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Baryon number density perturbations offer a possible route to experimentally measure baryon
number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dy-
namical evolution of local and event-by-event fluctuations of baryon number density, flow velocity
and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-
fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynam-
ical fields with respect to the azimuthal angle, the radius in the transverse plane and rapidity. We
examine how the time evolution of linear perturbations depends on the equation of state as well as
on shear viscosity, bulk viscosity and heat conductivity for modes with different azimuthal, radial
and rapidity wave numbers. Finally we discuss how this information is accessible to experiments
in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in
high energy nuclear collisions.
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I. INTRODUCTION

One of the most important goals of the experimental program of high energy nuclear collisions is to determine the
transport and thermodynamical properties of QCD as a function of temperature T and baryon chemical potential µ.
During the past few decades, the experimental data measured at the Relativistic Heavy Ion Collider (RHIC) at the
Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN in Geneva, has shown collective
behavior of the QCD matter created after the collision of heavy nuclei at high energies [1–7]. The low momentum
region of the transverse hadron spectra and the two particle correlation functions are well described by relativistic
viscous fluid dynamics with a very small value of the shear viscosity over entropy ratio 1. These results have been
taken as evidence for the production of an almost perfect liquid, a strongly coupled quark gluon plasma.

The hydrodynamic modeling of heavy ion collisions solves on an event-by-event basis the relativistic fluid equations
corresponding to energy-momentum conservation laws together with the so called constitutive relations for the shear
viscous tensor and bulk pressure. Within this approach, little attention has been paid to the possible role of the
baryon density n and/or baryon chemical potential µ. At high energies, this is justified because n and µ are very
small, at least in the midrapidity region. However, interesting physics could be probed by investigating event-by-event
fluctuations in the local baryon number density.

Baryon number fluctuations have been mainly discussed in the context of heavy ion collisions at lower energy where
larger values of µ can be realized. Interesting features of the QCD phase diagram can emerge there [10]. Different
effective models have predicted the existence of a first-order phase boundary that separates hadronic matter from
the quark gluon plasma at larger values of the baryon chemical potential. This boundary comes to an end at some
critical values of the temperature Tc and baryon chemical potential µc. Right now there is no conclusive evidence for
the location of a critical point in the T − µ plane from lattice QCD calculations at finite baryon density [11].

On the other hand, in heavy ion collisions it has been proposed to study second and higher order cumulants
of particle multiplicity distributions as a function of the center of mass energy

√
s [12–31]. From thermodynamic

considerations, it is expected that these moments scale with the correlation length which is expected to become large
near the QCD critical point [16–18, 26, 28, 32]. Possible signs of the critical point have been measured at RHIC
but at present these do not provide a conclusive evidence [33–36]. If the expanding fireball of nuclear matter passes
through a critical region (close to a critical point), one can extract information about the equation of state and the
critical behavior of transport coefficients from the particle spectra formed at the freeze-out surface. It is important
to determine whether the possible signatures of the critical point can survive the entire evolution of the expanding
fireball.

In the fluid dynamic framework, different aspects of the evolution of the fireball can change the pattern expected
from purely thermodynamic considerations. Thermodynamic fluctuations are in principle part of a fluid dynamic
description, at least in an extended sense where one accounts also for noise. Fluctuations evolve in time and space
during the expansion of the fireball and thus, these are indeed effected by the equation of state and specially the
transport coefficients such as the viscosities and conductivities. Close to equilibrium, there is also a deep theoretical
connection between thermodynamic fluctuations in fluid dynamic fields and dissipative transport properties as stated
by the fluctuation-dissipation theorem; see, e. g., Refs. [37–39]. In the vicinity of the critical point, heat conductivity
κ as well as the shear and bulk viscosities η and ζ show critical behavior [40–43].

Besides genuine thermodynamic fluctuations (or noise), there is another possible source of fluctuations in the fluid
dynamic approach to heavy ion collisions. These are the fluctuations already present in the initial state when the
fluid dynamic treatment becomes valid. Their origin can be either the substructure of the colliding nuclei or the far-
from-equilibrium dynamics preceding a fluid dynamic regime. This kind of initial state perturbation is particularly
important for energy and/or entropy density. Fluctuations in the geometric distribution of nucleons within a nucleus
lead to initial density perturbations which - after a fluid dynamical evolution - determine the spectrum of harmonic
flow coefficients and, for example the form of the two-particle correlation function (“the ridge”) in heavy ion collisions.

In a very similar way to fluctuations in the initial energy density, one can also expect, for example from a Glauber-
type description of the initial state, initial fluctuations in the baryon number density. Indeed, baryon number density
carried by protons and neutrons is presumably not distributed homogeneously within a nucleus and fluctuates locally
and from event to event. In addition, the baryons and anti-baryons produced by pair production directly after the
collision are subject to some local and event-by-event fluctuations [44].

In order to discriminate the effects associated to the thermodynamic fluctuations from the initial state fluctuations,
it is necessary to understand their space-time evolution. In the present work we will concentrate mainly on the dynam-
ics of initial state fluctuations although parts of our formalism are relevant also for the evolution of thermodynamic

1 See Refs. [8, 9] for the recent developments in relativistic hydrodynamics.
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fluctuations. Initial state fluctuations are interesting on their own. For instance, the evolution of the initial pertur-
bations of energy density depends on the viscosities, in particular shear viscosity. In a similar way, the evolution of
baryon number density depends on heat conductivity (in the Landau frame one may see heat conductivity equivalently
as baryon number diffusion). If one has a theoretical understanding of initial state perturbations in baryon number
density and their fluid dynamic evolution, it is possible to study their consequences for particle spectra at freeze-out.
Provided possible signals are large enough to be seen within the constraints set by finite statistics, there could be a
possibility to constrain the heat conductivity of the quark gluon plasma from experimental data. This would be very
interesting for not only low energy collision experiments which aim at exploring the QCD phase diagram, but also at
RHIC and LHC energies where baryon number diffusion could be another characteristic of the quark-gluon plasma.

As a first step in this direction we study here the fluid dynamic propagation of local and event-by-event fluctuations
of the baryon number density, flow velocity and energy density. These fluctuations propagate on top of a hydrodynam-
ical background which for simplicity, we consider to be described by Bjorken’s model [45] (which includes finite baryon
number density). In order to study the fluid dynamic propagation of perturbations we use a background-fluctuation
splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid fields [46–53]. We derive the evolution
equations of the linear fluctuations and solve them for different initial conditions, values of the transport coefficients
and equation of state.

This work is organized as follows. In Sec. II we review briefly the theory of relativistic fluid dynamics at finite chem-
ical potential putting emphasis on the role of the equation of state and current estimates of the transport coefficients
in the strong and weakly coupling regimes. The main features of the temporal evolution of the background fields are
discussed in Sec. III. In Sec. IV we formulate the theory of linear perturbations on top of this evolving background
and discuss numerical solutions. In Sec. V we draw some conclusions for a potential experimental observable, the
correlation function of net baryon number as a function of azimuthal angles and rapidity. General conclusions are
presented in Sec. VI. Some technical details of our calculations are presented in Appendixes A and B, respectively.

II. RELATIVISTIC FLUID DYNAMICS WITH A GLOBALLY CONSERVED CHARGE

We consider a relativistic fluid with one globally conserved quantum number current (baryonic number for our
purposes). The energy-momentum tensor and number current are

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν ,

Nµ = nuµ + νµ.
(1)

Here, ε is the energy density, uµ is the fluid velocity, πµν is the shear stress tensor, πbulk is the bulk viscous pressure,
n is the particle density and νµ is the particle diffusion current. We choose the signature of the metric gµν to be
(−,+,+,+) and the projector orthogonal to the fluid velocity is

∆µν = gµν + uµuν . (2)

The fluid velocity is normalized to uµu
µ = −1. We work in the Landau frame where the fluid velocity is chosen such

that uµT
µν = −ε uν . The shear stress tensor is transverse to the fluid velocity,

uµπ
µν = 0. (3)

The shear stress tensor is also symmetric and traceless. The particle number density is defined by n = −uµNµ such
that the diffusion current is orthogonal to the fluid velocity, uµν

µ = 0.
It is clear that an arbitrary (symmetric) energy-momentum tensor Tµν (with a time-like eigenvector) and current

Nµ can be written in the above form. The decomposition becomes unique by requiring that the pressure p is related
to the energy density ε and the baryon density n by the same relation as in thermodynamic equilibrium, i.e. by an
equation of state p = p(ε, n) .

The evolution of the energy momentum-tensor and the particle current are constrained by the conservation equations

∇µTµν = 0,

∇µNµ = 0,
(4)

where ∇µ denotes the covariant derivative. In this general form the conservation equations hold also in curved space-
time but we are interested here in curvilinear systems defined in Minkowski space without taking into consideration
the gravitational field. From Eqs. (1) and (4) one obtains the evolution equations for the energy density, fluid velocity



4

and particle density

Dε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0,

(ε+ p+ πbulk)Duν + ∆νµ ∂µ(p+ πbulk) + ∆ν
α∇µπµα = 0,

Dn+ n∇µuµ +∇µνµ = 0 .

(5)

Here we have introduced the comoving derivative defined as D = uµ∇µ.
To close the evolution equations (5) one needs expressions for πbulk, πµν and νµ. Within the formalism of fluid

dynamics one writes these objects as a derivative expansion in terms of the fluid velocity uµ and thermodynamic
variables ε, n. In the present work we concentrate for simplicity on the first order of this expansion. One should keep
in mind that terms of second order are expected to improve the results quantitatively and are in general needed for
an acceptable causal structure and linear stability [54, 55].

The constitutive relation for the shear stress is

πµν = −2η σµν = −2η

[
1

2
∆µα∆νβ +

1

2
∆µβ∆να − 1

3
∆µν∆αβ

]
∇αuβ , (6)

where η is the shear viscosity transport coefficient. The bulk viscous pressure is obtained from the following expression

πbulk = −ζ θ = −ζ∇µuµ, (7)

where ζ is the bulk viscosity and θ is the expansion scalar. Finally, the particle diffusion current is

να = −κ
[
nT

ε+ p

]2

ια = −κ
[
nT

ε+ p

]2

∆αβ∂β

(µ
T

)
. (8)

where κ is the heat conductivity. In the last equation we have introduced the chemical potential µ, which is conjugate
to the baryon density n, and the temperature T .

In summary, the hydrodynamic equations at this stage involve the fluid velocity uµ (with three independent com-
ponents), the energy density ε, pressure p, baryon density n, baryon chemical potential µ, temperature T as well
as the shear viscosity η, bulk viscosity ζ and the thermal conductivity κ. Only two thermodynamic variables are
independent and they also determine the transport properties η, ζ and κ. In a non-equilibrium situation only energy
density ε = uµuνT

µν and baryon number density n = −uµNµ are directly related to the physical energy-momentum
tensor Tµν and number current Nµ. All other thermodynamic variables are defined indirectly via their relation to ε
and n in thermal equilibrium.

