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Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background
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Baryon number density perturbations offer a possible route to experimentally measure baryon number
susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of
local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a
(generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier
decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the
radius in the transverse plane, and rapidity. We examine how the time evolution of linear perturbations depends
on the equation of state as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with
different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to
experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in
high energy nuclear collisions.
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I. INTRODUCTION

One of the most important goals of the experimental
program of high energy nuclear collisions is to determine
the transport and thermodynamical properties of QCD as a
function of temperature T and baryon chemical potential μ.
During the past few decades, the experimental data measured at
the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory and the Large Hadron Collider (LHC) at
CERN in Geneva has shown collective behavior of the QCD
matter created after the collision of heavy nuclei at high ener-
gies [1–7]. The low momentum region of the transverse hadron
spectra and the two particle correlation functions are well
described by relativistic viscous fluid dynamics with a very
small value of the shear viscosity over entropy ratio.1 These
results have been taken as evidence for the production of an
almost perfect liquid, a strongly coupled quark gluon plasma.

The hydrodynamic modeling of heavy ion collisions solves
on an event-by-event basis the relativistic fluid equations cor-
responding to energy-momentum conservation laws together
with the so called constitutive relations for the shear viscous
tensor and bulk pressure. Within this approach, little attention
has been paid to the possible role of the baryon density n
and/or baryon chemical potential μ. At high energies, this
is justified because n and μ are very small, at least in the
midrapidity region. However, interesting physics could be
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probed by investigating event-by-event fluctuations in the local
baryon number density.

Baryon number fluctuations have been mainly discussed in
the context of heavy ion collisions at lower energy where
larger values of μ can be realized. Interesting features of
the QCD phase diagram can emerge there [10]. Different
effective models have predicted the existence of a first-order
phase boundary that separates hadronic matter from the quark
gluon plasma at larger values of the baryon chemical potential.
This boundary comes to an end at some critical values of the
temperature Tc and baryon chemical potential μc. Right now
there is no conclusive evidence for the location of a critical
point in the T -μ plane from lattice QCD calculations at finite
baryon density [11].

On the other hand, in heavy ion collisions it has been pro-
posed to study second and higher order cumulants of particle
multiplicity distributions as a function of the center of mass
energy

√
s [12–31]. From thermodynamic considerations, it is

expected that these moments scale with the correlation length
which is expected to become large near the QCD critical point
[16–18,26,28,32]. Possible signs of the critical point have been
measured at RHIC but at present these do not provide a con-
clusive evidence [33–36]. If the expanding fireball of nuclear
matter passes through a critical region (close to a critical point),
one can extract information about the equation of state and
the critical behavior of transport coefficients from the particle
spectra formed at the freeze-out surface. It is important to
determine whether the possible signatures of the critical point
can survive the entire evolution of the expanding fireball.

In the fluid dynamic framework, different aspects of the
evolution of the fireball can change the pattern expected
from purely thermodynamic considerations. Thermodynamic
fluctuations are in principle part of a fluid dynamic description,
at least in an extended sense where one accounts also for noise.
Fluctuations evolve in time and space during the expansion of
the fireball and thus these are indeed effected by the equation
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of state and specially the transport coefficients such as the
viscosities and conductivities. Close to equilibrium, there is
also a deep theoretical connection between thermodynamic
fluctuations in fluid dynamic fields and dissipative transport
properties as stated by the fluctuation-dissipation theorem;
see, e.g., Refs. [37–39]. In the vicinity of the critical point,
heat conductivity κ as well as the shear and bulk viscosities η
and ζ show critical behavior [40–43].

Besides genuine thermodynamic fluctuations (or noise),
there is another possible source of fluctuations in the fluid
dynamic approach to heavy ion collisions. These are the
fluctuations already present in the initial state when the
fluid dynamic treatment becomes valid. Their origin can be
either the substructure of the colliding nuclei or the far-from-
equilibrium dynamics preceding a fluid dynamic regime. This
kind of initial state perturbation is particularly important for
energy and/or entropy density. Fluctuations in the geometric
distribution of nucleons within a nucleus lead to initial density
perturbations which—after a fluid dynamical evolution—
determine the spectrum of harmonic flow coefficients and,
for example the form of the two-particle correlation function
(“the ridge”) in heavy ion collisions.

In a very similar way to fluctuations in the initial energy
density, one can also expect, for example from a Glauber-
type description of the initial state, initial fluctuations in
the baryon number density. Indeed, baryon number density
carried by protons and neutrons is presumably not distributed
homogeneously within a nucleus and fluctuates locally and
from event to event. In addition, the baryons and antibaryons
produced by pair production directly after the collision are
subject to some local and event-by-event fluctuations [44].

In order to discriminate the effects associated to the
thermodynamic fluctuations from the initial state fluctuations,
it is necessary to understand their space-time evolution. In the
present work we will concentrate mainly on the dynamics of
initial state fluctuations although parts of our formalism are
relevant also for the evolution of thermodynamic fluctuations.
Initial state fluctuations are interesting on their own. For
instance, the evolution of the initial perturbations of energy
density depends on the viscosities, in particular shear viscosity.
In a similar way, the evolution of baryon number density
depends on heat conductivity (in the Landau frame one may see
heat conductivity equivalently as baryon number diffusion). If
one has a theoretical understanding of initial state perturbations
in baryon number density and their fluid dynamic evolution,
it is possible to study their consequences for particle spectra
at freeze-out. Provided possible signals are large enough to
be seen within the constraints set by finite statistics, there
could be a possibility to constrain the heat conductivity of the
quark gluon plasma from experimental data. This would be
very interesting for not only low energy collision experiments
which aim at exploring the QCD phase diagram, but also at
RHIC and LHC energies where baryon number diffusion could
be another characteristic of the quark-gluon plasma.

As a first step in this direction we study here the fluid
dynamic propagation of local and event-by-event fluctuations
of the baryon number density, flow velocity, and energy den-
sity. These fluctuations propagate on top of a hydrodynamical
background which, for simplicity, we consider to be described

by Bjorken’s model [45] (which includes finite baryon number
density). In order to study the fluid dynamic propagation of
perturbations we use a background-fluctuation splitting and a
Bessel-Fourier decomposition for the fluctuating part of the
fluid fields [46–53]. We derive the evolution equations of the
linear fluctuations and solve them for different initial condi-
tions, values of the transport coefficients, and equation of state.

This work is organized as follows. In Sec. II we review
briefly the theory of relativistic fluid dynamics at finite
chemical potential putting emphasis on the role of the equation
of state and current estimates of the transport coefficients in
the strong and weakly coupling regimes. The main features of
the temporal evolution of the background fields are discussed
in Sec. III. In Sec. IV we formulate the theory of linear
perturbations on top of this evolving background and discuss
numerical solutions. In Sec. V we draw some conclusions for
a potential experimental observable, the correlation function
of net baryon number as a function of azimuthal angles
and rapidity. General conclusions are presented in Sec. VI.
Some technical details of our calculations are presented in
Appendixes A and B, respectively.

II. RELATIVISTIC FLUID DYNAMICS WITH
A GLOBALLY CONSERVED CHARGE

We consider a relativistic fluid with one globally conserved
quantum number current (baryonic number for our purposes).
The energy-momentum tensor and number current are

T μν = ε uμuν + (p + πbulk)�μν + πμν, Nμ = n uμ + νμ.

(1)

Here, ε is the energy density, uμ is the fluid velocity, πμν is
the shear stress tensor, πbulk is the bulk viscous pressure, n is
the particle density, and νμ is the particle diffusion current.
We choose the signature of the metric gμν to be (−,+,+,+)
and the projector orthogonal to the fluid velocity is

�μν = gμν + uμuν. (2)

The fluid velocity is normalized to uμuμ = −1. We work in
the Landau frame where the fluid velocity is chosen such that
uμT μν = −ε uν . The shear stress tensor is transverse to the
fluid velocity,

uμπμν = 0. (3)

The shear stress tensor is also symmetric and traceless. The
particle number density is defined by n = −uμNμ such that the
diffusion current is orthogonal to the fluid velocity, uμνμ = 0.

It is clear that an arbitrary (symmetric) energy-momentum
tensor T μν (with a timelike eigenvector) and current Nμ can
be written in the above form. The decomposition becomes
unique by requiring that the pressure p is related to the energy
density ε and the baryon density n by the same relation as
in thermodynamic equilibrium, i.e., by an equation of state
p = p(ε,n).

The evolution of the energy-momentum tensor and the
particle current are constrained by the conservation equations

∇μT μν = 0, ∇μNμ = 0, (4)

064906-2



FLUID DYNAMIC PROPAGATION OF INITIAL BARYON . . . PHYSICAL REVIEW C 92, 064906 (2015)

where ∇μ denotes the covariant derivative. In this general form
the conservation equations hold also in curved space-time
but we are interested here in curvilinear systems defined
in Minkowski space without taking into consideration the
gravitational field. From Eqs. (1) and (4) one obtains the
evolution equations for the energy density, fluid velocity, and
particle density

Dε + (ε + p + πbulk)∇μuμ + πμν∇μuν = 0,

(ε+p + πbulk) Duν + �νμ ∂μ(p + πbulk)+�ν
α∇μπμα = 0,

Dn + n∇μuμ + ∇μνμ = 0.

(5)

Here we have introduced the comoving derivative defined as
D = uμ∇μ.

To close the evolution equations (5) one needs expressions
for πbulk, πμν , and νμ. Within the formalism of fluid dynamics
one writes these objects as a derivative expansion in terms of
the fluid velocity uμ and thermodynamic variables ε, n. In the
present work we concentrate for simplicity on the first order of
this expansion. One should keep in mind that terms of second
order are expected to improve the results quantitatively and
are in general needed for an acceptable causal structure and
linear stability [54,55].

The constitutive relation for the shear stress is

πμν = −2η σμν

= −2η
[

1
2�μα�νβ + 1

2�μβ�να − 1
3�μν�αβ

]∇αuβ,

(6)

where η is the shear viscosity transport coefficient. The bulk
viscous pressure is obtained from the following expression:

πbulk = −ζ θ = −ζ ∇μuμ, (7)

where ζ is the bulk viscosity and θ is the expansion scalar.
Finally, the particle diffusion current is

να = −κ

[
nT

ε + p

]2

ια = −κ

[
nT

ε + p

]2

�αβ∂β

(
μ

T

)
, (8)

where κ is the heat conductivity. In the last equation we have
introduced the chemical potential μ, which is conjugate to the
baryon density n, and the temperature T .

In summary, the hydrodynamic equations at this stage
involve the fluid velocity uμ (with three independent com-
ponents), the energy density ε, pressure p, baryon density n,
baryon chemical potential μ, temperature T , as well as the
shear viscosity η, bulk viscosity ζ , and the thermal conduc-
tivity κ . Only two thermodynamic variables are independent
and they also determine the transport properties η, ζ , and κ . In
a nonequilibrium situation only energy density ε = uμuνT

μν

and baryon number density n = −uμNμ are directly related
to the physical energy-momentum tensor T μν and number
current Nμ. All other thermodynamic variables are defined
indirectly via their relation to ε and n in thermal equilibrium.

