 GeV, are overlaid. The bin width is chosen to have a
statistically significant number of events in every bin. The difference between the data and the
estimated background divided by the total uncertainty in the background (pull) is shown for
each bin in the lower panels.

channels, but they include SF uncertainties for the electron and muon identification and effi-
ciency values, typically 1%-2%, as well as SF uncertainties for the b-tagging algorithms used,
at approximately 5%, and finally specific SF uncertainties for the identification of hadronically
decaying high-pT W, Z, or Higgs bosons, which can be up to 10% depending on the algorithm
used, resulting from the number of events used to measure the appropriate SFs.

For simulated tt events, several specific systematic uncertainties are applied to cover differ-
ences in generation parameters. The renormalization and factorization scales are varied up
and down coherently by a factor of 2 to produce a shape uncertainty for the simulated tt events.
This shape template has a normalization effect of roughly 20%, in addition to the shape com-
ponent. The scale used for the parton matching in PYTHIA is changed to measure an additional
systematic uncertainty. This component is smaller, and is about a 10% effect. Finally, an un-
certainty of 15% is applied resulting from the measurement of the tt cross section [59]. This is
applied as purely a normalization effect. These uncertainties only apply to simulated tt events.

We also include systematic uncertainties associated with the choice of the CTEQ6L1 PDF set.
These are estimated by applying weighting factors to vary the elements of the eigenvector used
in the PDF simulation. The weights are combined in quadrature to compute a total systematic
uncertainty in the shape and normalization of simulated tt and signal events due to PDF effects.

Finally, there are several uncertainties specific to individual channels. In some cases, all rele-
vant uncertainties are combined into a single nuisance parameter affecting the normalization,
for example for the multilepton channels, which include several counting experiments without
shape effects. Other uncertainties include those for background estimates from data, and are
detailed in the corresponding previous sections.

For the statistical combination, we correlate the systematic uncertainties that arise from the
same physical effect or phenomenon, such as the jet energy scale, luminosity measurement, or
tt cross section. These correlations allow us to better constrain the uncertainties by using inde-
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pendent information from various channels. This procedure further improves the sensitivity of
the combination.

7 Combination strategy
Each of the five channels has a distinct method to discriminate the B quark signal from the
expected background contribution. In the case of the lepton+jets channel, the ST distribution
is used (Fig. 3), with different categories corresponding to unique numbers of merged vector
bosons reconstructed in the final state. For the opposite-sign dilepton channel, the B quark can-
didate mass is reconstructed, and its distribution is used to discriminate the signal (Fig. 6). In
the case of the same-sign dilepton and multilepton channels, for each of the various event cate-
gorizations, the ST variable is used for signal discrimination, and each bin of the ST distribution
(Figs. 4 and 8) is treated as an independent counting experiment. The results are combined to
produce a cross section limit. Finally, the all-hadronic channel uses the HT distribution sepa-
rately for single- and double-b-tagged events (Fig. 10).

We combine all signal bins of the five individual analysis channels for the result. A joint like-
lihood maximization is performed, simultaneously using the background and signal expecta-
tions in each bin, to extract the final results using a Bayesian approach. We scan over the entire
parameter space of the B quark branching fractions in steps of 0.1 for each possible B quark
decay mode.

Nuisance parameters are included in the joint likelihood maximization to account for the vari-
ous systematic uncertainties described above. For those uncertainties that arise from the same
physical or detector effect and are shared between individual channels, the corresponding nui-
sance parameters are taken to be 100% correlated in the fitting procedure. All nuisance pa-
rameters describing systematic uncertainties are implemented either with Gaussian priors (for
normalization effects) or through template interpolation (for shape changing effects). The pa-
rameter governing the signal normalization is implemented with a uniform prior distribution.

No significant excess above SM expectations is observed. We set limits on the BB production
cross section using the combination of all individual channels to further improve the sensitivity
to this process.

8 Results
Since the vectorlike B quark can decay in three possible topologies (tW, bZ, and bH), we scan
over the entire possible parameter space of decays, using steps of 10% in each branching frac-
tion. This results in 66 combinations of branching fractions, each with its own cross section
limits as a function of the B quark mass. The results are shown in the form of limits on the B
quark pair-production cross section and are quoted at 95% CL.