For the practical calculations one is in principle free to use any set of independent thermodynamic variables. The
form of Eqs. (5) suggests the use of the energy density ε and baryon density n. However, because most microscopic
calculations are done in the grand canonical ensemble, the thermodynamic equation of state and the transport
coefficients are usually obtained as a function of the temperature T and chemical potential µ, for example p = p(T, µ).
Thus, it can be advantageous to use T and µ as independent variables in fluid dynamics, as well. This avoids the
inversion of functions which can be numerically difficult. One should keep in mind that T and µ in a non-equilibrium
situation are defined via their relation to ε and n. Eq. (5) can be transformed using thermodynamic relations compiled
in Appendix A. The evolution equation for energy density becomes[

T
∂2p

∂T 2
+ µ

∂2p

∂T∂µ

]
DT +

[
T

∂2p

∂T∂µ
+ µ

∂2p

∂µ2

]
Dµ+ (ε+ p) θ − 2η σαβσ

αβ − ζ θ2 = 0. (9)

where we have now used the constitutive relations (6) and (7). The evolution equation for the fluid velocity is now of
the form

(ε+ p)Duν + ∆να(s ∂αT + n∂αµ)−∆ν
α∇β

(
2 η σαβ + ζ ∆αβ ∇γuγ

)
= 0 , (10)

and finally, the particle number conservation law becomes

∂2p

∂T∂µ
DT +

∂2p

∂µ2
Dµ+ n θ +∇ανα = 0 . (11)

Note that Eqs. (9) and (11) form a linear system of equations that can be solved for DT = uα∂αT and Dµ = uα∂αµ
as long as

∂2p

∂T 2

∂2p

∂µ2
−
(

∂2p

∂T∂µ

)2

6= 0. (12)
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To solve the fluid dynamic equations we will use a background-fluctuation splitting. To this end we write the fluid
dynamic fields as

uµ = ūµ + δuµ, ε = ε̄+ δε, (13)

and similar for the other fields. We are interested in perturbations δuµ, δε etc. that are small enough so that only
linear terms in the evolution equations need to be kept. The background fields ūµ, ε̄ etc. satisfy the fluid dynamic
equations (5) while the perturbations satisfy linear equations that depend on the background solution. We derive these
linearized equations for arbitrary background fields in Appendix B. The structure of the linearized equations permits
us to simply use δε, δn and three independent components of the fluid velocity as variables (the fourth component
of the fluid velocity follows from the constraint ūµδuµ = 0). However, all the background-dependent thermodynamic
quantities can be expressed in terms of T̄ and µ̄. Useful thermodynamic relations for this purpose are compiled in
Appendix A.

In the rest of this section we briefly discuss some simple parametrization of the thermodynamic equations of state
p(T, µ) and transport properties η(T, µ), ζ(T, µ), κ(T, µ). We emphasize that our formalism can be used for an
arbitrary form of these functions once these have been determined from a particular microscopic description.

A. Equation of state

The fluid hydrodynamical equations require an equation of state (EOS) p(T, µ) as an input. In principle, the
equation of state can be calculated from the inherent quantum field theory associated to a particular system but this
is a formidable task. In recent years there have been important advances to determine analytically and numerically
the thermodynamical properties of QCD at high temperatures and chemical potential by considering effective thermal
field theories [56–62] while in the low temperature and chemical potential regimes one expects that a non-interacting
hadron resonance gas provides a reasonably good approximation [63].

At intermediate temperatures, non-perturbative methods are needed to describe the transition which separates the
hadronic, confined phase and the quark-gluon plasma (QGP) phase. While several studies of lattice QCD simulations
are available at the moment at vanishing chemical potential µ = 0 2, at µ > 0 lattice simulations are not possible
due to the sign problem. However, different alternatives have been studied in order to circumvent this problem such
as reweighting [64], Taylor-expansion in µ [65–72], analytic continuation from imaginary µ [73], the density of states
method, or using the canonical ensemble. Of course, each of these methods have their advantages and disadvantages.

One of the main goals in the analysis of fluid dynamic fluctuations and their propagation is to provide a phenomeno-
logical determination of the equation of state (or at least of some of its properties). In the derivation of the evolution
equations for the background and fluctuating fields we shall keep the equation of state p(T, µ) unspecified as far as
possible in analytic expressions. For some numerical calculations and illustrations we use the simplest possible case,
a non-interacting gas of NF massless quarks that come in NC colors and N2

C − 1 gluons,

p(T, µ) =
1

4!
a1 T

4 +
1

4
a2 T

2µ2 +
1

4!
a3 µ

4 , (14)

where we use the abbreviations

a1 =
8π2

15

(
N2
C − 1 +

7

4
NCNF

)
,

a2 =
2NCNF

27
,

a3 =
2NCNF

81π2
.

(15)

The baryon chemical potential µ measures the net baryon density of the system. In our convention, quarks carry
baryon number charge 1/3 and anti-quarks −1/3.

Corrections to the ideal EOS arise as a consequence of interactions and the breaking of conformal invariance by
dimensional transmutation and non-zero quark masses. They are most important at low temperatures. We follow
here the Wuppertal collaboration which has parametrized the QCD equation of state for finite chemical potential in

2 For a recent review of the lattice QCD studies we refer to the reader to Ref. [11].
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Transport coefficient Weakly-coupled QCD Strongly-coupled theories

η k T3

g4 log(1/g)
s(T,µ)

4π

ζ 15 η(T )
(
1
3
− c2s(T )

)2
2 η(T, µ)

(
1
3
− c2s(T, µ)

)
κ

∼ µ2/g4 for µ� T
8π2 T

µ2 η(T, µ)∼ T 4/(g4µ2)for µ� T

TABLE I. Estimated values of the shear viscosity and different parametrizations for the bulk viscosities and heat conductivity
for weakly-coupled QCD [75–79] and strongly coupled theories with holographic duals [80–82]. See text for discussion.

terms of a Taylor expansion [71]. The leading order expression for the trace anomaly or QCD interaction measure
I(T, µ) = ε(T, µ)− 3p(T, µ) is

I(T, µ)

T 4
=
I(T, 0)

T 4
+
µ2

2T

∂χ2(T )

∂T
(16)

where I(T, 0) is the interaction measured at µ = 0 and χ2(T ) is the leading-order Taylor coefficient. Both terms,
I(T, 0) and χ2(T ), can be parametrized analytically as [71, 74]

I(T, 0)

T 4
= e−h1/t−h2/t

2

[
h0 +

f0 (tanh(f1 t+ f2) + 1)

1 + g1 t+ g2 t2

]
, (17a)

χ2(T ) = e−h3/t−h4/t
2

f3 (tanh(f4 t+ f5) + 1) (17b)

where t = T/(0.2 GeV). For Nf = 2 + 1 flavors of quarks with physical masses and finite baryon chemical potential
µ the parameters in Eq. (17) are h0 = 0.1396, h1 = 0.1800, h2 = 0.0350, f0 = 2.76, f1 = 6.79, f2 = 5.29, g1 = 0.47,
g2 = 1.04, h3 = −0.5022, h4 = 0.5950, f3 = 0.0940, f4 = 6.3290 and f5 = −4.8303 [71, 74]. The pressure at finite µ
is given by

p(T, µ)

T 4
=
p(T, 0)

T 4
+

1

2

µ2

T 2
χ2 . (18)

At µ = 0 the relation between the pressure and the trace anomaly (17a) is

p(T, 0)

T 4
=

∫ T

0

dT ′
I(T ′, 0)

T ′5
. (19)

All other thermodynamic quantities can be derived from p(T, µ) using the standard relations (compiled in appendix
A). The equation of state (18) with the above parametrization is valid for small chemical potentials µ/T < 3 in the
temperature window 0 < T < 400 MeV. We will use Eq. (18) to study the influence of the EOS for the dynamics of
the background fluid dynamic fields.

B. Transport coefficients

In addition to the thermodynamic equation of state, the fluid dynamical description needs as an input transport
coefficients. These can either be determined experimentally, or, if a microscopic underlying theory is known, they can
at least in principle be calculated as a function of the thermodynamic variables via Kubo relations. In this section
we briefly summarize the current theoretical knowledge for the shear and bulk viscosities and thermal conductivity of
QCD and related theories, both in weakly and strongly coupled regimes3.

C. Weak coupling regime

When the interaction strength is small, effective thermal field theory methods allows us to calculate the transport
coefficients. For weakly coupled QCD in the high temperature and vanishing chemical potential regime, the leading

3 A more detailed discussion of the properties of the transport coefficients discussed in this work can be found in Ref. [83].
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logarithmic result for the shear viscosity is [75–77]

η(T ) = k
T 3

g4 log(1/g)
, (20)

where g is the strong coupling constant. In the previous expression k is a constant that depends on the number of
fermions species [75–77]. Arnold et al. showed that at leading log accuracy and for high temperatures with vanishing
chemical potential there is an approximate scaling between the shear (η) and bulk (ζ) viscosities for weakly coupled
QCD [77]

ζ(T ) ≈ 15η(T )

(
1

3
− c2s(T )

)2

, (21)

where c2s = dp/dε is the speed of sound. A similar expression was first derived by Weinberg for a gas of photons [84].
To date there is no complete leading logarithmic calculation of the heat conductivity κ(T, µ) and so far only two
estimates of κ(T, µ) have been provided in the literature for different kinematic regions of the T − µ plane [78, 79]

κ(T, µ) =

{
F (T,mD)µ2/g4, for µ� T ,

C T 4/(g4 µ2), for µ� T .
(22)

where F (T,mD) is a function that depends on the temperature and the Debye screening mass mD (see Ref. [78] for
details). In the case of small chemical potential, the proportionality constant C depends on the number of flavors and
the gauge group [79]. In the limit where µ → 0 the heat conductivity κ ∼ µ−2 is divergent. However, the particle
diffusion current (8) remains finite [79]. In the context of relativistic kinetic theory, some general expressions for
the transport coefficients with constant cross section or within the relaxation time approximation have been derived
recently [85–90]. However, these calculations do not take into account the quantum screening effects of the QCD
plasma.

Despite relatively large uncertainties, experimental results indicate that the value of the shear viscosity over the
entropy ratio η/s is smaller than the one calculated from weakly coupled QCD (20) [8, 9]. For the case of the bulk
viscosity the situation is less clear: the uncertainties in its experimental determination are even larger (see Ref. [91]
and references therein). In addition, there are no experimental constraints for the value of heat conductivity in high
energy-nuclear collisions so far.

D. Strong coupling regime

From the previous discussion it is clear that at this moment perturbative QCD calculations of the transport
coefficients are not completely under control for all the possible physical values of the temperature and chemical
potential. On the other side, there are certain classes of strongly interacting theories where transport coefficients can
be determined for almost all values of T and µ. These are field theories with known gravitational duals where the
computations can be done via the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. Despite the fact
that those theories are not equivalent to QCD, they share some qualitative aspects with it and thus, these theories
might provide some guidance in the regimes where pQCD calculations are not reliable. We take here a pragmatical
approach and consider the estimates of the transport coefficients based on holographic calculations as toy models
which allow us to study the propagation of perturbations in fluid dynamic fields. For large t’Hooft coupling and for
N= 4 SYM theory, holographic methods give the well known result [80],

η(T, µ)

s(T, µ)
=

1

4π
. (23)

This result holds also for any holographic theory at sufficiently large coupling and number of colors as long as the
theory is spatially isotropic. This relation for η/s holds even in the presence of non-zero chemical potential [81].
Initially this result was conjectured to be an universal lower bound but today there is evidence showing that this
relation does not hold in general [92–99]. Incidentally, the value of the shear viscosity extracted from experiments in
high energy nuclear collisions is closer to the one predicted for strongly coupled theories (23) than the one calculated
in weakly coupled QCD (20) (see Ref. [8] for a recent review).

The shear viscosity has also been calculated for pure Yang-Mills theory using lattice gauge theory for specific values
of temperature [100, 101]. The estimated values for η/s are somewhat above the AdS/CFT values. Similarly, η/s as
a function of temperature for vanishing baryon chemical potential has also been estimated for Yang-Mills theory as
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well as QCD by using diagrammatic functional relations and gluon spectral functions obtained by numerical analytic
continuation from Euclidean quantum field theory [102, 103]. The minimal value for QCD was found to be η/s ≈ 0.17
at temperature T ≈ 1.3Tc.