For the practical calculations one is in principle free to
use any set of independent thermodynamic variables. The
form of Eqs. (5) suggests the use of the energy density ε
and baryon density n. However, because most microscopic

calculations are done in the grand canonical ensemble, the
thermodynamic equation of state and the transport coefficients
are usually obtained as a function of the temperature T and
chemical potential μ, for example p = p(T ,μ). Thus, it can
be advantageous to use T and μ as independent variables in
fluid dynamics, as well. This avoids the inversion of functions
which can be numerically difficult. One should keep in mind
that T and μ in a nonequilibrium situation are defined via
their relation to ε and n. Equations (5) can be transformed
using thermodynamic relations compiled in the Appendix A.
The evolution equation for energy density becomes[

T
∂2p

∂T 2
+ μ

∂2p

∂T ∂μ

]
DT +

[
T

∂2p

∂T ∂μ
+ μ

∂2p

∂μ2

]
Dμ

+ (ε + p) θ − 2η σαβσαβ − ζ θ2 = 0, (9)

where we have now used the constitutive relations (6) and (7).
The evolution equation for the fluid velocity is now of the form

(ε + p) Duν + �να(s ∂αT + n ∂αμ)

−�ν
α∇β

(
2 η σαβ + ζ �αβ ∇γ uγ

) = 0, (10)

and finally, the particle number conservation law becomes

∂2p

∂T ∂μ
DT + ∂2p

∂μ2
Dμ + n θ + ∇ανα = 0. (11)

Note that Eqs. (9) and (11) form a linear system of equations
that can be solved for DT = uα∂αT and Dμ = uα∂αμ as long
as

∂2p

∂T 2

∂2p

∂μ2
−

(
∂2p

∂T ∂μ

)2

�= 0. (12)

To solve the fluid dynamic equations we will use a
background-fluctuation splitting. To this end we write the fluid
dynamic fields as

uμ = ūμ + δuμ, ε = ε̄ + δε, (13)

and similar for the other fields. We are interested in per-
turbations δuμ, δε, etc., that are small enough so that
only linear terms in the evolution equations need to be
kept. The background fields ūμ, ε̄, etc., satisfy the fluid
dynamic equations (5) while the perturbations satisfy linear
equations that depend on the background solution. We derive
these linearized equations for arbitrary background fields in
Appendix B. The structure of the linearized equations permits
us to simply use δε, δn, and three independent components of
the fluid velocity as variables (the fourth component of the fluid
velocity follows from the constraint ūμδuμ = 0). However,
all the background-dependent thermodynamic quantities can
be expressed in terms of T̄ and μ̄. Useful thermodynamic
relations for this purpose are compiled in Appendix A.

In the rest of this section we briefly discuss some simple
parametrization of the thermodynamic equations of state
p(T ,μ) and transport properties η(T ,μ), ζ (T ,μ), κ(T ,μ). We
emphasize that our formalism can be used for an arbitrary
form of these functions once these have been determined from
a particular microscopic description.
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A. Equation of state

The fluid hydrodynamical equations require an equation
of state (EOS) p(T ,μ) as an input. In principle, the equation
of state can be calculated from the inherent quantum field
theory associated to a particular system but this is a formidable
task. In recent years there have been important advances to
determine analytically and numerically the thermodynamical
properties of QCD at high temperatures and chemical potential
by considering effective thermal field theories [56–62] while
in the low temperature and chemical potential regimes one
expects that a noninteracting hadron resonance gas provides a
reasonably good approximation [63].

At intermediate temperatures, nonperturbative methods are
needed to describe the transition which separates the hadronic,
confined phase and the quark-gluon plasma (QGP) phase.
While several studies of lattice QCD simulations are available
at the moment at vanishing chemical potential μ = 0,2 at
μ > 0 lattice simulations are not possible due to the sign
problem. However, different alternatives have been studied
in order to circumvent this problem such as reweighting [64],
Taylor expansion in μ [65–72], analytic continuation from
imaginary μ [73], the density of states method, or using the
canonical ensemble. Of course, each of these methods have
their advantages and disadvantages.

One of the main goals in the analysis of fluid dynamic
fluctuations and their propagation is to provide a phenomeno-
logical determination of the equation of state (or at least of
some of its properties). In the derivation of the evolution
equations for the background and fluctuating fields we shall
keep the equation of state p(T ,μ) unspecified as far as possible
in analytic expressions. For some numerical calculations and
illustrations we use the simplest possible case, a noninteracting
gas of NF massless quarks that come in NC colors and N2

C − 1
gluons,

p(T ,μ) = 1

4!
a1 T 4 + 1

4
a2 T 2μ2 + 1

4!
a3 μ4, (14)

where we use the abbreviations

a1 = 8π2

15

(
N2

C − 1 + 7

4
NCNF

)
,

a2 = 2NCNF

27
, a3 = 2NCNF

81π2
. (15)

The baryon chemical potential μ measures the net baryon
density of the system. In our convention, quarks carry baryon
number charge 1/3 and antiquarks −1/3.

Corrections to the ideal EOS arise as a consequence of
interactions and the breaking of conformal invariance by
dimensional transmutation and nonzero quark masses. They
are most important at low temperatures. We follow here the
Wuppertal collaboration which has parametrized the QCD
equation of state for finite chemical potential in terms of
a Taylor expansion [71]. The leading order expression for

2For a recent review of the lattice QCD studies we refer to the reader
to Ref. [11].

the trace anomaly or QCD interaction measure I (T ,μ) =
ε(T ,μ) − 3p(T ,μ) is

I (T ,μ)

T 4
= I (T ,0)

T 4
+ μ2

2T

∂χ2(T )

∂T
, (16)

where I (T ,0) is the interaction measured at μ = 0 and χ2(T )
is the leading-order Taylor coefficient. Both terms, I (T ,0) and
χ2(T ), can be parametrized analytically as [71,74]

I (T ,0)

T 4
= e−h1/t−h2/t2

[
h0 + f0[tanh(f1 t + f2) + 1]

1 + g1 t + g2 t2

]
, (17a)

χ2(T ) = e−h3/t−h4/t2
f3 [tanh(f4 t + f5) + 1], (17b)

where t = T/(0.2 GeV). For Nf = 2 + 1 flavors of quarks
with physical masses and finite baryon chemical poten-
tial μ the parameters in Eq. (17) are h0 = 0.1396, h1 =
−0.1800, h2 = 0.0350, f0 = 2.76, f1 = 6.79, f2 = −5.29,
g1 = −0.47, g2 = 1.04, h3 = −0.5022, h4 = 0.5950, f3 =
0.0940, f4 = 6.3290, and f5 = −4.8303 [71,74]. The pressure
at finite μ is given by

p(T ,μ)

T 4
= p(T ,0)

T 4
+ 1

2

μ2

T 2
χ2. (18)

At μ = 0 the relation between the pressure and the trace
anomaly (17a) is

p(T ,0)

T 4
=

∫ T

0
dT ′ I (T ′,0)

T ′5 . (19)

All other thermodynamic quantities can be derived from
p(T ,μ) using the standard relations (compiled in Appendix A).
The equation of state (18) with the above parametrization is
valid for small chemical potentials μ/T < 3 in the temperature
window 0 < T < 400 MeV. We will use Eq. (18) to study
the influence of the EOS for the dynamics of the background
fluid dynamic fields.

B. Transport coefficients

In addition to the thermodynamic equation of state, the fluid
dynamical description needs as an input transport coefficients.
These can either be determined experimentally, or, if a micro-
scopic underlying theory is known, they can at least in principle
be calculated as a function of the thermodynamic variables
via Kubo relations. In this section we briefly summarize the
current theoretical knowledge for the shear and bulk viscosities
and thermal conductivity of QCD and related theories, both in
weakly and strongly coupled regimes.3

C. Weak coupling regime

When the interaction strength is small, effective thermal
field theory methods allow us to calculate the transport coeffi-
cients. For weakly coupled QCD in the high temperature and
vanishing chemical potential regime, the leading logarithmic

3A more detailed discussion of the properties of the transport
coefficients discussed in this work can be found in Ref. [75].

064906-4



FLUID DYNAMIC PROPAGATION OF INITIAL BARYON . . . PHYSICAL REVIEW C 92, 064906 (2015)

result for the shear viscosity is [76–78]

η(T ) = k
T 3

g4ln(1/g)
, (20)

where g is the strong coupling constant. In the previous expres-
sion k is a constant that depends on the number of fermions
species [76–78]. Arnold et al. showed that at leading log
accuracy and for high temperatures with vanishing chemical
potential there is an approximate scaling between the shear (η)
and bulk (ζ ) viscosities for weakly coupled QCD [78],

ζ (T ) ≈ 15η(T )
(

1
3 − c2

s (T )
)2

, (21)

where c2
s = dp/dε is the speed of sound. A similar expression

was first derived by Weinberg for a gas of photons [79]. To
date there is no complete leading logarithmic calculation of
the heat conductivity κ(T ,μ) and so far only two estimates
of κ(T ,μ) have been provided in the literature for different
kinematic regions of the T -μ plane [80,81],

κ(T ,μ) =
{

F (T ,mD) μ2/g4, for μ � T ,

C T 4/(g4 μ2), for μ � T ,
(22)

where F (T ,mD) is a function that depends on the temperature
and the Debye screening mass mD (see Ref. [80] for details).
In the case of small chemical potential, the proportionality
constant C depends on the number of flavors and the gauge
group [81]. In the limit where μ → 0 the heat conductivity
κ ∼ μ−2 is divergent. However, the particle diffusion current
(8) remains finite [81]. In the context of relativistic kinetic
theory, some general expressions for the transport coefficients
with constant cross section or within the relaxation time
approximation have been derived recently [82–87]. However,
these calculations do not take into account the quantum
screening effects of the QCD plasma.

Despite relatively large uncertainties, experimental results
indicate that the value of the shear viscosity over the entropy
ratio η/s is smaller than the one calculated from weakly
coupled QCD (20) [8,9]. For the case of the bulk viscosity
the situation is less clear: the uncertainties in its experimental
determination are even larger (see Ref. [88] and references
therein). In addition, there are no experimental constraints for
the value of heat conductivity in high energy nuclear collisions
so far.