The various channels have targeted different final-state topologies, and thus they will con-
tribute to separate regions of the parameter space of decay possibilities. For example, the lep-
ton+jets channel is sensitive to the tW decay mode but is less sensitive to bH and bZ final states.
The opposite-sign dilepton channel is sensitive to the bZ decay but less so to bH or tW. The
relative contributions of each channel in the case of a 100% branching fraction for a specific
decay mode are shown in Fig. 11. In some cases, a channel does not have sensitivity to a certain
decay topology and is not included at all in the corresponding result.

The expected and observed exclusion limits for the B quark are determined for each one of
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Figure 11: Comparison of individual channel limit results with those of the combination, for
the expected limits only. Shown are the limit results, at 95% CL, for the three corners of the
triangular parameter space, for 100% branching fractions for B to tW (left), bZ (middle), and bH
(right). The same-sign and opposite-sign channels are denoted by “SS” and “OS”, respectively.
The step observed in the bZ limit curve is due to two analysis channels (multilepton and OS
dilepton) that do not contribute to the combination for B quark masses above 800 GeV.

the 66 combinations of branching fractions. To visualize these results, we plot the B quark
mass exclusion limits on a triangular parameter space, as shown in Fig. 12. We also list the
cross section limits for different branching fractions and B quark masses in Table 8. Further
details, including event yields for the various channels entering the combination, are available
on HepData [60].

The expected and observed limits agree within the uncertainties. For the branching frac-
tion B → tW of 100%, we expect to exclude M(B) < 890 GeV and observe an exclusion of
M(B) < 880 GeV. This is the combination with the best sensitivity to B pair production. The
remaining results are summarized in Table 9. Finally, the cross section limits as a function of B
mass are shown graphically in Fig. 13 for the exclusive decay modes to tW, bZ, and bH. The
multilepton and OS dilepton channels do not contribute to the combination for B quark masses
above 800 GeV. This restriction does not affect the mass exclusion limits obtained from the
combined result.

9 Summary
A search for pair production of the B quark with vectorlike couplings to W, Z, and Higgs
bosons has been performed, using data recorded by the CMS experiment from proton-proton
collisions at a center-of-mass energy of 8 TeV at the CERN LHC in 2012. This hypothesized
particle could decay in one of three ways: to tW, bZ, or bH. The search is performed using
five distinct topologies to maintain sensitivity to each of these decay modes. The topologies
included in this search are the lepton+jets final state, both the opposite-sign and same-sign
lepton pair final states, the three or more leptons final state, and finally the all-hadronic final
state targeting Higgs boson decays to pairs of bottom quarks.

No evidence for the production of B quarks in any topology is found, and limits are set on
the B quark-antiquark pair-production cross section. A scan over possible combinations of the
branching fractions to tW, bZ, and bH is performed. For a B quark decaying with a branching
fraction of 100% to bH, B quarks with masses up to 900 GeV are excluded, at 95% confidence
level. This branching fraction corresponds to the highest excluded B quark mass in this scan.
Observed exclusion limit results from a scan of all possible branching fractions range from a
minimum of 740 GeV to 900 GeV. The combination of these results provides the most stringent
exclusion limit to date for the existence of a vectorlike B quark.
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Table 8: Cross section limits for various combinations of branching fractions and B quark
masses. The expected cross section limits are given in the first row for each branching frac-
tion combination, along with their corresponding uncertainties. The observed cross section
limits are shown in the second row. All limits are given at 95% CL, and are shown in units of
pb.

B B B B quark mass [GeV]
(tW) (bH) (bZ) 500 600 700 800 900 1000
0.0 0.0 1.0 0.112+0.089