For holographic theories that deviate from conformal behavior the bulk viscosity has also been calculated [82]4

ζ(T, µ) = 2η(T, µ)

(
1

3
− c2s(T, µ)

)
. (24)

As in the case of the shear viscosity value (23) this relation holds for certain theories with finite chemical potential [105]
but it is not an universal bound [106]. By comparing the scalings between ζ and η, Eqs. (24) and (21), one observes
that they differ in the strong and weak coupling regime. This mismatch between both parametrizations is currently
not understood. In the case of the thermal conductivity κ, the calculations for strongly coupled plasmas with finite
chemical potential give the following result [81]

κ(T, µ) = 8π2 T

µ2
η(T, µ) , (25)

which is an analog of the Wiedemann-Franz law [107]5. As in the weakly coupled case (22), the heat conductivity is
divergent ∼ µ−2 while the particle diffusion current (8) is finite. Recently the temperature-dependence of the first
and second order transport coefficients have been studied in a particular holographic model [109].

We summarize the discussion presented in this section in Table I, where we show the estimates of the transport
coefficients in both strong and weak coupling regimes. Mainly for reasons of simplicity, we shall concentrate here
on the parametrizations of the transport coefficients in the strong coupling regime Eqs. (23), (24) and (25) for our
numerical calculatons. Another advantage of using the parametrization of strongly coupled theories is that both
transport coefficients, the bulk viscosity ζ and the heat conductivity κ, are proportional to the shear viscosity η and
thus, one can not only study the effect of the dissipative corrections but also one can investigate the ‘weak’ and
‘strong’ regimes by varying the values of η/s. We keep the functions η(T, µ), ζ(T, µ), κ(T, µ) unspecified as far as
possible in our analytic calculations.

III. BJORKEN BOOST INVARIANT SOLUTION

In this section we study the solutions of the fluid dynamical equations for a quark-gluon plasma undergoing boost
invariant longitudinal expansion. We assume translational and rotational symmetry in the transverse plane and arrive
at a simple model for the early stages of a heavy ion collision first studied by Bjorken [45]. Our analysis is extended
to the case where there is a non-vanishing baryon number density. The relatively simple homogeneous solutions will
also serve as a background for a more elaborate discussion of perturbations around it in Sec. IV.

It is convenient to change from Cartesian coordinates xµ = (t, x1, x2, x3) to the Milne coordinates (τ, r, φ, η) where

τ =
√
t2 − x2

3 is the longitudinal proper time, η = arctanh(x3/t) is the longitudinal (space) rapidity and r and φ are
the usual polar coordinates in the transverse plane. The metric in the Milne coordinates is gµν = diag(−1, 1, r2, τ2).
The main advantage of using these coordinate systems is that the symmetries of the Bjorken solution are explicitly
manifest. Specifically, the symmetry group ISO(2)⊗SO(1, 1)⊗Z2 consists of translations and rotations in the transverse
plane, longitudinal boosts η → η + ∆η and reflections η → −η [110]. The Bjorken flow velocity uµ = (1, 0, 0, 0) is the
only invariant unit vector and the symmetry also implies that all fluid dynamic fields depend only on the longitudinal
proper time τ [45].

From Eqs. (5) one finds that the evolution equations for energy density and particle number density are

∂τ ε+ (ε+ p)
1

τ
−
(

4
3η + ζ

) 1

τ2
= 0,

∂τn+ n
1

τ
= 0.

(26)

We have used here the Christoffel symbols of the Milne coordinate system. The non-vanishing ones are Γητη =

Γηητ = 1/τ , Γτηη = τ , Γφrφ = Γφφr = 1/r, Γrφφ = −r. The shear tensor defined in Eq. (6) becomes σµν =

4 We pointed out to the reader that Eq. (24) was derived by means of the gauge/gravity duality in Ref. [82] for a specific model. Other
non conformal field theories [104] where the duality holds provide some modifications to the parametrization given by Eq. (24).

5 The relation (25) was derived originally for a conformal holographic theory. However, this expression does not hold for non-conformal
systems within the AdS/CFT correspondence [108].
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diag
(
0,− 1

3τ ,−
1

3τr2 ,
2

3τ3

)
with σµνσ

µν = 2
3τ2 . The expansion scalar is θ = 1

τ and the projector orthogonal to the
fluid velocity is ∆µ

ν = diag(0, 1, 1, 1). The particle diffusion current νµ (8) is a vector orthogonal to uµ and therefore
vanishes exactly for the Bjorken flow.

While the particle number density is simply diluted by the one-dimensional expansion, the evolution of energy
density in (26) contains an additional loss term from the thermodynamic work done by the expansion and a gain term
from shear and bulk viscous effects. After the variable change to T and µ eq. (26) becomes

∂τT +
−nτ

∂2p
∂T∂µ + s

τ

(
1− 4η/3+ζ

sTτ

)
∂2p
∂µ2

∂2p
∂T 2

∂2p
∂µ2 −

(
∂2p
∂T∂µ

)2 = 0,

∂τµ+

n
τ
∂2p
∂T 2 − s

τ

(
1− 4η/3+ζ

sTτ

)
∂2p
∂T∂µ

∂2p
∂T 2

∂2p
∂µ2 −

(
∂2p
∂T∂µ

)2 = 0.

(27)

We observe that the size of viscous corrections to an isentropic expansion is determined by the parameter

γ =
4η/3 + ζ

sTτ
. (28)

Formally, the gradient expansion underlying viscous fluid dynamics can be used for γ � 1. Note that for a given
thermodynamic equation of state p(T, µ) and viscosities η(T, µ), ζ(T, µ) one can solve the two coupled ordinary
differential equations (27).

In the remainder of this section we discuss as a simple illustrative example the equation of state of an ideal gas of
massless quarks and gluons in Eq. (14). The evolution equations (27) for the temperature T and chemical potential
µ become

∂τT +
1

3τ
T −

(
γT

τ

) 1
3a1a2T

4 + ( 1
3a1a3 + a2

2)T 2µ2 + a2a3µ
4

a1a2T 4 + (a1a3 − 3a2
2)T 2µ2 + a2a3µ4

= 0,

∂τµ+
1

3τ
µ+

(
γT

τ

) 2
3a1a2T

3µ+ 2a2
2Tµ

3

a1a2T 4 + (a1a3 − 3a2
2)T 2µ2 + a2a3µ4

= 0,

(29)

where the coefficients a1, a2 and a3 are given in Eq. (15). Note that we use conventions where µ is the chemical
potential for baryons, and the chemical potential for quarks is µq = µ/3.

Let us first discuss some interesting limiting cases of Eqs. (29):

1. Ideal fluid dynamic expansion. When shear and bulk viscosities vanish, η = ζ = 0, the temperature and
the chemical potential decouple from each other. This allows us to solve Eqs. (29) exactly, which gives

T (τ) = T (τ0)
(τ0
τ

)1/3

, (30a)

µ(τ) = µ(τ0)
(τ0
τ

)1/3

. (30b)

The scaling solution of the temperature is not modified by the presence of the chemical potential and it coincides
with the well known result found by Bjorken [45].

2. Vanishing chemical potential. The point with µ = 0 corresponds to a (partial) fixed point of the evolution
equations (29) with extended symmetry (baryon number parity). The evolution equation for temperature
becomes

∂τT +
T

3τ
(1− γ) = 0. (31)

where γ is given by Eq. (28). For vanishing bulk viscosity, ζ = 0, and constant ratio η/s, the exact solution to
the previous equation is [111–114]

T (τ) = T (τ0)
(τ0
τ

)1/3
[
1 +

2

3τ0T (τ0)

η

s

(
1−

(τ0
τ

)2/3
)]

. (32)

Viscous corrections are relevant only at early times where velocity gradients are large while at late times these
are suppressed and thus, T (τ) ∼ τ−1/3.
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3. Small chemical potential. For µ/T � 1 the dynamics of T is approximmately determined by Eq. (31) while
the evolution equation for µ is

∂τµ+
µ

3τ
(1 + 2γ) = 0. (33)

The viscous effects (encoded in the parameter γ) have the tendency to accelerate the decrease of µ due to the
expansion. This is in contrast to the temperature where viscosity has the opposite effect. To lowest order in
η/s, the solution of (33) is

µ(τ) = µ(τ0)
(τ0
τ

)1/3
[
1− 4

3τ0T (τ0)

η

s

(
1−

(τ0
τ

)2/3
)]

. (34)

4. Small temperature. For T/µ � 1 the evolution equation for the chemical potential is the one of eq. (30b)
with a simple scaling solution. For the temperature we obtain to lowest order in T/µ

∂τT +
T

3τ
(1− 3γ) = 0, (35)

which has a solution similar to Eq. (32) when η/s and ζ/s have constant values. If one chooses T (τ0) = 0 as
initial condition the solution to Eq. (35) becomes

T (τ) =
4η + 3ζ

2s

(
1

τ
2/3
0 τ1/3

− 1

τ

)
. (36)

Even if the temperature vanishes initially, the system is heated up due to shear and bulk dissipative effects. In
contrast to µ = 0, vanishing temperature T = 0 does not correspond to a (partial) fixed point of the evolution.

Let us now consider the evolution equations (29) in the general case where we find their solution numerically. In
Fig. 1 we show the time evolution of the temperature (left panel) and chemical potential (right panel) for different
constant values of η/s = 0 and η/s = 2/(4π) (black and red lines respectively) and two different parametrizations of
the equation of state: the ideal EOS (14) (solid lines) and the lattice-based EOS (18) (dashed lines). The initial values
at time τ0 = 0.5 fm/c are taken to be T (τ0) = 0.4 GeV and µ(τ0) = 0.4 GeV. For the ideal EOS the coefficients a1,
a2 and a3 are taken according to Eq. (15) with NC = NF = 3. The bulk viscosity (24) vanishes exactly for the ideal
EOS (14) but it becomes a function of the temperature and chemical potential for the lattice-based EOS (18).

First we discuss the properties of the numerical solutions of Eqs. (27) for the ideal (and massless) EOS (14). For
both variables, T and µ, the effect of viscous corrections are more relevant during the early stages of the expansion
while at late times their effects are negligible as expected. In the left panel of Fig. 1 we see that the viscosity reduces
the effect of the longitudinal expansion on the temperature. This is simply the expected heating by dissipative effects.
At the final time τf = 10 fm/c the temperature is larger by values of the order of 10% for η/s = 2/(4π) compared
to the ideal fluid expansion. For the chemical potential we find that the inclusion of dissipative corrections has the
opposite effect, i.e. the chemical potentials decrease faster in the viscous case. This is clearly seen in the right panel
of Fig. 1 when comparing the final values of the chemical potential µ(τf ). The changes with respect to the ideal fluid
expansion are also somewhat larger, of the order of 15% for η/s = 2/(4π).

When using the lattice-based EOS (18) we find that the numerical solutions of Eqs. (27) for T and µ are qualitatively
similar to the ones obtained from the ideal EOS during the early stages of the evolution. As a function of time, the
temperature is always decreasing and the dissipative corrections are larger at early times than at late times. The
chemical potential decreases faster for larger values of the shear viscosity. For the lattice EOS, the changes induced
by the dissipative corrections are on the order of 8− 15%.

Interestingly, the evolution of µ with time differs substantially between the two choices for the equation of state.
In the right panel of Fig. 1 one observes that the decrease with time is much weaker for the lattice EOS than for the
ideal EOS. At the freeze-out time τf = 10 fm/c and for vanishing η/s, one has µ(τf ) ≈ 0.29 GeV for the lattice EOS
while µ(τf ) ≈ 0.12 GeV for the ideal EOS. The difference between those values increases slightly for finite values of
η/s. Moreover, at late times µ increases slowly (and somewhat more for larger values of η/s). Our numerical results
show also that when using the lattice EOS the values of the temperature are somewhat larger than for the ideal EOS
specially at late times.