D. Strong coupling regime

From the previous discussion it is clear that at this moment
perturbative QCD calculations of the transport coefficients are
not completely under control for all the possible physical
values of the temperature and chemical potential. On the
other side, there are certain classes of strongly interacting
theories where transport coefficients can be determined for
almost all values of T and μ. These are field theories with
known gravitational duals where the computations can be
done via the anti-de Sitter/conformal field theory (AdS/CFT)
correspondence. Despite the fact that those theories are not
equivalent to QCD, they share some qualitative aspects with
it and thus these theories might provide some guidance in the
regimes where pQCD calculations are not reliable. We take

here a pragmatical approach and consider the estimates of
the transport coefficients based on holographic calculations
as toy models which allow us to study the propagation
of perturbations in fluid dynamic fields. For large t’Hooft
coupling and for N = 4 SYM theory, holographic methods
give the well known result [89]

η(T ,μ)

s(T ,μ)
= 1

4π
. (23)

This result holds also for any holographic theory at sufficiently
large coupling and number of colors as long as the theory is
spatially isotropic. This relation for η/s holds even in the
presence of nonzero chemical potential [90]. Initially this
result was conjectured to be a universal lower bound but today
there is evidence showing that this relation does not hold in
general [91–98]. Incidentally, the value of the shear viscosity
extracted from experiments in high energy nuclear collisions
is closer to the one predicted for strongly coupled theories
(23) than the one calculated in weakly coupled QCD (20)
(see Ref. [8] for a recent review).

The shear viscosity has also been calculated for pure
Yang-Mills theory using lattice gauge theory for specific
values of temperature [99,100]. The estimated values for
η/s are somewhat above the AdS-CFT values. Similarly, η/s
as a function of temperature for vanishing baryon chemical
potential has also been estimated for Yang-Mills theory as well
as QCD by using diagrammatic functional relations and gluon
spectral functions obtained by numerical analytic continuation
from Euclidean quantum field theory [101,102]. The minimal
value for QCD was found to be η/s ≈ 0.17 at temperature
T ≈ 1.3Tc.

For holographic theories that deviate from conformal
behavior the bulk viscosity has also been calculated [103],4

ζ (T ,μ) = 2η(T ,μ)
(

1
3 − c2

s (T ,μ)
)
. (24)

As in the case of the shear viscosity value (23) this relation
holds for certain theories with finite chemical potential [105]
but it is not a universal bound [106]. By comparing the scalings
between ζ and η, Eqs. (24) and (21), one observes that they
differ in the strong and weak coupling regime. This mismatch
between both parametrizations is currently not understood. In
the case of the thermal conductivity κ , the calculations for
strongly coupled plasmas with finite chemical potential give
the following result [90]:

κ(T ,μ) = 8π2 T

μ2
η(T ,μ), (25)

which is an analog of the Wiedemann-Franz law [107].5 As
in the weakly coupled case (22), the heat conductivity is
divergent, ∼μ−2, while the particle diffusion current (8) is

4We pointed out to the reader that Eq. (24) was derived by means
of the gauge/gravity duality in Ref. [103] for a specific model. Other
nonconformal field theories [104] where the duality holds provide
some modifications to the parametrization given by Eq. (24).

5The relation (25) was derived originally for a conformal holo-
graphic theory. However, this expression does not hold for noncon-
formal systems within the AdS-CFT correspondence [108].
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TABLE I. Estimated values of the shear viscosity and different
parametrizations for the bulk viscosities and heat conductivity for
weakly coupled QCD [76–78,80,81] and strongly coupled theories
with holographic duals [89,90,103]. See text for discussion.

Transport Weakly Strongly
coefficient coupled QCD coupled theories

η k T 3

g4ln(1/g)
s(T ,μ)

4π

ζ 15 η(T )( 1
3 − c2

s (T ))
2

2 η(T ,μ)( 1
3 − c2

s (T ,μ))

κ ∼ μ2/g4 for μ � T 8π 2 T

μ2 η(T ,μ)
∼ T 4/(g4μ2) for μ � T

finite. Recently the temperature dependence of the first and
second order transport coefficients have been studied in a
particular holographic model [109].

We summarize the discussion presented in this section
in Table I, where we show the estimates of the transport
coefficients in both strong and weak coupling regimes. Mainly
for reasons of simplicity, we shall concentrate here on the
parametrizations of the transport coefficients in the strong
coupling regime Eqs. (23)–(25) for our numerical calculations.
Another advantage of using the parametrization of strongly
coupled theories is that both transport coefficients, the bulk
viscosity ζ and the heat conductivity κ , are proportional to the
shear viscosity η and thus one can not only study the effect
of the dissipative corrections but also one can investigate the
“weak” and “strong” regimes by varying the values of η/s. We
keep the functions η(T ,μ), ζ (T ,μ), κ(T ,μ) unspecified as far
as possible in our analytic calculations.

III. BJORKEN BOOST INVARIANT SOLUTION

In this section we study the solutions of the fluid dynamical
equations for a quark-gluon plasma undergoing boost invariant
longitudinal expansion. We assume translational and rotational
symmetry in the transverse plane and arrive at a simple model
for the early stages of a heavy ion collision first studied by
Bjorken [45]. Our analysis is extended to the case where there
is a nonvanishing baryon number density. The relatively simple
homogeneous solutions will also serve as a background for a
more elaborate discussion of perturbations around it in Sec. IV.

It is convenient to change from Cartesian coordinates xμ =
(t,x1,x2,x3) to the Milne coordinates (τ,r,φ,η) where τ =√

t2 − x2
3 is the longitudinal proper time, η = arctanh(x3/t) is

the longitudinal (space) rapidity, and r and φ are the usual polar
coordinates in the transverse plane. The metric in the Milne
coordinates is gμν = diag(−1,1,r2,τ 2). The main advantage
of using these coordinate systems is that the symmetries of
the Bjorken solution are explicitly manifest. Specifically, the
symmetry group ISO(2) ⊗ SO(1,1) ⊗ Z2 consists of transla-
tions and rotations in the transverse plane, longitudinal boosts
η → η + �η, and reflections η → −η [110]. The Bjorken
flow velocity uμ = (1,0,0,0) is the only invariant unit vector
and the symmetry also implies that all fluid dynamic fields
depend only on the longitudinal proper time τ [45].

From Eqs. (5) one finds that the evolution equations for
energy density and particle number density are

∂τ ε + (ε + p)
1

τ
−

(
4

3
η + ζ

)
1

τ 2
= 0,

∂τ n + n
1

τ
= 0. (26)

We have used here the Christoffel symbols of the Milne
coordinate system. The nonvanishing ones are �η

τη = �η
ητ =

1/τ , �τ
ηη = τ , �

φ
rφ = �

φ
φr = 1/r , �r

φφ = −r . The shear tensor
defined in Eq. (6) becomes σμν = diag(0, − 1

3τ
, − 1

3τr2 ,
2

3τ 3 )
with σμνσ

μν = 2
3τ 2 . The expansion scalar is θ = 1

τ
and the pro-

jector orthogonal to the fluid velocity is �μ
ν = diag(0,1,1,1).

The particle diffusion current νμ (8) is a vector orthogonal to
uμ and therefore vanishes exactly for the Bjorken flow.

While the particle number density is simply diluted by the
one-dimensional expansion, the evolution of energy density in
(26) contains an additional loss term from the thermodynamic
work done by the expansion and a gain term from shear and
bulk viscous effects. After the variable change to T and μ
Eq. (26) becomes

∂τT +
− n

τ
∂2p

∂T ∂μ
+ s

τ

(
1 − 4η/3+ζ

sT τ

)
∂2p

∂μ2

∂2p

∂T 2
∂2p

∂μ2 −
(

∂2p
∂T ∂μ

)2 = 0,

∂τμ +
n
τ

∂2p

∂T 2 − s
τ

(
1 − 4η/3+ζ

sT τ

)
∂2p

∂T ∂μ

∂2p

∂T 2
∂2p

∂μ2 −
(

∂2p
∂T ∂μ

)2 = 0. (27)

We observe that the size of viscous corrections to an isentropic
expansion is determined by the parameter

γ = 4η/3 + ζ

sT τ
. (28)

Formally, the gradient expansion underlying viscous fluid
dynamics can be used for γ � 1. Note that for a given
thermodynamic equation of state p(T ,μ) and viscosities
η(T ,μ), ζ (T ,μ) one can solve the two coupled ordinary
differential equations (27).

In the remainder of this section we discuss as a simple
illustrative example the equation of state of an ideal gas
of massless quarks and gluons in Eq. (14). The evolution
equations (27) for the temperature T and chemical potential μ
become

∂τT + 1

3τ
T −

(
γ T

τ

)

×
1
3a1a2T

4 + (
1
3a1a3 + a2

2

)
T 2μ2 + a2a3μ

4

a1a2T 4 + (
a1a3 − 3a2

2

)
T 2μ2 + a2a3μ4

= 0,

∂τμ + 1

3τ
μ +

(
γ T

τ

)

×
2
3a1a2T

3μ + 2a2
2T μ3

a1a2T 4 + (
a1a3 − 3a2

2

)
T 2μ2 + a2a3μ4

= 0, (29)
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where the coefficients a1, a2, and a3 are given in Eq. (15). Note
that we use conventions where μ is the chemical potential for
baryons, and the chemical potential for quarks is μq = μ/3.

Let us first discuss some interesting limiting cases of
Eqs. (29):

(1) Ideal fluid dynamic expansion. When shear and bulk
viscosities vanish, η = ζ = 0, the temperature and the chemi-
cal potential decouple from each other. This allows us to solve
Eqs. (29) exactly, which gives

T (τ ) = T (τ0)

(
τ0

τ

)1/3

, (30a)

μ(τ ) = μ(τ0)

(
τ0

τ

)1/3

. (30b)

The scaling solution of the temperature is not modified by the
presence of the chemical potential and it coincides with the
well known result found by Bjorken [45].

(2) Vanishing chemical potential. The point with μ = 0
corresponds to a (partial) fixed point of the evolution equations
(29) with extended symmetry (baryon number parity). The
evolution equation for temperature becomes

∂τT + T

3τ
(1 − γ ) = 0, (31)

where γ is given by Eq. (28). For vanishing bulk viscosity,
ζ = 0, and constant ratio η/s, the exact solution to the previous
equation is [111–114]

T (τ ) = T (τ0)

(
τ0

τ

)1/3[
1 + 2

3τ0T (τ0)

η

s

(
1 −

(
τ0

τ

)2/3)]
.

(32)

Viscous corrections are relevant only at early times where
velocity gradients are large while at late times these are
suppressed and thus, T (τ ) ∼ τ−1/3.

(3) Small chemical potential. For μ/T � 1 the dynamics of
T is approximately determined by Eq. (31) while the evolution
equation for μ is

∂τμ + μ

3τ
(1 + 2γ ) = 0. (33)

The viscous effects (encoded in the parameter γ ) have the
tendency to accelerate the decrease of μ due to the expansion.
This is in contrast to the temperature where viscosity has the
opposite effect. To lowest order in η/s, the solution of (33) is

μ(τ )=μ(τ0)

(
τ0

τ

)1/3
[
1− 4

3τ0T (τ0)

η

s

(
1 −

(
τ0

τ

)2/3
)]

. (34)

(4) Small temperature. For T/μ � 1 the evolution equation
for the chemical potential is the one of Eq. (30b) with a simple
scaling solution. For the temperature we obtain to lowest order
in T/μ

∂τT + T

3τ
(1 − 3γ ) = 0, (35)

which has a solution similar to Eq. (32) when η/s and ζ/s have
constant values. If one chooses T (τ0) = 0 as initial condition
the solution to Eq. (35) becomes

T (τ ) = 4η + 3ζ

2s

(
1

τ
2/3
0 τ 1/3

− 1

τ

)
. (36)

Even if the temperature vanishes initially, the system is heated
up due to shear and bulk dissipative effects. In contrast to
μ = 0, vanishing temperature T = 0 does not correspond to a
(partial) fixed point of the evolution.