−0.042 0.066+0.041
−0.027 0.043+0.027

−0.016 0.030+0.020
−0.011 0.094+0.053

−0.036 0.065+0.036
−0.023

0.090 0.037 0.036 0.029 0.096 0.083
0.0 0.2 0.8 0.261+0.130

−0.115 0.097+0.060
−0.043 0.053+0.034

−0.025 0.033+0.023
−0.014 0.044+0.030

−0.016 0.032+0.020
−0.012

0.215 0.046 0.038 0.023 0.044 0.033
0.0 0.4 0.6 0.267+0.138

−0.114 0.107+0.065
−0.050 0.052+0.034

−0.025 0.030+0.022
−0.015 0.028+0.020

−0.011 0.020+0.012
−0.008

0.210 0.065 0.037 0.020 0.027 0.021
0.0 0.6 0.4 0.286+0.141

−0.141 0.107+0.067
−0.054 0.047+0.035

−0.024 0.026+0.023
−0.013 0.020+0.013

−0.009 0.014+0.009
−0.006

0.219 0.058 0.031 0.016 0.019 0.014
0.0 0.8 0.2 0.268+0.145

−0.146 0.101+0.070
−0.056 0.045+0.031

−0.024 0.022+0.014
−0.012 0.016+0.010

−0.007 0.011+0.008
−0.004

0.131 0.061 0.030 0.016 0.014 0.010
0.0 1.0 0.0 0.096+0.054

−0.037 0.057+0.029
−0.023 0.034+0.021

−0.015 0.020+0.014
−0.009 0.012+0.008

−0.005 0.008+0.007
−0.003

0.066 0.035 0.021 0.014 0.008 0.006
0.2 0.0 0.8 0.183+0.095

−0.084 0.073+0.049
−0.027 0.040+0.028

−0.016 0.028+0.018
−0.011 0.046+0.022

−0.015 0.036+0.015
−0.013

0.140 0.041 0.033 0.029 0.058 0.046
0.2 0.2 0.6 0.226+0.149

−0.101 0.087+0.067
−0.037 0.049+0.034

−0.020 0.032+0.023
−0.013 0.033+0.017

−0.013 0.024+0.012
−0.009

0.099 0.057 0.035 0.028 0.045 0.031
0.2 0.4 0.4 0.275+0.123

−0.125 0.097+0.061
−0.044 0.048+0.036

−0.023 0.027+0.022
−0.011 0.024+0.014

−0.010 0.018+0.010
−0.007

0.131 0.049 0.032 0.021 0.027 0.022
0.2 0.6 0.2 0.296+0.145

−0.131 0.091+0.064
−0.045 0.044+0.033

−0.022 0.025+0.018
−0.012 0.019+0.011

−0.008 0.014+0.007
−0.005

0.162 0.047 0.031 0.019 0.021 0.015
0.2 0.8 0.0 0.267+0.151

−0.139 0.084+0.064
−0.045 0.040+0.028

−0.019 0.022+0.017
−0.010 0.015+0.010

−0.006 0.010+0.007
−0.004

0.107 0.052 0.023 0.018 0.015 0.012
0.4 0.0 0.6 0.205+0.118

−0.091 0.071+0.045
−0.028 0.035+0.025

−0.014 0.023+0.014
−0.009 0.028+0.015

−0.009 0.022+0.011
−0.007

0.152 0.042 0.029 0.023 0.040 0.030
0.4 0.2 0.4 0.218+0.122

−0.094 0.079+0.046
−0.032 0.039+0.030

−0.015 0.026+0.017
−0.010 0.023+0.011

−0.008 0.018+0.009
−0.006

0.111 0.047 0.027 0.025 0.032 0.026
0.4 0.4 0.2 0.258+0.122

−0.105 0.086+0.046
−0.038 0.040+0.027

−0.019 0.023+0.016
−0.010 0.019+0.010

−0.006 0.015+0.007
−0.005

0.142 0.040 0.028 0.023 0.026 0.020
0.4 0.6 0.0 0.235+0.111

−0.102 0.087+0.052
−0.040 0.038+0.026

−0.018 0.023+0.015
−0.010 0.016+0.008

−0.006 0.012+0.006
−0.004

0.139 0.043 0.028 0.015 0.020 0.015
0.6 0.0 0.4 0.235+0.092

−0.097 0.068+0.039
−0.030 0.034+0.022

−0.014 0.019+0.011
−0.008 0.019+0.010

−0.006 0.016+0.007
−0.005

0.135 0.051 0.025 0.018 0.029 0.021
0.6 0.2 0.2 0.241+0.097

−0.095 0.067+0.045
−0.028 0.033+0.024

−0.015 0.019+0.013
−0.007 0.017+0.008

−0.006 0.014+0.006
−0.005

0.163 0.035 0.022 0.015 0.024 0.020
0.6 0.4 0.0 0.176+0.111

−0.079 0.064+0.051
−0.025 0.034+0.026

−0.015 0.019+0.012
−0.008 0.015+0.008

−0.005 0.012+0.006
−0.004

0.113 0.033 0.023 0.016 0.021 0.015
0.8 0.0 0.2 0.209+0.091

−0.095 0.057+0.030
−0.022 0.027+0.019

−0.011 0.016+0.010
−0.007 0.014+0.006

−0.005 0.012+0.006
−0.004

0.138 0.036 0.024 0.015 0.021 0.017
0.8 0.2 0.0 0.119+0.072

−0.049 0.050+0.035
−0.021 0.027+0.018

−0.011 0.017+0.011
−0.006 0.013+0.006

−0.004 0.011+0.005
−0.003

0.064 0.029 0.019 0.016 0.019 0.015
1.0 0.0 0.0 0.044+0.021

−0.015 0.033+0.022
−0.012 0.019+0.013

−0.007 0.013+0.008
−0.005 0.009+0.005

−0.003 0.009+0.004
−0.003

0.033 0.023 0.016 0.013 0.009 0.013
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Figure 12: Expected (left) and observed (right) limits for each combination of branching frac-