In Fig. 2 we show the Bjorken flow trajectories in the plane of chemical potential µ and temperature T for the
ideal EOS (14) (left panel) and the lattice EOS (right panel). For the initial conditions we choose τ0 = 0.5 fm/c,
T (τ0) = 0.4 GeV and different values of µ(τ0) = {0.05, 0.15, 0.25, 0.35, 0.45, 0.55} GeV. For both equations of state we
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FIG. 1. (Color online) Log-log plot of the time evolution of (a) temperature (left panel) and (b) chemical potential (right panel)
for the ideal EOS (14) (solid lines) and the lattice-based EOS (18) (dashed lines). We choose here η/s = 0 (black line) and
η/s = 2/(4π) (red line). For the initial conditions we select T (τ0) = µ(τ0) = 0.4 GeV and τ0 = 0.5 fm/c.
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FIG. 2. (Color online) Flow trajectory of Bjorken expansions in the µ-T -plane, initialized for (a) ideal EOS (14) (left panel)
and (b) lattice-based EOS (18) (right panel). For the initial conditions we choose τ0 = 0.5 fm/c, T (τ0) = 0.4 GeV and different
values of µ(τ0) = {0.05, 0.15, 0.25, 0.35, 0.45, 0.55} GeV. In both panels we compare the viscous effects by choosing η/s = 2/(4π)
(dashed lines) to the the case of vanishing viscosity, η/s = 0 (solid lines). All lines end at fixed final time τf = 10 fm/c. Note
that we use conventions where µ is the chemical potential for baryons, the chemical potential for quarks is µq = µ/3.

vary the shear viscosity to entropy η/s = 2/(4π) (dashed lines) and η/s = 0 (solid lines). All trajectories end at fixed
final time τ = 10 fm/c.

For the ideal EOS (left panel of Fig. 2) we observe that the viscosity weakens the effect of the expansion on the
temperature T while it does the opposite for the chemical potential µ and thus the trajectories end at larger values of
T and smaller vales of µ for non-zero η/s. This is in agreement with the previous discussion of the temporal evolution
of T and µ. For the lattice EOS (right panel of Fig. 2) we observe similar trajectories for small initial values of µ(τ0).
For larger values of µ(τ0), the trajectories start to bend towards larger values of µ while they continue to decrease
towards lower values of T . This behavior is understood from the previous discussion, as well.

In summary, the time-evolution of temperature and chemical potential for a Bjorken expansion is given by Eqs. (27)
for an arbitrary EOS. The evolution of µ as a function of time is quite sensitive to the choice of the EOS. The effect
of the viscosity is relatively small. This is actually expected for the homogeneous background while we expect more
prominent dissipative effects for non-homogeneous perturbations around it. 6 We turn to those in the next section.

6 The effect of shear viscosity is also sizable for the transverse expansion (radial flow) and for elliptic flow [115].
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IV. FLUCTUATIONS AROUND BJORKEN FLOW

After having studied the solution of the hydrodynamic evolution equations with Bjorken boost invariance and
transverse translational symmetries we study now the evolution of fluctuations or deviations from that solution. We
will concentrate here on deviations that are small enough in magnitude to describe their evolution by linearized
evolution equations. In other words, we write the fluid dynamic fields as

uµ = ūµ + δuµ, ε = ε̄+ δε, n = n̄+ δn, (37)

where ūµ, ε̄, n̄ is the Bjorken-type solution discussed in the previous section. The linearized evolution equations for
the perturbations δuµ, δε, δn are discussed for a generic background solution and arbitrary coordinate system in
Appendix B. If one specializes to the Bjorken background and the coordinate system (τ, r, φ, η), the independent fluid
dynamic fields are in the first order formalism δε, δn, δur, δuφ and δuη. (We take the background fluid velocity ūµ

and the full fluid velocity uµ = ūµ + δuµ to be normalized, uµuµ = ūµūµ = −1, such that one has δuτ = 0 at linear
order in perturbations). Equation (B3) yields the following equation for the perturbation in energy density (each
hydrodynamical fluctuating field depends on (τ, r, φ, η) which we suppress for better readability)

∂τδε+

[
1

τ
+

1

τ

(
∂p

∂ε

)
n

− 1

τ2

(
∂ζ

∂ε

)
n

− 4

3τ2

(
∂η

∂ε

)
n

]
δε

+

[
1

τ

(
∂p

∂n

)
ε

− 1

τ2

(
∂ζ

∂n

)
ε

− 4

3τ2

(
∂η

∂n

)
ε

]
δn

+

[
ε̄+ p̄− 2

τ
ζ̄ +

4

3τ
η̄

](
∂rδu

r +
1

r
δur + ∂φδu

φ + ∂ηδu
η

)
− 4

τ
η̄ ∂ηδu

η = 0.

(38)

The thermodynamic derivatives like (∂p/∂ε)n, etc., are to be evaluated here on the background solution and similarly
the transport coefficients and their derivatives. The evolution equation for the perturbation in baryon number density
is

∂τδn+
1

τ
δn+

[
n̄− κ̄

[
n̄T̄

ε̄+ p̄

]2

∂τ

( µ̄
T̄

)](
∂rδu

r +
1

r
ur + ∂φδu

φ + ∂ηδu
η

)

− κ̄
[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂ε

)
n

(
∂2
r +

1

r
∂r +

1

r2
∂2
φ +

1

τ2
∂2
η

)
δε

− κ̄
[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

(
∂2
r +

1

r
∂r +

1

r2
∂2
φ +

1

τ2
∂2
η

)
δn = 0.

(39)

The derivative operator of second order that appears in the last two lines in front of δε and δn, respectively, is the
Laplace operator in the spatial coordinates r, φ and η.

The fluid velocity in the radial direction is determined by the following evolution equation

(
ε̄+ p̄− 1

τ
ζ̄ +

2

3τ
η̄

)
∂τδu

r +

[
∂τ p̄−

1

τ
∂τ ζ̄ +

1

τ2
ζ̄ +

2

3τ
∂τ η̄ +

4

3τ2
η̄

]
δur

+

[(
∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+
2

3τ

(
∂η

∂ε

)
n

]
∂rδε+

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+
2

3τ

(
∂η

∂n

)
ε

]
∂rδn

− ζ̄
[(
∂2
r +

1

r
∂r −

1

r2

)
δur + ∂r∂φδu

φ + ∂r∂ηδu
η

]
− η̄

[(
4

3
∂2
r +

4

3r
∂r −

4

3r2
+

1

r2
∂2
φ +

1

τ2
∂2
η

)
δur +

(
1

3
∂r∂φ −

2

r
∂φ

)
δuφ +

1

3
∂r∂ηδu

η

]
= 0,

(40)
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the one in the azimuthal direction by(
ε̄+ p̄− 1

τ
ζ̄ +

2

3τ
η̄

)
∂τδu

φ +

[
∂τ p̄−

1

τ
∂τ ζ̄ +

1

τ2
ζ̄ +

2

3τ
∂τ η̄ +

4

3τ2
η̄

]
δuφ

+

[(
∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+
2

3τ

(
∂η

∂ε

)
n

]
1

r2
∂φδε+

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+
2

3τ

(
∂η

∂n

)
ε

]
1

r2
∂φδn

− ζ̄
[(

1

r2
∂r∂φ +

1

r3
∂φ

)
δur +

1

r2
∂2
φδu

φ +
1

r2
∂φ∂ηδu

η

]
− η̄

[(
1

3r2
∂r∂φ +

7

3r3
∂φ

)
δur +

(
∂2
r +

3

r
∂r +

4

3r2
∂2
φ +

1

τ2
∂2
η

)
δuφ +

1

3r2
∂φ∂ηδu

η

]
= 0,

(41)

and finally the fluid velocity component in the rapidity direction is governed by(
ε̄+ p̄− 1

τ
ζ̄ − 4

3τ
η̄

)
∂τδu

η +

[
∂τ p̄+

2

τ
(ε̄+ p̄)− 1

τ
∂τ ζ̄ +

1

τ2
ζ̄ − 4

3τ
∂τ η̄ −

4

3τ2
η̄

]
δuη

+

[(
∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

− 4

3τ

(
∂η

∂ε

)
n

]
1

τ2
∂ηδε+

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

− 4

3τ

(
∂η

∂n

)
ε

]
1

τ2
∂ηδn

− ζ̄
[(

1

τ2
∂r∂η +

1

τ2r
∂η

)
δur +

1

τ2
∂φ∂ηδu

φ +
1

τ2
∂2
ηδu

η

]
− η̄

[(
1

3τ2
∂r∂η +

1

3τ2r
∂η

)
δur +

1

3τ2
∂φ∂ηδu

φ +

(
∂2
r +

1

r
∂r +

1

r2
∂2
φ +

4

3τ2
∂2
η

)
δuη
]

= 0.

(42)

Equations (38) - (42) are hyperbolic coupled linear differential equations for the variables δε, δn, δur, δuφ and δuη:
They contain only first order derivatives with respect to the time coordinate τ but up to second order derivatives
with respect to the spatial coordinates r, φ and η. In the second order gradient expansion the equations would be
elliptical but also contain more degrees of freedom and transport coefficients.

In order to analyze the differential equations (38) - (42) it is convenient to use a Bessel-Fourier transformation. For
the perturbation in energy density this reads

δε(τ, r, φ, η) =

∫ ∞
0

dk k

∞∑
m=−∞

∫
dq

2π
δε(τ, k,m, q) ei(mφ+qη)Jm(kr), (43)

with inverse relation

δε(τ, k,m, q) =

∫ ∞
0

dr r
1

2π

∫ 2π

0

dφ

∫
dη δε(τ, r, φ, η) e−i(mφ+qη)Jm(kr). (44)

Since δε(τ, r, φ, η) ∈ R and J−m(kr) = (−1)mJm(kr) one has

δε∗(τ, k,m, q) = (−1)mδε(τ, k,−m,−q). (45)

For the baryon number density fluctuation δn and the rapidity component of the fluid velocity δuη one can use the
same expansion. For the fluid velocity components δur and δuφ we write instead

δur(τ, r, φ, η) =
1√
2

[
δu−(τ, r, φ, η) + δu+(τ, r, φ, η)

]
,

δuφ(τ, r, φ, η) =
i

r
√

2

[
δu−(τ, r, φ, η)− δu+(τ, r, φ, η)

]
,

(46)

with δu+∗(τ, r, φ, η) = δu−(τ, r, φ, η). We expand δu−(τ, r, φ, η) and δu+(τ, r, φ, η) similar to Eq. (43) but replace
Jm(kr) by Jm−1(kr) and Jm+1(kr), respectively. The reality constraint becomes

δu+∗(τ, k,m, q) = (−1)m+1δu−(τ, k,−m,−q). (47)

In terms of the Bessel-Fourier transformed variables one can easily perform the spatial derivatives in Eqs. (38) - (42).
To that end it is useful to use the relations

m

r
Jm(kr) =

k

2
[Jm−1(kr) + Jm+1(kr)] ,

∂

∂r
Jm(kr) =

k

2
[Jm−1(kr)− Jm+1(kr)] .

(48)
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FIG. 3. (Color online) Wavenumber k
(m)
l = z

(m)
l /R as a function of the discrete radial wavenumber l and for different values of

the azimuthal wavenumber m = 1 (lowest curve) to m = 4 (uppermost curve). These values arise for the boundary condition
δε = 0 at r = R and we choose R = 10 fm for definiteness. The plot shows that k increases with increasing values of both l and
m, corresponding to finer spatial resolution.

The Bessel expansion we use in Eqs. (43) contains an integral over all (positive) values of k. This expansion, also
known as the Hankel transformation, is appropriate for functions on the open interval r ∈ (0,∞). More realistically,
the energy distribution in a heavy ion collision is non-zero only on a compact interval (0, R) with some radius R that
depends on time during the expansion of the fireball and it is of the order of R ∼ 10 fm. On such a compact interval
the Bessel expansion becomes discrete, in the sense that the integral over k is replaced by a sum over a discrete subset.

For example, the boundary condition δε = 0 at r = R leads to the values k
(m)
l = z

(m)
l /R where the z

(m)
l are the l’th

zero crossings of the Bessel function Jm(z). To relatively good approximation z
(m)
l is linear in m (for fixed l). In Fig.