Let us now consider the evolution equations (29) in the
general case where we find their solution numerically. In
Fig. 1 we show the time evolution of the temperature (left
panel) and chemical potential (right panel) for different
constant values of η/s = 0 and η/s = 2/(4π ) (black and
red lines respectively) and two different parametrizations of
the equation of state: the ideal EOS (14) (solid lines) and
the lattice-based EOS (18) (dashed lines). The initial values
at time τ0 = 0.5 fm/c are taken to be T (τ0) = 0.4 GeV and
μ(τ0) = 0.4 GeV. For the ideal EOS the coefficients a1, a2,
and a3 are taken according to Eq. (15) with NC = NF = 3.
The bulk viscosity (24) vanishes exactly for the ideal EOS
(14) but it becomes a function of the temperature and chemical
potential for the lattice-based EOS (18).

(a) (b)

FIG. 1. (Color online) Log-log plot of the time evolution of (a) temperature (left panel) and (b) chemical potential (right panel) for the
ideal EOS (14) (solid lines) and the lattice-based EOS (18) (dashed lines). We choose here η/s = 0 (black line) and η/s = 2/(4π ) (red line).
For the initial conditions we select T (τ0) = μ(τ0) = 0.4 GeV and τ0 = 0.5 fm/c.
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(a) (b)

FIG. 2. (Color online) Flow trajectory of Bjorken expansions in the μ-T plane, initialized for (a) ideal EOS (14) (left panel) and (b)
lattice-based EOS (18) (right panel). For the initial conditions we choose τ0 = 0.5 fm/c, T (τ0) = 0.4 GeV and different values of μ(τ0) =
{0.05,0.15,0.25,0.35,0.45,0.55} GeV. In both panels we compare the viscous effects by choosing η/s = 2/(4π ) (dashed lines) to the the case
of vanishing viscosity, η/s = 0 (solid lines). All lines end at fixed final time τf = 10 fm/c. Note that we use conventions where μ is the
chemical potential for baryons, the chemical potential for quarks is μq = μ/3.

First we discuss the properties of the numerical solutions
of Eqs. (27) for the ideal (and massless) EOS (14). For both
variables, T and μ, the effect of viscous corrections are more
relevant during the early stages of the expansion while at late
times their effects are negligible as expected. In the left panel
of Fig. 1 we see that the viscosity reduces the effect of the
longitudinal expansion on the temperature. This is simply the
expected heating by dissipative effects. At the final time τf =
10 fm/c the temperature is larger by values of the order of 10%
for η/s = 2/(4π ) compared to the ideal fluid expansion. For
the chemical potential we find that the inclusion of dissipative
corrections has the opposite effect, i.e., the chemical potentials
decrease faster in the viscous case. This is clearly seen in the
right panel of Fig. 1 when comparing the final values of the
chemical potential μ(τf ). The changes with respect to the ideal
fluid expansion are also somewhat larger, of the order of 15%
for η/s = 2/(4π ).

When using the lattice-based EOS (18) we find that the
numerical solutions of Eqs. (27) for T and μ are qualitatively
similar to the ones obtained from the ideal EOS during the early
stages of the evolution. As a function of time, the temperature is
always decreasing and the dissipative corrections are larger at
early times than at late times. The chemical potential decreases
faster for larger values of the shear viscosity. For the lattice
EOS, the changes induced by the dissipative corrections are
on the order of 8–15%.

Interestingly, the evolution of μ with time differs sub-
stantially between the two choices for the equation of state.
In the right panel of Fig. 1 one observes that the decrease
with time is much weaker for the lattice EOS than for the
ideal EOS. At the freeze-out time τf = 10 fm/c and for
vanishing η/s, one has μ(τf ) ≈ 0.29 GeV for the lattice EOS
while μ(τf ) ≈ 0.12 GeV for the ideal EOS. The difference
between those values increases slightly for finite values of
η/s. Moreover, at late times μ increases slowly (and somewhat
more for larger values of η/s). Our numerical results show also
that when using the lattice EOS the values of the temperature

are somewhat larger than for the ideal EOS specially at late
times.

In Fig. 2 we show the Bjorken flow trajectories in
the plane of chemical potential μ and temperature T
for the ideal EOS (14) (left panel) and the lattice EOS
(right panel). For the initial conditions we choose τ0 =
0.5 fm/c, T (τ0) = 0.4 GeV, and different values of μ(τ0) =
{0.05,0.15,0.25,0.35,0.45,0.55} GeV. For both equations of
state we vary the shear viscosity to entropy η/s = 2/(4π )
(dashed lines) and η/s = 0 (solid lines). All trajectories end at
fixed final time τ = 10 fm/c.

For the ideal EOS (left panel of Fig. 2) we observe that
the viscosity weakens the effect of the expansion on the
temperature T while it does the opposite for the chemical
potential μ and thus the trajectories end at larger values of T
and smaller vales of μ for nonzero η/s. This is in agreement
with the previous discussion of the temporal evolution of T
and μ. For the lattice EOS (right panel of Fig. 2) we observe
similar trajectories for small initial values of μ(τ0). For larger
values of μ(τ0), the trajectories start to bend towards larger
values of μ while they continue to decrease towards lower
values of T . This behavior is understood from the previous
discussion, as well.

In summary, the time evolution of temperature and chemical
potential for a Bjorken expansion is given by Eqs. (27) for an
arbitrary EOS. The evolution of μ as a function of time is
quite sensitive to the choice of the EOS. The effect of the
viscosity is relatively small. This is actually expected for the
homogeneous background while we expect more prominent
dissipative effects for nonhomogeneous perturbations around
it.6 We turn to those in the next section.

6The effect of shear viscosity is also sizable for the transverse
expansion (radial flow) and for elliptic flow [115].
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IV. FLUCTUATIONS AROUND BJORKEN FLOW

After having studied the solution of the hydrodynamic
evolution equations with Bjorken boost invariance and trans-
verse translational symmetries we study now the evolution
of fluctuations or deviations from that solution. We will
concentrate here on deviations that are small enough in
magnitude to describe their evolution by linearized evolution
equations. In other words, we write the fluid dynamic fields as

uμ = ūμ + δuμ, ε = ε̄ + δε, n = n̄ + δn, (37)

where ūμ, ε̄, n̄ is the Bjorken-type solution discussed in
the previous section. The linearized evolution equations for

the perturbations δuμ, δε, δn are discussed for a generic
background solution and arbitrary coordinate system in
Appendix B. If one specializes to the Bjorken background
and the coordinate system (τ,r,φ,η), the independent fluid
dynamic fields are in the first order formalism δε, δn, δur ,
δuφ , and δuη. (We take the background fluid velocity ūμ

and the full fluid velocity uμ = ūμ + δuμ to be normalized,
uμuμ = ūμūμ = −1, such that one has δuτ = 0 at linear order
in perturbations.) Equation (B3) yields the following equation
for the perturbation in energy density [each hydrodynamical
fluctuating field depends on (τ,r,φ,η) which we suppress for
better readability]:

∂τ δε +
[

1

τ
+ 1

τ

(
∂p

∂ε

)
n

− 1

τ 2

(
∂ζ

∂ε

)
n

− 4

3τ 2

(
∂η

∂ε

)
n

]
δε +

[
1

τ

(
∂p

∂n

)
ε

− 1

τ 2

(
∂ζ

∂n

)
ε

− 4

3τ 2

(
∂η

∂n

)
ε

]
δn

+
[
ε̄ + p̄ − 2

τ
ζ̄ + 4

3τ
η̄

](
∂rδu

r + 1

r
δur + ∂φδuφ + ∂ηδu

η

)
− 4

τ
η̄ ∂ηδu

η = 0. (38)

The thermodynamic derivatives like (∂p/∂ε)n, etc., are to be evaluated here on the background solution and similarly the transport
coefficients and their derivatives. The evolution equation for the perturbation in baryon number density is

∂τ δn + 1

τ
δn +

[
n̄ − κ̄

[
n̄T̄

ε̄ + p̄

]2

∂τ

(
μ̄

T̄

)](
∂rδu

r + 1

r
ur + ∂φδuφ + ∂ηδu

η

)
− κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂ε

)
n

×
(

∂2
r + 1

r
∂r + 1

r2
∂2
φ + 1

τ 2
∂2
η

)
δε − κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

(
∂2
r + 1

r
∂r + 1

r2
∂2
φ + 1

τ 2
∂2
η

)
δn = 0. (39)

The derivative operator of second order that appears in the last two lines in front of δε and δn, respectively, is the Laplace operator
in the spatial coordinates r , φ, and η.

The fluid velocity in the radial direction is determined by the following evolution equation:(
ε̄ + p̄ − 1

τ
ζ̄ + 2

3τ
η̄

)
∂τ δu

r +
[
∂τ p̄ − 1

τ
∂τ ζ̄ + 1

τ 2
ζ̄ + 2

3τ
∂τ η̄ + 4

3τ 2
η̄

]
δur +

[(
∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+ 2

3τ

(
∂η

∂ε

)
n

]
∂rδε

+
[(

∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+ 2

3τ

(
∂η

∂n

)
ε

]
∂rδn − ζ̄

[(
∂2
r + 1

r
∂r − 1

r2

)
δur + ∂r∂φδuφ + ∂r∂ηδu

η

]

− η̄

[(
4

3
∂2
r + 4

3r
∂r − 4

3r2
+ 1

r2
∂2
φ + 1

τ 2
∂2
η

)
δur +

(
1

3
∂r∂φ − 2

r
∂φ

)
δuφ + 1

3
∂r∂ηδu

η

]
= 0, (40)

the one in the azimuthal direction by(
ε̄ + p̄ − 1

τ
ζ̄ + 2

3τ
η̄

)
∂τ δu

φ +
[
∂τ p̄ − 1

τ
∂τ ζ̄ + 1

τ 2
ζ̄ + 2

3τ
∂τ η̄ + 4

3τ 2
η̄

]
δuφ +

[(
∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+ 2

3τ

(
∂η

∂ε

)
n

]
1

r2
∂φδε

+
[(

∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+ 2

3τ

(
∂η

∂n

)
ε

]
1

r2
∂φδn − ζ̄

[(
1

r2
∂r∂φ + 1

r3
∂φ

)
δur + 1

r2
∂2
φδuφ + 1

r2
∂φ∂ηδu

η

]

− η̄

[(
1

3r2
∂r∂φ + 7

3r3
∂φ

)
δur +

(
∂2
r + 3

r
∂r + 4

3r2
∂2
φ + 1

τ 2
∂2
η

)
δuφ + 1

3r2
∂φ∂ηδu

η

]
= 0, (41)

and finally the fluid velocity component in the rapidity direction is governed by(
ε̄ + p̄ − 1

τ
ζ̄ − 4

3τ
η̄

)
∂τ δu

η +
[
∂τ p̄ + 2

τ
(ε̄ + p̄) − 1

τ
∂τ ζ̄ + 1

τ 2
ζ̄ − 4

3τ
∂τ η̄ − 4

3τ 2
η̄

]
δuη +

[(
∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

− 4

3τ

(
∂η

∂ε

)
n

]

× 1

τ 2
∂ηδε +

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

− 4

3τ

(
∂η

∂n

)
ε

]
1

τ 2
∂ηδn − ζ̄

[(
1

τ 2
∂r∂η + 1

τ 2r
∂η

)
δur + 1

τ 2
∂φ∂ηδu

φ + 1

τ 2
∂2
ηδuη

]

− η̄

[(
1

3τ 2
∂r∂η + 1

3τ 2r
∂η

)
δur + 1

3τ 2
∂φ∂ηδu

φ +
(

∂2
r + 1

r
∂r + 1

r2
∂2
φ + 4

3τ 2
∂2
η

)
δuη

]
= 0. (42)
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Equations (38)–(42) are hyperbolic coupled linear differential
equations for the variables δε, δn, δur , δuφ , and δuη: They
contain only first order derivatives with respect to the time
coordinate τ but up to second order derivatives with respect to
the spatial coordinates r , φ, and η. In the second order gradient
expansion the equations would be elliptical but also contain
more degrees of freedom and transport coefficients.