tions to tW, bZ, and bH obtained by the combination of channels. The color scale represents
the mass exclusion limit obtained at each point. The branching fraction for the B quark decay
to bZ can be obtained through the relation B(bZ) = 1−B(tW)−B(bH).

M(B) [GeV]
500 600 700 800 900 1000

) 
[p

b]
B

(Bσ
95

 %
 C

L 
lim

it 
on

 

-210

-110

1

10

Observed
Expected

 Exp.σ1 ±
 Exp.σ2 ±

)B(BσNNLO 

 (8 TeV)-119.7 fb

CMS
 tW 100%→B 

M(B) [GeV]
500 600 700 800 900 1000

) 
[p

b]
B

(Bσ
95

 %
 C

L 
lim

it 
on

 

-210

-110

1

10

Observed
Expected

 Exp.σ1 ±
 Exp.σ2 ±

)B(BσNNLO 

 (8 TeV)-119.7 fb

CMS
 bZ 100%→B 

M(B) [GeV]
500 600 700 800 900 1000

) 
[p

b]
B

(Bσ
95

 %
 C

L 
lim

it 
on

 

-210

-110

1

10

Observed
Expected

 Exp.σ1 ±
 Exp.σ2 ±

)B(BσNNLO 

 (8 TeV)-119.7 fb

CMS
 bH 100%→B 

Figure 13: Observed and expected cross section limit results as a function of B mass, for the
combination of all channels. The limit results are shown for exclusive branching fractions of B
to tW (left), bZ (middle), and bH (right). The step observed in the bZ limit curve is due to two
analysis channels (multilepton and OS dilepton) that do not contribute to the combination for
B quark masses above 800 GeV.
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Table 9: Expected and observed mass exclusion limits for the combined result, quoted at 95%
CL, for the topologies where the B quark decays exclusively in one of the possible modes.

95% CL M(B) exclusion limit [GeV]
Expected Observed

B→ tW 890 880
B→ bH 810 900
B→ bZ 740 750
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V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle,
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G. Abbiendia, C. Battilana2, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia ,b,
L. Brigliadoria ,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa ,b, F.R. Cavalloa, G. Codispotia ,b,
M. Cuffiania ,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa ,b, P. Giacomellia,
C. Grandia, L. Guiduccia ,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa ,b,
A. Perrottaa, A.M. Rossia ,b, T. Rovellia ,b, G.P. Sirolia ,b, N. Tosia ,b, R. Travaglinia ,b
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I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, J. Duarte Campderros, M. Fernandez,
G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras,
F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodrı́guez-Marrero, A. Ruiz-Jimeno,
L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia,
J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, G. Bianchi, P. Bloch, A. Bocci, A. Bonato,
C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi40, M. D’Alfonso,
D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck,
S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, T. du Pree, N. Dupont, A. Elliott-Peisert,
J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida,
S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente,
P. Janot, H. Kirschenmann, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço,
M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, A. Martelli, L. Masetti,
F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi,
H. Neugebauer, S. Orfanelli41, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petrucciani, A. Pfeiffer,
D. Piparo, A. Racz, G. Rolandi42, M. Rovere, M. Ruan, H. Sakulin, C. Schäfer, C. Schwick,
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