3 we illustrate the resulting values for k
(m)
l as a function of the discrete radial wavenumber l and for different values

of m. More generally, one might use an expansion based on Jm
(
z(m)ρ(r)

)
where ρ(r) is a monotonous function into

the interval (0, 1) and a particularly useful choice for ρ(r) is discussed in Appendix A of Ref. [51].
The evolution equation for the perturbation in energy density, Eq. (38) becomes in Bessel-Fourier space (all per-

turbation functions have now the argument (τ, k,m, q) that we suppress for better readability)

∂τδε+

[
1

τ
+

1

τ

(
∂p

∂ε

)
n

− 1

τ2

(
∂ζ

∂ε

)
n

− 4

3τ2

(
∂η

∂ε

)
n

]
δε

+

[
1

τ

(
∂p

∂n

)
ε

− 1

τ2

(
∂ζ

∂n

)
ε

− 4

3τ2

(
∂η

∂n

)
ε

]
δn

+

[
ε̄+ p̄− 2

τ
ζ̄ +

4

3τ
η̄

](
k√
2

(
δu+ − δu−

)
+ iq δuη

)
− 4

τ
η̄ iq δuη = 0.

(49)

Similarly, the evolution equation for the perturbation in baryon number density becomes

∂τδn+
1

τ
δn+

[
n̄− κ̄

[
n̄T̄

ε̄+ p̄

]2

∂τ

( µ̄
T̄

)]( k√
2

(
δu+ − δu−

)
+ iq δuη

)

+ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂ε

)
n

(
k2 +

q2

τ2

)
δε

+ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

(
k2 +

q2

τ2

)
δn = 0.

(50)

Let us now turn to the perturbations in the fluid velocity. Equations (40) and (41) lead to the following equations for



15

δu+ and δu− in Bessel-Fourier space(
ε̄+ p̄− 1

τ
ζ̄ +

2

3τ
η̄

)
∂τδu

± +

[
∂τ p̄−

1

τ
∂τ ζ̄ +

1

τ2
ζ̄ +

2

3τ
∂τ η̄ +

4

3τ2
η̄

]
δu±

∓
[(

∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+
2

3τ

(
∂η

∂ε

)
n

]
k√
2
δε∓

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+
2

3τ

(
∂η

∂n

)
ε

]
k√
2
δn

+

[
1

2
ζ̄k2 +

7

6
η̄k2 + η̄

q2

τ2

]
δu± −

[
1

2
ζ̄k2 +

1

6
η̄k2

]
δu∓ ± i

[
ζ̄kq√

2
+
η̄kq√

2

]
δuη = 0,

(51)

and for the rapidity component we find from Eq. (42)(
ε̄+ p̄− 1

τ
ζ̄ − 4

3τ
η̄

)
∂τδu

η +

[
∂τ p̄+

2

τ
(ε̄+ p̄)− 1

τ
∂τ ζ̄ +

1

τ2
ζ̄ − 4

3τ
∂τ η̄ −

4

3τ2
η̄

]
δuη

+

[(
∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+
2

3τ

(
∂η

∂ε

)
n

]
iq

τ2
δε+

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+
2

3τ

(
∂η

∂n

)
ε

]
iq

τ2
δn

−
(
ζ̄ +

1

3
η̄

)
iqk

τ2
√

2

(
δu+ − δu−

)
+

[(
ζ̄ +

4

3
η̄

)
q2

τ2
+ η̄k2

]
δuη = 0.

(52)

Note that eqs. (49) - (52) are now coupled ordinary differential equations. All spatial derivatives have become algebraic
and one can directly integrate for the time dependent perturbations δε(τ, k,m, q) etc. To construct such a solution
one needs as an input the background or Bjorken solution for T̄ (τ) and µ̄(τ) as well as the relations that express
all other thermodynamic densities (ε̄, p̄, n̄ etc.), transport coefficients (ζ̄, η̄, κ̄) and derivatives ((∂p/∂ε)n, (∂p/∂n)ε,
(∂ζ/∂ε)n etc.) in terms of the independent thermodynamic variables T̄ and µ̄.

Let us first discuss some limiting cases of Eqs. (49) - (52) with extended symmetries.

A. Statistical baryon number conjugation symmetry

If the baryon number density vanishes in the background solution, i. e. n̄ = µ̄ = 0, one has an extended symmetry
namely baryon-anti-baryon or baryon number conjugation symmetry corresponding to , n → −n. Odd derivatives
such as (∂p/∂n)ε or (∂η/∂n)ε have to vanish and one finds that δn decouples from the equations for δε in Eq. (49)
and the perturbations of fluid velocity in Eqs. (51) and (52). However, this does not imply that δn has to vanish as
well. Locally and event-by-event one may have a non-zero baryon number density. The evolution equation for this
perturbation is obtained from Eq. (50) as

∂τδn+
1

τ
δn+ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

(
k2 +

q2

τ2

)
δn = 0. (53)

The second term on the left hand side accounts simply for the dilution due to the longitudinal expansion while the
third term is a diffusion term due to heat conductivity. Note that κ̄ is expected to be singular in the limit n̄→ 0 in

such a way that the combination of terms that multiplies (k2 + q2

τ2 ) δn remains finite [79]. Therefore, the diffusion
term indeed plays a role for the evolution of perturbations δn.

Equation (53) can be directly integrated and its solution reads as

δn(τ, k,m, q) =
(τ0
τ

)
exp

[
−k2I1(τ, τ0)− q2I2(τ, τ0)

]
δn(τ0, k,m, q), (54)

where the integrals

I1(τ, τ0) =

∫ τ

τ0

dτ ′ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

,

I2(τ, τ0) =

∫ τ

τ0

dτ ′
1

τ ′2
κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

,

(55)

depend on the heat conductivity and thermodynamic quantities on the background Bjorken solution. While the
integral I1 is typically dominated by late times τ (for example for the ideal thermodynamic equation of state (14),
heat conductivity of the form (22) and Bjorken expansion as in Eq. (31)), the integral I2 is dominated by early times
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τ ≈ τ0. Moreover, for fast thermalization τ0 → 0 one has formally I2 → ∞ such that in reality it might be rather
large. Modes with q 6= 0 are therefore strongly damped by dissipative effects of heat conductivity.

The evolution equations for the perturbations in energy density δε and fluid velocity are independent of δn. Their
solution has already been discussed in a similar setup in Ref. [46].

B. Exact Bjorken boost symmetry

The evolution equations for perturbations (49) - (52) simplify also in a situation where Bjorken boost invariance is
realized as an exact symmetry instead of only on a statistical level. In that case one has δuη = 0 and the perturbations
δε, δn etc. vanish except for q = 0. Equation (49) becomes

∂τδε+

[
1

τ
+

1

τ

(
∂p

∂ε

)
n

− 1

τ2

(
∂ζ

∂ε

)
n

− 4

3τ2

(
∂η

∂ε

)
n

]
δε

+
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1

τ

(
∂p

∂n

)
ε

− 1
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(
∂ζ

∂n

)
ε

− 4
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(
∂η

∂n

)
ε

]
δn

+

[
ε̄+ p̄− 2

τ
ζ̄ +

4

3τ
η̄

]
k√
2

(
δu+ − δu−

)
= 0,

(56)

and similarly Eq. (50) becomes

∂τδn+
1

τ
δn+

[
n̄− κ̄

[
n̄T̄

ε̄+ p̄

]2

∂τ

( µ̄
T̄

)] k√
2

(
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)
+ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂ε

)
n

k2 δε+ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

k2 δn = 0.

(57)

One observes that (56) and (57) depend on δu+ and δu− only via the combination (δu+ − δu−) /
√

2, for which one
obtains from Eq. (51),(

ε̄+ p̄− 1

τ
ζ̄ +

2

3τ
η̄

)
∂τ

1√
2

(
δu+ − δu−

)
+

[
∂τ p̄−

1

τ
∂τ ζ̄ +

1

τ2
ζ̄ +

2

3τ
∂τ η̄ +

4

3τ2
η̄

]
1√
2

(
δu+ − δu−

)
−
[(

∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+
2

3τ

(
∂η

∂ε

)
n

]
k δε−

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+
2

3τ

(
∂η

∂n

)
ε

]
k δn

+

[
ζ̄k2 +

4

3
η̄k2

]
1√
2

(
δu+ − δu−

)
= 0.

(58)

Equations (56) - (58) together with the information about background quantities form a closed system that describes
the analog of sound propagation and baryon number diffusion in the transverse plane of a longitudinally expanding
fireball. The orthogonal combination of fluid velocity perturbations δu+ +δu− is a shear mode with purely dissipative
behavior (equation not shown).

It is interesting to compare these equations to the ones that govern perturbations in a static medium. In that
case all terms that involve explicit factors 1/τ or derivatives of background quantities with respect to τ vanish. For
example, the analog of Eq. (56) is

∂τδε+ (ε̄+ p̄)
k√
2

(
δu+ − δu−

)
= 0, (59)

while the analog of Eq. (57) is

∂τδn+ n̄
k√
2

(
δu+ − δu−

)
+ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂ε

)
n

k2 δε+ κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

k2 δn = 0,

(60)
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FIG. 4. (Color online) Evolution of perturbations in energy density, baryon number density and fluid velocity with exact
Bjorken boost symmetry (q = 0, δuη = 0) for different values of the azimuthal wavenumber m and radial wavenumber l. For

R = 10 fm/c one has k
(1)
1 = 0.38 fm−1 (black curves), k

(2)
2 = 0.84 fm−1 (red curves) and k

(3)
3 = 1.30 fm−1 (blue curves). We

compare two different values of the ratio of shear viscosity to entropy density η/s = 1/(4π) (left column) and (b) η/s = 10/(4π)
(right column). Heat conductivity is related to this by eq. (25). We use T0 = 0.5 GeV, µ0 =0.05 GeV, τ0= 1 fm/c, τf=10 fm/c
and for the initial values of the hydrodynamic fluctuations we choose δε(τ0) 6= 0, δn(τ0) = δu+(τ0) = δu−(τ0)=0. We denote
∆− = u+ − u− (thus, ∆−0 = u+

0 − u
−
0 = 0). See text for further details.

and the analog of Eq. (58) is

(ε̄+ p̄) ∂τ
1√
2

(
δu+ − δu−

)
−
(
∂p

∂ε

)
n

k δε−
(
∂p

∂n

)
ε

k δn

+

[
ζ̄ +

4

3
η̄

]
k2 1√

2

(
δu+ − δu−

)
= 0.

(61)
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FIG. 5. (Color online) Same as Fig. 4 but for different initial values of the fluid perturbations: δn(τ0) 6= 0, δε(τ0) = δu+(τ0) =
δu−(τ0)=0 (thus, ∆−0 = u+

0 − u
−
0 = 0). See text for further details.

The set of equations (59) - to (61) describes sound propagation in the presence of dissipation due to shear viscosity,
bulk viscosity and heat conductivity. We observe that at least some of the additional terms in Eq. (56) compared
to (59) have the effect of an additional damping, in particular the square bracket in the first line of Eq. (56) is
expected to be positive in the regime where fluid dynamics is applicable. Similarly, the leading additional term in
Eq. (57) compared to Eq. (60) is the term 1

τ δn that has a damping effect, as well. The situation is less clear for the
additional terms in Eq. (58) compared to Eq. (61), in particular the second line in Eq. (58) might actually conteract
damping because ∂τ p̄ is negative. However, at least for larger values of the wavenumber k and non-zero viscosities
the dissipative damping term in the last line of Eq. (58) is dominating.