In order to analyze the differential equations (38)–(42) it
is convenient to use a Bessel-Fourier transformation. For the
perturbation in energy density this reads

δε(τ,r,φ,η) =
∫ ∞

0
dk k

∞∑
m=−∞

×
∫

dq

2π
δε(τ,k,m,q) ei(mφ+qη)Jm(kr), (43)

with inverse relation

δε(τ,k,m,q) =
∫ ∞

0
dr r

1

2π

∫ 2π

0
dφ

×
∫

dη δε(τ,r,φ,η) e−i(mφ+qη)Jm(kr). (44)

Since δε(τ,r,φ,η) ∈ R and J−m(kr) = (−1)mJm(kr) one has

δε∗(τ,k,m,q) = (−1)mδε(τ,k, − m, − q). (45)

For the baryon number density fluctuation δn and the rapidity
component of the fluid velocity δuη one can use the same
expansion. For the fluid velocity components δur and δuφ we
write instead

δur (τ,r,φ,η) = 1√
2

[δu−(τ,r,φ,η) + δu+(τ,r,φ,η)],

δuφ(τ,r,φ,η) = i

r
√

2
[δu−(τ,r,φ,η) − δu+(τ,r,φ,η)], (46)

with δu+∗(τ,r,φ,η) = δu−(τ,r,φ,η). We expand δu−(τ,r,φ,η)
and δu+(τ,r,φ,η) similar to Eq. (43) but replace Jm(kr) by
Jm−1(kr) and Jm+1(kr), respectively. The reality constraint
becomes

δu+∗(τ,k,m,q) = (−1)m+1δu−(τ,k, − m, − q). (47)

In terms of the Bessel-Fourier transformed variables one can
easily perform the spatial derivatives in Eqs. (38)–(42). To that
end it is useful to use the relations

m

r
Jm(kr) = k

2
[Jm−1(kr) + Jm+1(kr)],

∂

∂r
Jm(kr) = k

2
[Jm−1(kr) − Jm+1(kr)]. (48)

FIG. 3. (Color online) Wave number k
(m)
l = z

(m)
l /R as a function

of the discrete radial wave number l and for different values of the
azimuthal wave number m = 1 (lowest curve) to m = 4 (uppermost
curve). These values arise for the boundary condition δε = 0 at r = R

and we choose R = 10 fm for definiteness. The plot shows that k

increases with increasing values of both l and m, corresponding to
finer spatial resolution.

The Bessel expansion we use in Eqs. (43) contains an
integral over all (positive) values of k. This expansion,
also known as the Hankel transformation, is appropriate for
functions on the open interval r ∈ (0,∞). More realistically,
the energy distribution in a heavy ion collision is nonzero only
on a compact interval (0,R) with some radius R that depends
on time during the expansion of the fireball and it is of the
order of R ∼ 10 fm. On such a compact interval the Bessel
expansion becomes discrete, in the sense that the integral over
k is replaced by a sum over a discrete subset. For example,
the boundary condition δε = 0 at r = R leads to the values
k

(m)
l = z

(m)
l /R where the z

(m)
l are the lth zero crossings of

the Bessel function Jm(z). To relatively good approximation
z

(m)
l is linear in m (for fixed l). In Fig. 3 we illustrate the

resulting values for k
(m)
l as a function of the discrete radial

wave number l and for different values of m. More generally,
one might use an expansion based on Jm(z(m)ρ(r)) where ρ(r)
is a monotonous function into the interval (0,1) and a partic-
ularly useful choice for ρ(r) is discussed in Appendix A of
Ref. [51].

The evolution equation for the perturbation in energy den-
sity, Eq. (38) becomes in Bessel-Fourier space [all perturbation
functions have now the argument (τ,k,m,q) that we suppress
for better readability]

∂τ δε +
[

1

τ
+ 1

τ

(
∂p

∂ε

)
n

− 1

τ 2

(
∂ζ

∂ε

)
n

− 4

3τ 2

(
∂η

∂ε

)
n

]
δε +

[
1

τ

(
∂p

∂n

)
ε

− 1

τ 2

(
∂ζ

∂n

)
ε

− 4

3τ 2

(
∂η

∂n

)
ε

]
δn

+
[
ε̄ + p̄ − 2

τ
ζ̄ + 4

3τ
η̄

](
k√
2

(
δu+ − δu−) + iq δuη

)
− 4

τ
η̄ iq δuη = 0. (49)
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Similarly, the evolution equation for the perturbation in baryon number density becomes

∂τ δn + 1

τ
δn +

[
n̄ − κ̄

[
n̄T̄

ε̄ + p̄

]2

∂τ

(
μ̄

T̄

)](
k√
2

(
δu+ − δu−) + iq δuη

)
+ κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂ε

)
n

(
k2 + q2

τ 2

)
δε

+ κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

(
k2 + q2

τ 2

)
δn = 0. (50)

Let us now turn to the perturbations in the fluid velocity. Equations (40) and (41) lead to the following equations for δu+ and
δu− in Bessel-Fourier space:(

ε̄ + p̄ − 1

τ
ζ̄ + 2

3τ
η̄

)
∂τ δu

± +
[
∂τ p̄ − 1

τ
∂τ ζ̄ + 1

τ 2
ζ̄ + 2

3τ
∂τ η̄ + 4

3τ 2
η̄

]
δu±

∓
[(

∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+ 2

3τ

(
∂η

∂ε

)
n

]
k√
2
δε ∓

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+ 2

3τ

(
∂η

∂n

)
ε

]
k√
2
δn

+
[

1

2
ζ̄ k2 + 7

6
η̄k2 + η̄

q2

τ 2

]
δu± −

[
1

2
ζ̄ k2 + 1

6
η̄k2

]
δu∓ ± i

[
ζ̄ kq√

2
+ η̄kq√

2

]
δuη = 0, (51)

and for the rapidity component we find from Eq. (42)(
ε̄ + p̄ − 1

τ
ζ̄ − 4

3τ
η̄

)
∂τ δu

η +
[
∂τ p̄ + 2

τ
(ε̄ + p̄) − 1

τ
∂τ ζ̄ + 1

τ 2
ζ̄ − 4

3τ
∂τ η̄ − 4

3τ 2
η̄

]
δuη

+
[(

∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+ 2

3τ

(
∂η

∂ε

)
n

]
iq

τ 2
δε +

[(
∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+ 2

3τ

(
∂η

∂n

)
ε

]
iq

τ 2
δn

−
(

ζ̄ + 1

3
η̄

)
iqk

τ 2
√

2

(
δu+ − δu−) +

[(
ζ̄ + 4

3
η̄

)
q2

τ 2
+ η̄k2

]
δuη = 0. (52)

Note that Eqs. (49)–(52) are now coupled ordinary differential equations. All spatial derivatives have become algebraic and one
can directly integrate for the time dependent perturbations δε(τ,k,m,q), etc. To construct such a solution one needs as an input
the background or Bjorken solution for T̄ (τ ) and μ̄(τ ) as well as the relations that express all other thermodynamic densities
(ε̄, p̄, n̄, etc.), transport coefficients (ζ̄ , η̄, κ̄), and derivatives [(∂p/∂ε)n, (∂p/∂n)ε , (∂ζ/∂ε)n, etc.] in terms of the independent
thermodynamic variables T̄ and μ̄.

Let us first discuss some limiting cases of Eqs. (49)–(52) with extended symmetries.

A. Statistical baryon number conjugation symmetry

If the baryon number density vanishes in the background solution, i.e.. n̄ = μ̄ = 0, one has an extended symmetry, namely
baryon-antibaryon or baryon number conjugation symmetry, corresponding to n → −n. Odd derivatives such as (∂p/∂n)ε or
(∂η/∂n)ε have to vanish and one finds that δn decouples from the equations for δε in Eq. (49) and the perturbations of fluid
velocity in Eqs. (51) and (52). However, this does not imply that δn has to vanish as well. Locally and event by event one may
have a nonzero baryon number density. The evolution equation for this perturbation is obtained from Eq. (50) as

∂τ δn + 1

τ
δn + κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

(
k2 + q2

τ 2

)
δn = 0. (53)

The second term on the left hand side accounts simply for the dilution due to the longitudinal expansion while the third term
is a diffusion term due to heat conductivity. Note that κ̄ is expected to be singular in the limit n̄ → 0 in such a way that the
combination of terms that multiplies (k2 + q2

τ 2 ) δn remains finite [81]. Therefore, the diffusion term indeed plays a role for the
evolution of perturbations δn.

Equation (53) can be directly integrated and its solution reads as

δn(τ,k,m,q) =
(

τ0

τ

)
exp[−k2I1(τ,τ0) − q2I2(τ,τ0)]δn(τ0,k,m,q), (54)

where the integrals

I1(τ,τ0) =
∫ τ

τ0

dτ ′ κ̄
[

n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

, I2(τ,τ0) =
∫ τ

τ0

dτ ′ 1

τ ′2 κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

, (55)
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depend on the heat conductivity and thermodynamic quantities
on the background Bjorken solution. While the integral I1 is
typically dominated by late times τ [for example for the ideal
thermodynamic equation of state (14), heat conductivity of the
form (22), and Bjorken expansion as in Eq. (31)], the integral
I2 is dominated by early times τ ≈ τ0. Moreover, for fast
thermalization τ0 → 0 one has formally I2 → ∞ such that in
reality it might be rather large. Modes with q �= 0 are therefore
strongly damped by dissipative effects of heat conductivity.