Equations (56) - (58) simplify further if the background is symmetric under baryon number conjugation as discussed
in Sect. IV A. In that case the perturbation in baryon number density δn decouples from Eqs. (56) and (58) and is

described by Eq. (53) (with q = 0). Nevertheless, the remaining equations for δε and (δu+ − δu−) /
√

2 remain coupled
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FIG. 6. (Color online) Same as Fig. 4 but for different initial values of the fluid perturbations: δu+(τ0)= 0.4, δu−(τ0)= 0.3
(thus ∆−0 = u+

0 − u
−
0 = 0.1 and ∆+

0 = u+
0 + u−0 = 0.7), δε(τ0) = δn(τ0) =0. See text for further details.

and have to be integrated numerically for a given background solution and wavenumber k. This has already been
discussed in Ref. [46].

In Figs. 4, 5 and 6 we show numerical solutions of the evolution equations (56)- (58) for the ideal EOS (14). For
the background fields we employ the scaling solution (30). We compare the numerical results for different initial
conditions and two different values of the ratio of shear viscosity to entropy density and assume ζ = 0 for simplicity.
More precisely, the left columns of Figs. 4, 5 and 6 correspond to η/s = 1/(4π), the right columns to η/s = 10/(4π).
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FIG. 7. (Color online) Amplitude of the perturbations at τf = 10 fm/c in units of the initial weight at τ = 1 fm/c as a
function of the k-wave number. We choose η/s = 1/(4π), T0 = 0.5 GeV and µ0 = 0.05 GeV. In each panel we choose a
non-vanishing value initially for one of fluctuating fields while the remaining ones are set to zero.The top, middle and bottom
panel corresponds to different initial conditions δε0 6= 0, δn0 6= 0 and ∆−0 = u+

0 − u
−
0 6= 0, respectively.

In all cases, the heat conductivity is taken to be related to the shear viscosity by (25). We also compare different

values of the radial wavenumber k = k
(m)
l = z

(m)
l /R. We choose R = 10 fm/c which corresponds to k

(1)
1 = 0.38 fm−1

(black curves), k
(2)
2 = 0.84 fm−1 (red curves) and k

(3)
3 = 1.30 fm−1 (blue curves). In all cases, the modes with larger

k are damped more quickly as expected. In order to simplify the notation we use the abbreviation ∆− ≡ δu+ − δu−
in Figs. 4, 5 and 6.

In Fig. 4 we have chosen initial conditions with non-vanishing perturbations in energy density δε(τ) = δε0 while
the perturbations in baryon number density δn and fluid velocity δu+, δu− vanish initially. The pressure gradients
associated with δε induce sound waves with the typical oscillating behavior between δε and δu+ − δu−, modified by
the longitudinal expansion and viscous damping. As expected, the oscillation frequency is larger for larger radial
wave numbers k. The perturbation in energy density δε induces also a small perturbation in baryon number density
δn at times τ > τ0. This is due to the linear mixing between the different fluctuating fields (δε, δu+ and δu−) for
non-vanishing background baryon chemical potential (we choose µ0 = 0.05 GeV). For µ̄ = n̄ = 0, the evolution
equation for δn would decouple from the other fluctuating fields as we discussed in the previous section. Because we
solve linearized equations for the perturbations, the solution scales linearly with the initial value δε0.



21

In Fig. 5 we initialize with non-vanishing perturbation in the baryon number density δn(τ0) = δn0 but set δε(τ0) =
δu+(τ0) = δu−(τ0) = 0. The mode excited in this way has essentially diffusive behavior. This is most clearly seen
in the intermediate panel which shows the temporal evolution of δn/δn0. There are no oscillations seen but simply
a decay in amplitude which is faster for large values of k. This decay is mainly a consequence of heat conductivity
(or equivalently, baryon number diffusion). In addition to the baryon number density perturbation, also a (small)
perturbation in δε and δu+ − δu− is excited for τ > τ0. This is again a consequence of the non-vanishing baryon
number density in the background. The behavior of these perturbations is oscillatory, i.e., of sound type.

In Fig. 6 we choose initial conditions with ∆−0 = δu+
0 − δu

−
0 6= 0 while the perturbations δε and δn vanish initially.

This results again in sound propagation of the typical oscillating type. In Fig. 6 we also show the behavior of
perturbations in the orthogonal combination ∆+ = δu+ + δu− which is a shear mode whose decay rate is determined
by shear viscosity η. The shear viscosity dependence of the decay rate for this particular shear mode can be obtained
directly from the corresponding evolution equation (51).

In Fig. 7 we show the final amplitude of the perturbations in energy density (left column) and particle density
(right panel) at τf = 10 fm/c as a function of the k-wave number in units of the initial weight at time τ0=1 fm/c
for η/s = 1/(4π) and different initial conditions of the perturbations of the fluctuating fields. This plot shows that
some modes of the initial perturbations characterized by the k-wave number indeed survive the entire evolution of the
system and at the same time, it also indicates the distribution of of the surviving modes at the scales of time relevant
for the freeze-out surface. 7. The uppermost panel corresponds to the non-zero value for the initial perturbation in
energy density δε(τ0) = δε0 while the remaining fluctuating fields, δn0, δu

+
0 and δu−0 , vanish exactly. The middle

panel corresponds to the case where δn(τ0) = δn0 and δε0 = δu+
0 = δu−0 = 0. The bottom panel corresponds to

∆−0 = δu+
0 − δu

−
0 6= 0 and δε0 = δn0 = 0. For the sound wave type initial conditions (δε0 6= 0 or ∆−0 6= 0) the size

of the amplitudes at τf present a damped oscillatory behavior while for the case when δn0 6= 0 the fluctuation of
the δε and ∆− present an oscillatory behavior while δn shows a exponential type decay which is typical to diffusive
processes. In all the cases we observe that essentially none of the modes survive for values of k ≥ 2 fm−1.

We conclude this subsection by emphasizing again the observation that perturbations in baryon number density
have a diffusive time evolution with a dissipation rate determined by the heat conductivity. For typical values
corresponding to strong coupling behavior, the damping is rather strong but at least the modes with the smallest radial
and azimuthal wave-numbers (small values of m and l) are not dissipated completely and could have experimentally
observables consequences.

C. Exact transverse translation and rotation symmetry

One can also consider a situation with exact symmetry under translations and rotations in the transverse plane. In
that case only perturbations with k = 0 are possible and the fluid velocities in transverse directions have to vanish,
δu+ = δu− = 0. Again Eqs. (49)-(52) simplify substantially, albeit not to a point where they can be integrated
directly. Specifically, Eq. (49) becomes
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(62)

and the evolution equation for the perturbation in baryon number density (50) becomes
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)
ε

q2

τ2
δn = 0.

(63)

7 This can be understood directly when taking the Fourier transform of the fluctuating fields at τ = τf , e.g., Eq. (43) The distribution of
the fluctuating field as a function of its k-wave number determines the distribution of this field in coordinate space and determines the
location of the maximum allowed correlation length in coordinate space.
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FIG. 8. (Color online) Evolution of perturbations in energy density, baryon number density and fluid velocity with exact
transverse translation and rotation symmetry (k = 0, δu+ = δu− = 0) for different values of the rapidity wavenumber q: q = 1
(black line), q = 3 (red line) and q = 5 (blue line). We compare two different values of the ratio of shear viscosity to entropy
density η/s = 1/(4π) (left column) and η/s = 10/(4π) (right column). Heat conductivity is parametrized by Eq. (25). We use
T0 = 0.5 GeV, µ0 =0.05 GeV, τ0= 1 fm/c, τf=10 fm/c and for the initial values of the hydrodynamic fluctuations we choose
δε(τ0) 6= 0, δn(τ0) = δuη(τ0) = 0. See text for further details.

Finally, the evolution equation for the rapidity component of the fluid velocity (52) becomes(
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(64)
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FIG. 9. (Color online) Same as Fig. 8 but for different initial values of the fluid perturbations: δn(τ0) 6= 0, δε(τ0) = δuη(τ0) = 0.
See text for further details.

These equations simplify further in a situation with vanishing baryon number density, the numerical solution for
this situation has already been discussed in Ref. [46]. The solution of the fluctuating fields is in general complex but
subject to the reality constraints δε∗(τ, q) = δε(τ,−q) and similar for δn and δuη.

In order to gain some qualitative insights let us consider a simple equation of state ε = 3p while setting n̄ = µ̄ = 0
and neglecting the effects of viscosities where they are sub-leading compared to other background terms. One can
then derive for the variable δ = δε/ε̄ the equation

∂2
τ δ +

[
5

3τ
+

(
ζ̄ + 4η̄/3

ε̄+ p̄

)
q2

τ2

]
∂τδ +

q2

3τ2
δ = 0. (65)

This equation describes sound propagation in the longitudinal direction on top of the expanding Bjorken background
solution. Both the expansion and the viscosities have a damping effect as can be read of from the term ∼ ∂τδ. The
last term in Eq. (65) is due to pressure gradients and the actual driving term of sound propagation. It is somewhat
different than in other situations because of the time dependence ∼ 1/τ2.



24

q = 1

q = 3

q = 5

2 4 6 8 10
-4

-2

0

Im
(δ
ϵ
(τ

,q
)
]
/δ

u
0η
[G

eV
4
])

η/s = 1/(4π)

2 4 6 8 10

-0.55

-0.30

-0.05

η/s = 10/(4π)

2 4 6 8 10

-0.008

-0.002

0.004

Im
(δ

n
(τ

,q
)]
/δ

u
0η
[G

eV
3
])

η/s = 1/(4π)

2 4 6 8 10

-0.0035

-0.0020

-0.0005

η/s = 10/(4π)

2 4 6 8 10
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

τ [fm/c]

R
e
[δ

u
η
(τ

,q
)
]
/δ

u
0η

η/s = 1/(4π)

2 4 6 8 10
-0.05

0.15

0.35

0.55

0.75

0.95

τ [fm/c]

η/s = 10/(4π)

FIG. 10. (Color online) Same as Fig. 8 but for different initial values of the fluid perturbations: δuη(τ0) 6= 0, δε(τ0) = δn(τ0) = 0.
See text for further details.

More general, the set of equations (62), (63) and (64) describe also baryon number density waves and diffusion in
the longitudinal direction. We show numerical solutions to the evolution equations (62) - (64) in Figs. 8, 9 and 10
for different initial conditions. As we proceed in Sect. IV B we compare two different values of the ration of shear
viscosity to entropy density η/s = 1/(4π) (left panel) and η/s = 10/(4π) (right panel). For the background fields we
use again the scaling solution (30).

For Fig. 8 we choose only δε to be non-zero initially. Compared with the behavior of the transverse sound waves
or sound waves in a static medium discussed in the previous section, the evolution of the resulting longitudinal sound
waves is completely different. In particular, no proper oscillations are visible during the entire temporal evolution.
Rather, one observes a decay in amplitude, in particular at early times. This effect of the longitudinal expansion is
particularly strong for large values of q. At later times the damping actually weakens to the extent that amplitudes
remain non-zero at the final time. Interestingly, the influence of viscosity on the time evolution of longitudinal
perturbations is relatively weak. Some quantitative differences are of course visible between the left and right panels
of Fig. 8 but qualitatively, the evolution is surprisingly similar.
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FIG. 11. (Color Online) Amplitude of the perturbations at τf = 10 fm/c in units of the initial weight at τ = 1 fm/c as a
function of the q-wave number. We choose η/s = 1/(4π), T0 = 0.5 GeV and µ0 = 0.05 GeV. In each panel we choose a
non-vanishing value initially for one of the fluctuating fields while the remaining ones are set to zero. The top, middle and
bottom panels correspond to different initial conditions δε0 6= 0, δn0 6= 0 and uη0 6= 0, respectively.

Figure 9 was obtained by selecting only δn 6= 0 at τ0. Again, we do not observe any proper oscillations of the
fluctuating fields along the longitudinal direction. In this case the viscosity and heat conductivity have a somewhat
larger effect. The amplitude of the fluctuating fields gets damped as one increases the value for the shear viscosity
and heat conductivity (according to Eq. (25)).