The evolution equations for the perturbations in energy
density δε and fluid velocity are independent of δn. Their
solution has already been discussed in a similar setup in
Ref. [46].

B. Exact Bjorken boost symmetry

The evolution equations for perturbations (49)–(52) sim-
plify also in a situation where Bjorken boost invariance is
realized as an exact symmetry instead of only on a statistical
level. In that case one has δuη = 0 and the perturbations δε,
δn, etc., vanish except for q = 0. Equation (49) becomes

∂τ δε +
[

1

τ
+ 1

τ

(
∂p

∂ε

)
n

− 1

τ 2

(
∂ζ

∂ε

)
n

− 4

3τ 2

(
∂η

∂ε

)
n

]
δε

+
[

1

τ

(
∂p

∂n

)
ε

− 1

τ 2

(
∂ζ

∂n

)
ε

− 4

3τ 2

(
∂η

∂n

)
ε

]
δn

+
[
ε̄ + p̄ − 2

τ
ζ̄ + 4

3τ
η̄

]
k√
2

(δu+ − δu−) = 0, (56)

and similarly Eq. (50) becomes

∂τ δn + 1

τ
δn +

[
n̄ − κ̄

[
n̄T̄

ε̄ + p̄

]2

∂τ

(
μ̄

T̄

)]
k√
2

(δu+ − δu−)

+ κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂ε

)
n

k2 δε

+ κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

k2 δn = 0. (57)

One observes that (56) and (57) depend on δu+ and δu− only
via the combination (δu+ − δu−)/

√
2, for which one obtains

from Eq. (51),(
ε̄ + p̄ − 1

τ
ζ̄ + 2

3τ
η̄

)
∂τ

1√
2

(δu+ − δu−)

+
[
∂τ p̄ − 1

τ
∂τ ζ̄ + 1

τ 2
ζ̄ + 2

3τ
∂τ η̄

+ 4

3τ 2
η̄

]
1√
2

(δu+ − δu−)

−
[(

∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+ 2

3τ

(
∂η

∂ε

)
n

]
k δε

−
[(

∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+ 2

3τ

(
∂η

∂n

)
ε

]
k δn

+
[
ζ̄ k2 + 4

3
η̄k2

]
1√
2

(δu+ − δu−) = 0. (58)

Equations (56)–(58) together with the information about
background quantities form a closed system that describes
the analog of sound propagation and baryon number diffusion
in the transverse plane of a longitudinally expanding fireball.
The orthogonal combination of fluid velocity perturbations
δu+ + δu− is a shear mode with purely dissipative behavior
(equation not shown).

It is interesting to compare these equations to the ones that
govern perturbations in a static medium. In that case all terms
that involve explicit factors 1/τ or derivatives of background
quantities with respect to τ vanish. For example, the analog of
Eq. (56) is

∂τ δε + (ε̄ + p̄)
k√
2

(δu+ − δu−) = 0, (59)

while the analog of Eq. (57) is

∂τ δn + n̄
k√
2

(δu+ − δu−) + κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂ε

)
n

k2 δε

+ κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

k2 δn = 0, (60)

and the analog of Eq. (58) is

(ε̄ + p̄)∂τ

1√
2

(δu+ − δu−) −
(

∂p

∂ε

)
n

k δε −
(

∂p

∂n

)
ε

k δn

+
[
ζ̄ + 4

3
η̄

]
k2 1√

2
(δu+ − δu−) = 0. (61)

The set of equations (59)–(61) describes sound propagation
in the presence of dissipation due to shear viscosity, bulk
viscosity, and heat conductivity. We observe that at least some
of the additional terms in Eq. (56) compared to (59) have
the effect of an additional damping, in particular the square
bracket in the first line of Eq. (56) is expected to be positive
in the regime where fluid dynamics is applicable. Similarly,
the leading additional term in Eq. (57) compared to Eq. (60) is
the term 1

τ
δn that has a damping effect, as well. The situation

is less clear for the additional terms in Eq. (58) compared to
Eq. (61), in particular the second line in Eq. (58) might actually
conteract damping because ∂τ p̄ is negative. However, at least
for larger values of the wave number k and nonzero viscosities
the dissipative damping term in the last line of Eq. (58) is
dominating.

Equations (56)–(58) simplify further if the background is
symmetric under baryon number conjugation as discussed in
Sec. IV A. In that case the perturbation in baryon number den-
sity δn decouples from Eqs. (56) and (58) and is described by
Eq. (53) (with q = 0). Nevertheless, the remaining equations
for δε and (δu+ − δu−)/

√
2 remain coupled and have to be

integrated numerically for a given background solution and
wave number k. This has already been discussed in Ref. [46].

In Figs. 4–6 we show numerical solutions of the evolution
equations (56)–(58) for the ideal EOS (14). For the background
fields we employ the scaling solution (30). We compare
the numerical results for different initial conditions and two
different values of the ratio of shear viscosity to entropy
density and assume ζ = 0 for simplicity. More precisely,
the left columns of Figs. 4–6 correspond to η/s = 1/(4π ),
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FIG. 4. (Color online) Evolution of perturbations in energy density, baryon number density, and fluid velocity with exact Bjorken boost
symmetry (q = 0, δuη = 0) for different values of the azimuthal wave number m and radial wave number l. For R = 10 fm/c one has
k

(1)
1 = 0.38 fm−1 (black curves), k(2)

2 = 0.84 fm−1 (red curves) and k
(3)
3 = 1.30 fm−1 (blue curves). We compare two different values of the ratio

of shear viscosity to entropy density η/s = 1/(4π ) (left column) and (b) η/s = 10/(4π ) (right column). Heat conductivity is related to this by
Eq. (25). We use T0 = 0.5 GeV, μ0 = 0.05 GeV, τ0 = 1 fm/c, τf = 10 fm/c and for the initial values of the hydrodynamic fluctuations we
choose δε(τ0) �= 0, δn(τ0) = δu+(τ0) = δu−(τ0) = 0. We denote �− = u+ − u− (thus �−

0 = u+
0 − u−

0 = 0). See text for further details.

the right columns to η/s = 10/(4π ). In all cases, the heat
conductivity is taken to be related to the shear viscosity
by (25). We also compare different values of the radial
wave number k = k

(m)
l = z

(m)
l /R. We choose R = 10 fm/c

which corresponds to k
(1)
1 = 0.38fm−1 (black curves), k

(2)
2 =

0.84 fm−1 (red curves) and k
(3)
3 = 1.30 fm−1 (blue curves). In

all cases, the modes with larger k are damped more quickly

as expected. In order to simplify the notation we use the
abbreviation �− ≡ δu+ − δu− in Figs. 4–6.

In Fig. 4 we have chosen initial conditions with nonva-
nishing perturbations in energy density δε(τ ) = δε0 while
the perturbations in baryon number density δn and fluid
velocity δu+, δu− vanish initially. The pressure gradients
associated with δε induce sound waves with the typical
oscillating behavior between δε and δu+ − δu−, modified by
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FIG. 5. (Color online) Same as Fig. 4 but for different initial values of the fluid perturbations: δn(τ0) �= 0, δε(τ0) = δu+(τ0) = δu−(τ0) = 0
(thus �−

0 = u+
0 − u−

0 = 0). See text for further details.

the longitudinal expansion and viscous damping. As expected,
the oscillation frequency is larger for larger radial wave
numbers k. The perturbation in energy density δε induces
also a small perturbation in baryon number density δn at times
τ > τ0. This is due to the linear mixing between the different
fluctuating fields (δε,δu+ and δu−) for nonvanishing
background baryon chemical potential (we choose μ0 =
0.05 GeV). For μ̄ = n̄ = 0, the evolution equation for δn
would decouple from the other fluctuating fields as we
discussed in the previous section. Because we solve linearized

equations for the perturbations, the solution scales linearly
with the initial value δε0.

In Fig. 5 we initialize with nonvanishing perturbation
in the baryon number density δn(τ0) = δn0 but set
δε(τ0) = δu+(τ0) = δu−(τ0) = 0. The mode excited in
this way has essentially diffusive behavior. This is most
clearly seen in the intermediate panel which shows the
temporal evolution of δn/δn0. There are no oscillations seen
but simply a decay in amplitude which is faster for large
values of k. This decay is mainly a consequence of heat
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FIG. 6. (Color online) Same as Fig. 4 but for different initial values of the fluid perturbations: δu+(τ0) = 0.4, δu−(τ0) = 0.3 (thus �−
0 =

u+
0 − u−

0 = 0.1 and �+
0 = u+

0 + u−
0 = 0.7), δε(τ0) = δn(τ0) = 0. See text for further details.
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FIG. 7. (Color online) Amplitude of the perturbations at τf = 10 fm/c in units of the initial weight at τ = 1 fm/c as a function of the
k-wave number. We choose η/s = 1/(4π ), T0 = 0.5 GeV, and μ0 = 0.05 GeV. In each panel we choose a nonvanishing value initially for
one of fluctuating fields while the remaining ones are set to zero. The top, middle, and bottom panels correspond to different initial conditions
δε0 �= 0, δn0 �= 0, and �−

0 = u+
0 − u−

0 �= 0, respectively.

conductivity (or equivalently, baryon number diffusion). In
addition to the baryon number density perturbation, also a
(small) perturbation in δε and δu+ − δu− is excited for τ > τ0.
This is again a consequence of the nonvanishing baryon
number density in the background. The behavior of these
perturbations is oscillatory, i.e., of sound type.

In Fig. 6 we choose initial conditions with �−
0 = δu+

0 −
δu−

0 �= 0 while the perturbations δε and δn vanish initially.
This results again in sound propagation of the typical oscillat-
ing type. In Fig. 6 we also show the behavior of perturbations in
the orthogonal combination �+ = δu+ + δu− which is a shear
mode whose decay rate is determined by shear viscosity η. The

shear viscosity dependence of the decay rate for this particular
shear mode can be obtained directly from the corresponding
evolution equation (51).

In Fig. 7 we show the final amplitude of the perturbations in
energy density (left column) and particle density (right panel)
at τf = 10 fm/c as a function of the k-wave number in units
of the initial weight at time τ0 = 1 fm/c for η/s = 1/(4π )
and different initial conditions of the perturbations of the
fluctuating fields. This plot shows that some modes of the
initial perturbations characterized by the k-wave number
indeed survive the entire evolution of the system and at the
same time, it also indicates the distribution of the surviving
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modes at the scales of time relevant for the freeze-out surface.7

The uppermost panel corresponds to the nonzero value for the
initial perturbation in energy density δε(τ0) = δε0 while the
remaining fluctuating fields, δn0, δu+

0 , and δu−
0 , vanish exactly.

The middle panel corresponds to the case where δn(τ0) = δn0

and δε0 = δu+
0 = δu−

0 = 0. The bottom panel corresponds to
�−

0 = δu+
0 − δu−

0 �= 0 and δε0 = δn0 = 0. For the sound wave
type initial conditions (δε0 �= 0 or �−

0 �= 0) the size of the
amplitudes at τf present a damped oscillatory behavior while
for the case when δn0 �= 0 the fluctuation of the δε and �−
present an oscillatory behavior while δn shows a exponential
type decay which is typical to diffusive processes. In all the
cases we observe that essentially none of the modes survive
for values of k � 2 fm−1.

We conclude this subsection by emphasizing again the
observation that perturbations in baryon number density have
a diffusive time evolution with a dissipation rate determined
by the heat conductivity. For typical values corresponding to
strong coupling behavior, the damping is rather strong but
at least the modes with the smallest radial and azimuthal
wave numbers (small values of m and l) are not dissipated
completely and could have experimentally observables conse-
quences.

C. Exact transverse translation and rotation symmetry

One can also consider a situation with exact symmetry
under translations and rotations in the transverse plane. In
that case only perturbations with k = 0 are possible and
the fluid velocities in transverse directions have to vanish,
δu+ = δu− = 0. Again Eqs. (49)–(52) simplify substantially,
albeit not to a point where they can be integrated directly.
Specifically, Eq. (49) becomes

∂τ δε +
[

1

τ
+ 1

τ

(
∂p

∂ε

)
n

− 1

τ 2

(
∂ζ

∂ε

)
n

− 4

3τ 2

(
∂η

∂ε

)
n

]
δε

+
[

1

τ

(
∂p

∂n

)
ε

− 1

τ 2

(
∂ζ

∂n

)
ε

− 4

3τ 2

(
∂η

∂n

)
ε

]
δn

+
[
ε̄ + p̄ − 2

τ
ζ̄ − 8

3τ
η̄

]
iq δuη = 0, (62)

and the evolution equation for the perturbation in baryon
number density (50) becomes

∂τ δn + 1

τ
δn +

[
n̄ − κ̄

[
n̄T̄

ε̄ + p̄

]2

∂τ

(
μ̄

T̄

)]
iq δuη

+ κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂ε

)
n

q2

τ 2
δε

+ κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

q2

τ 2
δn = 0. (63)

7This can be understood directly when taking the Fourier transform
of the fluctuating fields at τ = τf , e.g., Eq. (43). The distribution of
the fluctuating field as a function of its k-wave number determines
the distribution of this field in coordinate space and determines the
location of the maximum allowed correlation length in coordinate
space.

Finally, the evolution equation for the rapidity component of
the fluid velocity (52) becomes(

ε̄ + p̄ − 1

τ
ζ̄ − 4

3τ
η̄

)
∂τ δu

η +
[
∂τ p̄ + 2

τ
(ε̄ + p̄)

− 1

τ
∂τ ζ̄ + 1

τ 2
ζ̄ − 4

3τ
∂τ η̄ − 4

3τ 2
η̄

]
δuη

+
[(

∂p

∂ε

)
n

− 1

τ

(
∂ζ

∂ε

)
n

+ 2

3τ

(
∂η

∂ε

)
n

]
iq

τ 2
δε

+
[(

∂p

∂n

)
ε

− 1

τ

(
∂ζ

∂n

)
ε

+ 2

3τ

(
∂η

∂n

)
ε

]
iq

τ 2
δn

+
(

ζ̄ + 4

3
η̄

)
q2

τ 2
δuη = 0. (64)

These equations simplify further in a situation with van-
ishing baryon number density; the numerical solution for this
situation has already been discussed in Ref. [46]. The solution
of the fluctuating fields is in general complex but subject to
the reality constraints δε∗(τ,q) = δε(τ, − q) and similar for
δn and δuη.

In order to gain some qualitative insights let us consider a
simple equation of state ε = 3p while setting n̄ = μ̄ = 0 and
neglecting the effects of viscosities where they are subleading
compared to other background terms. One can then derive for
the variable δ = δε/ε̄ the equation

∂2
τ δ +

[
5

3τ
+

(
ζ̄ + 4η̄/3

ε̄ + p̄

)
q2

τ 2

]
∂τ δ + q2

3τ 2
δ = 0. (65)

This equation describes sound propagation in the longitudinal
direction on top of the expanding Bjorken background solu-
tion. Both the expansion and the viscosities have a damping
effect as can be read from the term ∼ ∂τ δ. The last term in
Eq. (65) is due to pressure gradients and the actual driving
term of sound propagation. It is somewhat different than in
other situations because of the time dependence ∼1/τ 2.

More general, the set of equations (62)–(64) describe
also baryon number density waves and diffusion in the
longitudinal direction. We show numerical solutions to the
evolution equations (62)–(64) in Figs. 8–10 for different initial
conditions. As we proceed in Sec. IV B we compare two
different values of the ration of shear viscosity to entropy
density η/s = 1/(4π ) (left panel) and η/s = 10/(4π ) (right
panel). For the background fields we use again the scaling
solution (30).

For Fig. 8 we choose only δε to be nonzero initially.
Compared with the behavior of the transverse sound waves
or sound waves in a static medium discussed in the previous
section, the evolution of the resulting longitudinal sound waves
is completely different. In particular, no proper oscillations
are visible during the entire temporal evolution. Rather, one
observes a decay in amplitude, in particular at early times.
This effect of the longitudinal expansion is particularly strong
for large values of q. At later times the damping actually
weakens to the extent that amplitudes remain nonzero at the
final time. Interestingly, the influence of viscosity on the
time evolution of longitudinal perturbations is relatively weak.
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FIG. 8. (Color online) Evolution of perturbations in energy density, baryon number density, and fluid velocity with exact transverse
translation and rotation symmetry (k = 0, δu+ = δu− = 0) for different values of the rapidity wave number q: q = 1 (black line), q = 3 (red
line), and q = 5 (blue line). We compare two different values of the ratio of shear viscosity to entropy density η/s = 1/(4π ) (left column)
and η/s = 10/(4π ) (right column). Heat conductivity is parametrized by Eq. (25). We use T0 = 0.5 GeV, μ0 = 0.05 GeV, τ0 = 1 fm/c,
τf = 10 fm/c, and for the initial values of the hydrodynamic fluctuations we choose δε(τ0) �= 0, δn(τ0) = δuη(τ0) = 0. See text for further
details.

Some quantitative differences are of course visible between the
left and right panels of Fig. 8 but qualitatively, the evolution is
surprisingly similar.

Figure 9 was obtained by selecting only δn �= 0 at τ0.
Again, we do not observe any proper oscillations of the
fluctuating fields along the longitudinal direction. In this case
the viscosity and heat conductivity have a somewhat larger
effect. The amplitude of the fluctuating fields gets damped
as one increases the value for the shear viscosity and heat
conductivity [according to Eq. (25)].

In Figure 10 we choose δu
η
0 �= 0. As in the previous two

situations, there is no proper oscillation visible for the time
interval shown.

Finally, Fig. 11 shows the final amplitude of perturbations
at τf = 10 fm/c in units of the initial weight at time τ0 as
a function of the longitudinal q wave number. Figure 11 is
obtained by choosing a nonvanishing value initially for one
particular fluctuating field while the remaining fluctuating
fields are initially set to zero. The top, middle, and bottom
panels of Fig. 11 correspond to δε0 �= 0, δn0 �= 0, and
δu−

0 �= 0, respectively. We observe that the amplitude of the
fluctuating modes goes asymptotically to zero for q � 25
which corresponds to a small window in the rapidity variable
[i.e., �η ∼ (�q)−1]. We expect that modes with intermediate
and large q would be damped stronger for earlier initialization
time τ0.
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FIG. 9. (Color online) Same as Fig. 8 but for different initial values of the fluid perturbations: δn(τ0) �= 0, δε(τ0) = δuη(τ0) = 0. See text
for further details.

Finally, in a situation where Bjorken boost invariance as
well as translations and rotations in the transverse plane
are realized exactly, i.e., δuη = δu+ = δu− = k = q = 0,
Eqs. (49) and (50) reduce simply to a linearized version of
the Bjorken expansion in Eq. (26) as it has to be.

V. THE TWO POINT CORRELATION FUNCTION
OF BARYONIC PARTICLES

In this section we discuss the possibility to access the
information about perturbations in the baryon number density
experimentally by measuring a correlation function of the
net number of baryons (baryons minus antibaryons) as a
function of the rapidity and azimuthal angle. We concentrate

for simplicity on the case of vanishing background baryon
number density as discussed in Sec. IV A.

Perturbations in baryon number density in position space
as described by Eq. (54) are not directly accessible to
experiments. However, a fluctuating baryon number density
and chemical potential on the kinetic freeze-out surface has an
influence on the distribution of particles with nonzero baryon
number in momentum space. This concerns in particular
protons but also resonances with nonvanishing baryon number.
Similar as for flow observables, there is a direct link between
different harmonics in azimuthal angle and rapidity in the
fluid dynamic description and the corresponding harmonics
in the momentum space particle distribution. Thus, we can
partly access the physical information contained in Eq. (54).
As an example, we consider a connected two-point correlation
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FIG. 10. (Color online) Same as Fig. 8 but for different initial values of the fluid perturbations: δuη(τ0) �= 0, δε(τ0) = δn(τ0) = 0. See text
for further details.

function of the type8

Cbaryon(φ1 − φ2,η1 − η2) = 〈nbaryons(φ1,η1)nbaryons(φ2,η2)〉c,
(66)

which measures correlations of baryonic particles (i.e., the
number of baryons minus antibaryons) as a function of
the difference between (particle momentum) azimuthal an-
gles φ1 − φ2 and (particle momentum) rapidities η1 − η2.
In Eq. (66), nbaryons(φ,η) is the number of baryons minus
antibaryons as found in the detector in a particular bin in

8The brackets 〈· · · 〉 in Eq. (66) denote an event average

〈O(x,y)〉 = lim
Nevents→∞

1

Nevents

Nevents∑
i=1

Oi(x,y).

azimuthal angle φ and rapidity η.9 We also introduce the
Fourier representation

Cbaryon(φ1 − φ2,η1 − η2)

=
∞∑

m=−∞

∫
dq

2π
C̃baryon(m,q) eim(φ1−φ2)+iq(η1−η2). (67)

The correlation function in Eqs. (66) and (67) is determined
by a combination of initial conditions (set at the time where
a fluid dynamic description becomes valid) and response

9There is a complication due to the fact that neutrons cannot be
measured experimentally. Further studies are needed in order to
quantify whether this presents a problem for observables as in (66) and
if so, how these can be overcome. Also, one should estimate possible
contributions to Eq. (66) from sources other than fluid dynamics, such
as resonance decays.
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FIG. 11. (Color online) Amplitude of the perturbations at τf = 10 fm/c in units of the initial weight at τ = 1 fm/c as a function of the
q-wave number. We choose η/s = 1/(4π ), T0 = 0.5 GeV, and μ0 = 0.05 GeV. In each panel we choose a nonvanishing value initially for one
of the fluctuating fields while the remaining ones are set to zero. The top, middle, and bottom panels correspond to different initial conditions
δε0 �= 0, δn0 �= 0, and u

η
0 �= 0, respectively.

functions that describe how baryon number density pertur-
bations propagate in the fluid dynamic regime and how they
influence the particle distributions at freeze-out.