In Figure 10 we choose δuη0 6= 0. As in the previous two situations, there is no proper oscillation visible for the
time interval shown.

Finally, Fig. 11 shows the final amplitude of perturbations at τf = 10 fm/c in units of the initial weight at time
τ0 as a function of the longitudinal q-wavenumber. Figure 11 is obtained by choosing a non-vanishing value initially
for one particular fluctuating field while the remaining fluctuating fields are initially set to zero. The top, middle and
bottom panels of Fig. 11 corresponds to δε0 6= 0, δn0 6= 0 and δu−0 6= 0, respectively. We observe that the amplitude
of the fluctuating modes goes asymptotically to zero for q ≥ 25 which corresponds to a small window in the rapidity
variable (i.e., ∆η ∼ (∆q)−1). We expect that modes with intermediate and large q would be damped stronger for
earlier initialization time τ0.

Finally, in a situation where Bjorken boost invariance as well as translations and rotations in the transverse plane
are realized exactly, i. e., δuη = δu+ = δu− = k = q = 0, Eqs. (49) and (50) reduce simply to a linearized version of
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the Bjorken expansion in Eq. (26) as it has to be.

V. THE TWO POINT CORRELATION FUNCTION OF BARYONIC PARTICLES

In this section we discuss the possibility to access the information about perturbations in the baryon number density
experimentally by measuring a correlation function of the net number of baryons (baryons minus anti-baryons) as
a function of the rapidity and azimuthal angle. We concentrate for simplicity on the case of vanishing background
baryon number density as discussed in Sect. IV A.

Perturbations in baryon number density in position space as described by Eq. (54) are not directly accessible to
experiments. However, a fluctuating baryon number density and chemical potential on the kinetic freeze-out surface
has an influence on the distribution of particles with non-zero baryon number in momentum space. This concerns
in particular protons but also resonances with non-vanishing baryon number. Similar as for flow observables, there
is a direct link between different harmonics in azimuthal angle and rapidity in the fluid dynamic description and
the corresponding harmonics in the momentum space particle distribution. Thus, we can partly access the physical
information contained in Eq. (54). As an example, we consider a connected two-point correlation function of the type8

CBaryon(φ1 − φ2, η1 − η2) = 〈nBaryons(φ1, η1)nBaryons(φ2, η2)〉c, (66)

which measures correlations of baryonic particles (i.e. the number of baryons minus anti-baryons) as a function of
the difference between (particle momentum) azimuthal angles φ1 − φ2 and (particle momentum) rapidities η1 − η2.
In Eq. (66), nBaryons(φ, η) is the number of baryons minus anti-baryons as found in the detector in a particular bin in
azimuthal angle φ and rapidity η 9. We also introduce the Fourier representation

CBaryon(φ1 − φ2, η1 − η2) =

∞∑
m=−∞

∫
dq

2π
C̃Baryon(m, q) eim(φ1−φ2)+iq(η1−η2). (67)

The correlation function in Eqs. (66) and (67) is determined by a combination of initial conditions (set at the time
where a fluid dynamic description becomes valid) and response functions that describe how baryon number density
perturbations propagate in the fluid dynamic regime and how they influence the particle distributions at freeze-out.

In the following we discuss both parts in a bit more detail. First, the initial state after a heavy ion collision (and after
the early non-equilibrium dynamics) at the time τ0 when a fluid dynamic description becomes valid, is characterized
by a fluctuating baryon number density δn(τ0, r, φ, η) around some average or expectation value n̄(τ0, r). (The latter
might be rather small at LHC and upper RHIC energies and we neglect it in the following.) For the fluctuating part
we use a Bessel-Fourier decomposition

δn(τ0, r, φ, η) =

∞∑
m=−∞

∞∑
l=1

∫
dq

2π
δn

(m)
l (q) eimφ+iqηJm

(
z

(m)
l ρ(r)

)
(68)

An event-by-event ensemble of initial conditions conditions for the baryon number density can be characterized in

terms of the weights δn
(m)
l (q). For example, the two-mode correlation function is

〈δn(m1)
l1

(q1) δn
(m2)
l2

(q2)〉 = 2πδ(q1 + q2)δm1+m2,0 C
(m)
δnδn;l1,l2

(q). (69)

We have assumed here that the ensemble of initial conditions is statistically symmetric under azimuthal rotations and
longitudinal boosts leading to the factors δm1+m2,0 and 2πδ(q1 + q2) on the right hand side of Eq. (69).

For a single event with baryon number perturbation as in (68), the baryon number distribution in momentum space

after kinetic freeze-out will be proportional to the weights δn
(m)
l (q) within the linear response approximation. More

specific, the Bjorken-boost and azimuthal rotation symmetries imply that one can write

n
(m)
Baryons(q) =

∑
l

SBaryons;(m)l(q)δn
(m)
l (q), (70)

8 The brackets 〈· · · 〉 in Eq. (66) denote an event average

〈O(x, y)〉 = lim
Nevents→∞

1

Nevents

Nevents∑
i=1

Oi(x, y) .

9 There is a complication due to the fact that neutrons cannot be measured experimentally. Further studies are needed in order to quantify
whether this presents a problem for observables as in (66) and if so, how these can be overcome. Also, one should estimate possible
contributions to Eq. (66) from sources other than fluid dynamics, such as resonance decays.
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with linear baryon number response function SBaryons;(m)l(q). The object on the left hand side of Eq. (70) is the
Bessel-Fourier weight of the (momentum space) distribution of the number of baryons minus anti-baryons. The
correlation function on the right hand side of (67) can be written as

C̃Baryon(m, q) =

∞∑
l1,l2=1

SBaryon;(m)l1(q)SBaryon;(−m)l2(−q)C(m)
δnδn;l1,l2

(q). (71)

For a more detailed discussion of the response function formalism briefly introduced here we refer to Ref. [51].
The linear response functions SBaryon;(m)l(q) are in particular also affected by heat conductivity. More specific, the

analog of the factor exp(−k2I1 − q2I2) in a situation with realistic transverse dependence and radial flow leads to a
suppression of modes with q2 > 0 and large values of m and/or the radial wave number l. Qualitatively, one expects
that the scale for the suppression in the transverse direction is set by the (time dependent) radius R of the fireball.

Moreover, the l’th zero crossings z
(m)
l of the Bessel-functions Jm(z) are for fixed l approximately linear in m (for the

relevant values of m and l, with prefactor of order unity) so that one expects qualitatively

C̃Baryon(m, q) ≈ exp(−2m2I ′1 − 2q2I ′2)C̃ κ̄=0
Baryon(m, q), (72)

where on the right hand side C̃ κ̄=0
Baryon(m, q) would be the corresponding correlation function in the (somewhat hy-

pothetical) situation of vanishing heat conductivity and the dissipative attenuation terms can be roughly estimated
as

I ′1 ≈
∫ τf

τ0

dτ
1

R2
κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

,

I ′2 ≈
∫ τf

τ0

dτ
1

τ2
κ̄

[
n̄T̄

ε̄+ p̄

]2(
∂(µ/T )

∂n

)
ε

.

(73)

Going now back to the two-particle correlation function (66), the exponential suppression factor in Eq. (72) implies
for large I ′2 long range correlations with respect to the rapidity difference η1 − η2, with a decay that is determined

by the value of I ′2 (except if C̃ κ̄=0
Baryon(m, q) has a very strong decay with q already) and a similar, although weaker,

effect with respect to the azimuthal wavenumber m. In order to make our qualitative statements more precise, it is
necessary to generalize the calculations described here to a more realistic background. A more realistic background
would have a realistic transverse profile and expansion in addition to the longitudinal (boost-invariant) expansion.
Moreover, one also has to perform more detailed studies of the initial conditions and kinetic freeze-out, that both
affect C̃ κ̄=0

Baryon(m, q).

VI. CONCLUSIONS

We have studied solutions of the fluid equations describing relativistic heavy ion collisions in the presence of a
globally conserved quantum number (baryon number) using a background-fluctuating splitting. For the background
we have assumed Bjorken boost and transverse translation and rotation invariance. This generalizes Bjorken’s original
solution to non-vanishing baryon number density as well as shear and bulk viscosities. Heat conductivity does not
play a role on the background equations since the diffusion current vanishes exactly due to the symmetries of the
Bjorken flow.

We derived evolution equations for the perturbations around this background solution. While the amplitude of
these perturbations was assumed to be small, such that linearized equations could be used, the formalism allows us to
treat perturbations with arbitrary dependence on the transverse coordinates and rapidity. Technically, this is done by
employing a Bessel-Fourier expansion. The partial differential equations of relativistic fluid dynamics become ordinary
differential equations for the different modes that are characterized by radial, azimuthal and rapidity wave numbers.
The evolution of these perturbations is governed by the thermodynamic properties encoded in the equation of state
p(T, µ) as well as the transport properties (i.e., shear viscosity η(T, µ), bulk viscosity ζ(T, µ) and heat conductivity
κ(T, µ) in the first order formalism we use).

Generically, one finds that perturbations with large wave numbers are damped more quickly by the dissipative
processes, as expected. The dissipation of different modes depends on time in a different way and, in particular,
deviations from Bjorken boost symmetry show a fast damping at early times. In principle, it might be possible to use
these dependencies to probe transport and thermodynamic properties at different times in the evolution history and
therefore for different temperatures of the quark-gluon plasma produced in a heavy ion collision.
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In order to make more quantitative statements, one must take a realistic transverse density profile and expansion
into account, of course. This has been done for perturbations with exact Bjorken boost symmetry and vanishing
baryon number in Refs. [47, 48, 50, 51]. In the present paper we have concentrated mainly on the evolution of
perturbations in baryon number density. They have diffusion-type evolution governed by the longitudinal expansion
and heat conductivity. (In the Landau frame, heat conductivity can in fact be understood as baryon number diffusion.)
There are characteristic differences in the dependencies on longitudinal and transverse wave numbers. More specific,
baryon number perturbations are quickly “flattened out” in the longitudinal direction at early times.

In principle, the information on baryon number perturbations is accessible experimentally via two-point (and higher
order) correlation functions of particles with non-zero baryon number, as a function of the difference in azimuthal
angles and rapidities. Based on the evolution equations for perturbations, we expect long-range correlations in rapidity
(a “baryon number ridge”). For a more detailed theoretical picture one needs a better description of the local event-by-
event fluctuations in baryon number density at the initial time when fluid dynamics becomes valid. Also, one should
take a realistic transverse expansion into account and study the implications of baryon number perturbations at the
kinetic freeze-out. (Formulas needed for this have already been derived in Ref. [50].) It would be very interesting to
study net-baryon number correlations experimentally, as well as theoretically in more detail, and thereby constrain
heat conductivity as another property of the quark-gluon plasma.
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Appendix A: Thermodynamic relations in the grand canonical ensemble

In this appendix we compile some thermodynamic relations in the grand canonical ensemble that we found useful
in the context of relativistic fluid dynamics with a conserved charge. We start from the pressure p(T, µ), which is
related to the thermodynamic potential of the grand canonical ensemble (the Landau potential) by p = −Ω/V . The
differential of pressure is

dp = sdT + ndµ . (A1)

All thermodynamic quantities can be obtained from this and the Gibbs-Duhem relation ε+ p = Ts+µn, for example

s =

(
∂p

∂T

)
µ

, n =

(
∂p

∂µ

)
T

. (A2)

In the following we will sometimes drop the subscripts with the convention that pressure is evaluated as a function
of T and µ unless indicated otherwise. Also we find it useful to express all susceptibilities in terms of the pressure
and its derivatives. This avoids ambiguities and realizes Maxwell’s relations automatically. For example, the energy
density is obtained then as

ε = −p+ T
∂p

∂T
+ µ

∂p

∂µ
. (A3)

Its differential, as well as the one for density, are

dε =

[
T
∂2p

∂T 2
+ µ

∂2p

∂T∂µ

]
dT +

[
T

∂2p

∂T∂µ
+ µ

∂2p

∂µ2

]
dµ , (A4a)

dn =
∂2p

∂T∂µ
dT +

∂2p

∂µ2
dµ . (A4b)

http://arxiv.org/abs/de-sc/0004286
http://arxiv.org/abs/de-sc/0004104


29

These linear relations can be inverted to yield dT and dµ in terms of dε and dn,

dT =

∂2p
∂µ2

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

dε−
T ∂2p
∂T∂µ + µ ∂

2p
∂µ2

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

dn,

dµ =−
∂2p
∂T∂µ

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

dε+
T ∂2p
∂T 2 + µ ∂2p

∂T∂µ

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

dn.

(A5)

Other useful quantities are the heat capacity densities

cV =
T

V

(
∂S

∂T

)
V,N

= T

(
∂s

∂T

)
n

=
T
(
∂2p
∂T 2

∂2p
∂µ2 − ∂2p

∂T∂µ
∂2p
∂T∂µ

)
∂2p
∂µ2

,

cP =
T

V

(
∂S

∂T

)
P,N

=
T

s/n

(
∂(s/n)

∂T

)
P

=
T

n2

(
n2 ∂

2p

∂T 2
− 2sn

∂2p

∂T∂µ
+ s2 ∂

2p

∂µ2

) (A6)

the isothermal and adiabatic compressibilities

κT =− 1

V

(
∂V

∂p

)
T,N

=
1

n

(
∂n

∂p

)
T

=
1

n2

∂2p

∂µ2
,

κS =− 1

V

(
∂V

∂p

)
S,N

=
1

n

(
∂n

∂p

)
s/n

=

∂2p
∂T 2

∂2p
∂µ2 − ∂2p

∂T∂µ
∂2p
∂T∂µ

n2 ∂
2p

∂T 2 − 2sn ∂2p
∂T∂µ + s2 ∂

2p
∂µ2

,

(A7)

the thermal expansion coefficient

α =
1

V

(
∂V

∂T

)
P,N

= − 1

n

(
∂n

∂T

)
P

=
1

n2

(
s
∂2p

∂µ2
− n ∂2p

∂T∂µ

)
, (A8)

the sound velocity at fixed entropy per particle

c2s =

(
∂p

∂ε

)
s/n

=
n2 ∂

2p
∂T 2 − 2sn ∂2p

∂T∂µ + s2 ∂
2p
∂µ2

(ε+ p)
(
∂2p
∂T 2

∂2p
∂µ2 − ∂2p

∂T∂µ
∂2p
∂T∂µ

) , (A9)

and a modified sound velocity at fixed particle density

c̃2s =

(
∂p

∂ε

)
n

=
s ∂

2p
∂µ2 − n ∂2p

∂T∂µ

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

. (A10)

Both sound velocities agree for vanishing baryon number density, n = 0. Note that the usual relations

cP
cV

=
κT
κS
, cP − cV =

Tα2

κT
,

κT − κS =
Tα2

cP
, c2s =

1

κS(ε+ p)
,

(A11)

are fulfilled. Moreover, one has

c̃2s =
α

cV κT
,

1

cV
− 1

cP
=

T c̃4s
c2s(ε+ p)

(A12)
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For the evolution equations of linear perturbations as discussed in Sec. IV we need also(
∂p

∂ε

)
n

=
s ∂

2p
∂µ2 − n ∂2p

∂T∂µ

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,

(
∂p

∂n

)
ε

=
Tn ∂

2p
∂T 2 + (Ts+ µn) ∂2p

∂T∂µ + µs ∂
2p
∂µ2

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,

(
∂(µ/T )

∂ε

)
n

=

1
T

∂2p
∂T∂µ −

µ
T 2

∂2p
∂T∂µ

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,

(
∂(µ/T )

∂n

)
ε

=

∂2p
∂T 2 − µ2

T 2
∂2p
∂µ2

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,

(
∂ζ

∂ε

)
n

=

∂ζ
∂T

∂2p
∂µ2 − ∂ζ

∂µ
∂2p
∂T∂µ

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,

(
∂ζ

∂n

)
ε

=

∂ζ
∂µ

(
T ∂2p
∂T 2 + µ ∂2p

∂T∂µ

)
− ∂ζ

∂T

(
T ∂2p
∂T∂µ + µ ∂

2p
∂µ2

)
T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,

(
∂η

∂ε

)
n

=

∂η
∂T

∂2p
∂µ2 − ∂η

∂µ
∂2p
∂T∂µ

T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,

(
∂η

∂n

)
ε

=

∂η
∂µ

(
T ∂2p
∂T 2 + µ ∂2p

∂T∂µ

)
− ∂η

∂T

(
T ∂2p
∂T∂µ + µ ∂

2p
∂µ2

)
T ∂2p
∂T 2

∂2p
∂µ2 − T ∂2p

∂T∂µ
∂2p
∂T∂µ

,
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where, similarly to pressure p(T, µ), the bulk viscosity ζ(T, µ) and shear viscosity η(T, µ) are functions of T and µ on
the right hand side.

Appendix B: Linearized relativistic fluid dynamics

In this appendix we discuss a background-fluctuation splitting for the fluid dynamic equations as it is used in
Sec. IV. We split the fluid dynamic fields into a background part and a perturbation according to

uµ = ūµ + δuµ,

ε = ε̄+ δε,

n = n̄+ δn,

πbulk = π̄bulk + δπbulk,

(B1)

and so on. The projector orthogonal to the fluid velocity is given by

∆µν = ∆̄µν + δ∆µν , (B2)

with δ∆µν = ūµδuν + δuµūν . If one restricts to a linear treatment of perturbations, the equations of motion for the
background are simply the full equations of motion (5). For the perturbations in energy and particle number density
one obtains from Eq. (5)

ūµ∂µδε+ δuµ∂µε̄+ (ε̄+ p̄+ π̄bulk)∇µδuµ + (δε+ δp+ δπbulk)∇µūµ

+π̄µν∇µδuν + δπµν∇µūν = 0,

ūµ∂µδn+ δuµ∂µn̄+ n̄∇µδuµ + δn∇µūµ +∇µδνµ = 0,

(B3)

and for the fluid velocity

(ε̄+ p̄+ π̄bulk)ūµ∇µδuν + (ε̄+ p̄+ π̄bulk)δuµ∇µūν + (δε+ δp+ δπbulk)ūµ∇µūν

+∆̄νµ∂µ(δp+ δπbulk) + δ∆νµ∂µ(p̄+ π̄bulk) + ∆̄ν
α∇µδπµα + δ∆ν

α∇µπ̄µα = 0.
(B4)
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In these equations one can see δε and δn as independent variables, to which other thermodynamic variables and the
transport coefficients are related in the standard way, e.g.,

δp =

(
∂p

∂ε

)
n

δε+

(
∂p

∂n

)
ε

δn,

∂µδp =

(
∂p

∂ε

)
n

∂µδε+

(
∂p

∂n

)
ε

∂µδn+ ∂µ

(
∂p

∂ε

)
n

δε+ ∂µ

(
∂p

∂n

)
ε

δn.

(B5)

From the constitutive relation of first order fluid dynamics in Eq. (6) one finds

δπµν = −2η̄ δσµν − 2δη σ̄µν (B6)

with

δσµν =
1

2
∆̄µα∇αδuν +

1

2
∆̄να∇αδuµ −

1

3
∆̄µν∇αδuα

+
1

2
δ∆µα∇αūν +

1

2
δ∆να∇αūµ −

1

3
δ∆µν∇αūα.

(B7)

Similarly, for the bulk viscous pressure in Eq. (7) one finds

δπbulk = −ζ̄ δθ − δζ θ̄, (B8)

with

δθ = ∇µδuµ. (B9)

Finally, the perturbation of the diffusion current is obtained from eq. (8) as

δνα = −κ̄
[
n̄T̄

ε̄+ p̄

]2

δια − δ

(
κ

[
nT

ε+ p

]2
)
ῑα, (B10)

with

δια = ∆̄αβ∂β δ (µ/T ) + δ∆αβ∂β
(
µ̄/T̄

)
, (B11)

and

∂βδ (µ/T ) =

(
∂(µ/T )

∂ε

)
n

∂βδε+

(
∂(µ/T )

∂n

)
ε

∂βδn

+ ∂β

(
∂(µ/T )

∂ε

)
n

δε+ ∂β

(
∂(µ/T )

∂n

)
ε

δn.

(B12)

Equations (B3) and (B4) also involve the following divergence of the shear stress perturbation

∇µδπµν =− 2(∂µη̄)δσµν − 2η̄∇µδσµν − 2(∂µδη)σ̄µν − 2δη∇µσ̄µν , (B13)

with

∇µδσµν = 1
2∆̄µα∇µ∇αδuν + 1

2∆̄να∇µ∇αδuµ − 1
3∆̄µν∇µ∇αδuα

+ 1
2δ∆

µα∇µ∇αūν + 1
2δ∆

να∇µ∇αūµ − 1
3δ∆

µν∇µ∇αūα

+ ūµ(∇µūα)∇αδuν + 1
6 (∇µūµ)ūα∇αδuν

+ ūν(∇µδuα)∇αūµ − 2
3 ū

ν(∇µδuµ)∇αūα

+ 1
2δu

ν(∇µūα)∇αūµ − 1
3δu

ν(∇µūµ)∇αūα

+ ūµ(∇µδuα)∇αūν + 1
6 (∇µūµ)δuα∇αūν

+ δuµ(∇µūα)∇αūν + 1
6 (∇µδuµ)ūα∇αūν ,

(B14)

the derivative of the bulk viscous pressure perturbation

∂µδπbulk = −(∂µζ̄)δθ − θ̄∂µδθ − (∂µδθ)θ̄ − δζ∂µθ̄, (B15)
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with

∂µδθ = ∇µ∇αδuα, (B16)

and finally the divergence of the perturbation in the diffusion current

∇ανα =− ∂α

[
κ̄

(
n̄T̄

ε̄+ p̄

)2
]
δια − κ̄

(
n̄T̄

ε̄+ p̄

)2

∇αδια

−∇αδ

[
κ

(
nT

ε+ p

)2
]
ῑα − δ

[
κ

(
nT

ε+ p

)2
]
∇αῑα,

(B17)

with

∇αδια =∆̄αβ∇α∂β δ(µ/T ) +∇α∆̄αβ ∂β δ(µ/T )

+∇αδ∆αβ∂β
(
µ̄/T̄

)
+ δ∆αβ∇α∂β

(
µ̄/T̄

)
.

(B18)

and

∇α∂βδ(µ/T ) =

(
∂(µ/T )

∂ε

)
n

∇α∂βδε+

(
∂(µ/T )

∂n

)
ε

∇α∂βδn

+ ∂α

(
∂(µ/T )

∂ε

)
n

∂βδε+ ∂α

(
∂(µ/T )

∂n

)
ε

∂βδn

+ ∂β

(
∂(µ/T )

∂ε

)
n

∂αδε+ ∂β

(
∂(µ/T )

∂n

)
ε

∂αδn

+∇α∂β
(
∂(µ/T )

∂ε

)
n

δε+∇α∂β
(
∂(µ/T )

∂n

)
ε

δn.

(B19)

Note that the expression in Eq. (B19) is contracted in Eq. (B18) with the projector ∆̄αβ . In many circumstances the
background field changes only in the direction of ūµ such that Eq. (B19) simplifies substantially.

Note that the formulas compiled in this appendix allow us to obtain for a given background solution and ther-
modynamic equation of state linear evolution equations for the perturbations around this background solution. The
independent variables of these linearized equations are the three independent components of δuµ (one constraint is
given by the condition ūµδu

µ = 0) as well as δε and δn. In the first order formalism of relativistic fluid dynamics,
the equations for the perturbations are of parabolic type while they are expected to become of elliptic type when
relaxation time terms are kept.
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