In the following we discuss both parts in a bit more detail.
First, the initial state after a heavy ion collision (and after the
early nonequilibrium dynamics) at the time τ0 when a fluid
dynamic description becomes valid is characterized by a fluc-
tuating baryon number density δn(τ0,r,φ,η) around some av-
erage or expectation value n̄(τ0,r). (The latter might be rather
small at LHC and upper RHIC energies and we neglect it in
the following.) For the fluctuating part we use a Bessel-Fourier

decomposition

δn(τ0,r,φ,η) =
∞∑

m=−∞

∞∑
l=1

∫
dq

2π

× δn
(m)
l (q) eimφ+iqηJm

(
z

(m)
l ρ(r)

)
. (68)

An event-by-event ensemble of initial conditions conditions
for the baryon number density can be characterized in terms
of the weights δn

(m)
l (q). For example, the two-mode correlation
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function is〈
δn

(m1)
l1

(q1) δn
(m2)
l2

(q2)
〉 = 2πδ(q1 + q2)δm1+m2,0 C

(m)
δnδn;l1,l2 (q).

(69)

We have assumed here that the ensemble of initial conditions
is statistically symmetric under azimuthal rotations and longi-
tudinal boosts leading to the factors δm1+m2,0 and 2πδ(q1 + q2)
on the right hand side of Eq. (69).

For a single event with baryon number perturbation as in
(68), the baryon number distribution in momentum space after
kinetic freeze-out will be proportional to the weights δn

(m)
l (q)

within the linear response approximation. More specific, the
Bjorken-boost and azimuthal rotation symmetries imply that
one can write

n
(m)
baryons(q) =

∑
l

Sbaryons;(m)l(q)δn(m)
l (q), (70)

with linear baryon number response function Sbaryons;(m)l(q).
The object on the left hand side of Eq. (70) is the Bessel-Fourier
weight of the (momentum space) distribution of the number
of baryons minus antibaryons. The correlation function on the
right hand side of (67) can be written as

C̃baryon(m,q) =
∞∑

l1,l2=1

Sbaryon;(m)l1 (q) Sbaryon;(−m)l2 (−q)

×C
(m)
δnδn;l1,l2 (q). (71)

For a more detailed discussion of the response function
formalism briefly introduced here we refer to Ref. [51].

The linear response functions Sbaryon;(m)l(q) are in particular
also affected by heat conductivity. More specifically, the
analog of the factor exp(−k2I1 − q2I2) in a situation with
realistic transverse dependence and radial flow leads to a
suppression of modes with q2 > 0 and large values of m and/or
the radial wave number l. Qualitatively, one expects that the
scale for the suppression in the transverse direction is set by
the (time dependent) radius R of the fireball. Moreover, the lth
zero crossings z

(m)
l of the Bessel functions Jm(z) are for fixed

l approximately linear in m (for the relevant values of m and l,
with prefactor of order unity) so that one expects qualitatively

C̃baryon(m,q) ≈ exp(−2m2I ′
1 − 2q2I ′

2)C̃κ̄=0
baryon(m,q), (72)

where on the right hand side C̃κ̄=0
baryon(m,q) would be the corre-

sponding correlation function in the (somewhat hypothetical)
situation of vanishing heat conductivity and the dissipative
attenuation terms can be roughly estimated as

I ′
1 ≈

∫ τf

τ0

dτ
1

R2
κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

,

I ′
2 ≈

∫ τf

τ0

dτ
1

τ 2
κ̄

[
n̄T̄

ε̄ + p̄

]2(
∂(μ/T )

∂n

)
ε

. (73)

Going now back to the two-particle correlation function (66),
the exponential suppression factor in Eq. (72) implies for
large I ′

2 long range correlations with respect to the rapidity
difference η1 − η2, with a decay that is determined by the value
of I ′

2 [except if C̃κ̄=0
baryon(m,q) has a very strong decay with q

already] and a similar, although weaker, effect with respect to
the azimuthal wave number m. In order to make our qualitative
statements more precise, it is necessary to generalize the
calculations described here to a more realistic background.
A more realistic background would have a realistic transverse
profile and expansion in addition to the longitudinal (boost-
invariant) expansion. Moreover, one also has to perform more
detailed studies of the initial conditions and kinetic freeze-out,
that both affect C̃κ̄=0

baryon(m,q).

VI. CONCLUSIONS

We have studied solutions of the fluid equations describing
relativistic heavy ion collisions in the presence of a glob-
ally conserved quantum number (baryon number) using a
background-fluctuating splitting. For the background we have
assumed Bjorken boost and transverse translation and rotation
invariance. This generalizes Bjorken’s original solution to
nonvanishing baryon number density as well as shear and
bulk viscosities. Heat conductivity does not play a role on
the background equations since the diffusion current vanishes
exactly due to the symmetries of the Bjorken flow.

We derived evolution equations for the perturbations around
this background solution. While the amplitude of these
perturbations was assumed to be small, such that linearized
equations could be used, the formalism allows us to treat
perturbations with arbitrary dependence on the transverse co-
ordinates and rapidity. Technically, this is done by employing
a Bessel-Fourier expansion. The partial differential equations
of relativistic fluid dynamics become ordinary differential
equations for the different modes that are characterized by
radial, azimuthal, and rapidity wave numbers. The evolution
of these perturbations is governed by the thermodynamic
properties encoded in the equation of state p(T ,μ) as well
as the transport properties [i.e., shear viscosity η(T ,μ), bulk
viscosity ζ (T ,μ), and heat conductivity κ(T ,μ) in the first
order formalism we use].

Generically, one finds that perturbations with large wave
numbers are damped more quickly by the dissipative pro-
cesses, as expected. The dissipation of different modes depends
on time in a different way and, in particular, deviations from
Bjorken boost symmetry show a fast damping at early times.
In principle, it might be possible to use these dependencies
to probe transport and thermodynamic properties at different
times in the evolution history and therefore for different
temperatures of the quark-gluon plasma produced in a heavy
ion collision.

In order to make more quantitative statements, one must
take a realistic transverse density profile and expansion into
account, of course. This has been done for perturbations with
exact Bjorken boost symmetry and vanishing baryon number in
Refs. [47,48,50,51]. In the present paper we have concentrated
mainly on the evolution of perturbations in baryon number
density. They have diffusion-type evolution governed by the
longitudinal expansion and heat conductivity. (In the Landau
frame, heat conductivity can in fact be understood as baryon
number diffusion.) There are characteristic differences in the
dependencies on longitudinal and transverse wave numbers.

064906-22



FLUID DYNAMIC PROPAGATION OF INITIAL BARYON . . . PHYSICAL REVIEW C 92, 064906 (2015)

More specific, baryon number perturbations are quickly
“flattened out” in the longitudinal direction at early times.

In principle, the information on baryon number perturba-
tions is accessible experimentally via two-point (and higher
order) correlation functions of particles with nonzero baryon
number, as a function of the difference in azimuthal angles and
rapidities. Based on the evolution equations for perturbations,
we expect long-range correlations in rapidity (a “baryon num-
ber ridge”). For a more detailed theoretical picture one needs
a better description of the local event-by-event fluctuations in
baryon number density at the initial time when fluid dynamics
becomes valid. Also, one should take a realistic transverse
expansion into account and study the implications of baryon
number perturbations at the kinetic freeze-out. (Formulas
needed for this have already been derived in Ref. [50].) It would
be very interesting to study net-baryon number correlations
experimentally, as well as theoretically in more detail, and

thereby constrain heat conductivity as another property of the
quark-gluon plasma.
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APPENDIX A: THERMODYNAMIC RELATIONS IN THE GRAND CANONICAL ENSEMBLE

In this appendix we compile some thermodynamic relations in the grand canonical ensemble that we found useful in the context
of relativistic fluid dynamics with a conserved charge. We start from the pressure p(T ,μ), which is related to the thermodynamic
potential of the grand canonical ensemble (the Landau potential) by p = −�/V . The differential of pressure is

dp = sdT + ndμ. (A1)

All thermodynamic quantities can be obtained from this and the Gibbs-Duhem relation ε + p = T s + μn, for example

s =
(

∂p

∂T

)
μ

, n =
(

∂p

∂μ

)
T

. (A2)

In the following we will sometimes drop the subscripts with the convention that pressure is evaluated as a function of T and μ
unless indicated otherwise. Also we find it useful to express all susceptibilities in terms of the pressure and its derivatives. This
avoids ambiguities and realizes Maxwell’s relations automatically. For example, the energy density is obtained then as

ε = −p + T
∂p

∂T
+ μ

∂p

∂μ
. (A3)

Its differential, as well as the one for density, are

dε =
[
T

∂2p

∂T 2
+ μ

∂2p

∂T ∂μ

]
dT +

[
T

∂2p

∂T ∂μ
+ μ

∂2p

∂μ2

]
dμ, (A4a)

dn = ∂2p

∂T ∂μ
dT + ∂2p

∂μ2
dμ. (A4b)

These linear relations can be inverted to yield dT and dμ in terms of dε and dn,

dT =
∂2p

∂μ2

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

dε −
T ∂2p

∂T ∂μ
+ μ∂2p

∂μ2

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

dn,

dμ = −
∂2p

∂T ∂μ

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

dε +
T ∂2p

∂T 2 + μ ∂2p
∂T ∂μ

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

dn.

(A5)

Other useful quantities are the heat capacity densities

cV = T

V

(
∂S

∂T

)
V,N

= T

(
∂s

∂T

)
n

=
T

(
∂2p

∂T 2
∂2p

∂μ2 − ∂2p
∂T ∂μ

∂2p
∂T ∂μ

)
∂2p

∂μ2

,

cP = T

V

(
∂S

∂T

)
P,N

= T

s/n

(
∂(s/n)

∂T

)
P

= T

n2

(
n2 ∂2p

∂T 2
− 2sn

∂2p

∂T ∂μ
+ s2 ∂2p

∂μ2

)
, (A6)
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the isothermal and adiabatic compressibilities

κT = − 1

V

(
∂V

∂p

)
T ,N

= 1

n

(
∂n

∂p

)
T

= 1

n2

∂2p

∂μ2
,κS = − 1

V

(
∂V

∂p

)
S,N

= 1

n

(
∂n

∂p

)
s/n

=
∂2p

∂T 2
∂2p

∂μ2 − ∂2p
∂T ∂μ

∂2p
∂T ∂μ

n2 ∂2p

∂T 2 − 2sn ∂2p
∂T ∂μ

+ s2 ∂2p

∂μ2

, (A7)

the thermal expansion coefficient

α = 1

V

(
∂V

∂T

)
P,N

= −1

n

(
∂n

∂T

)
P

= 1

n2

(
s
∂2p

∂μ2
− n

∂2p

∂T ∂μ

)
, (A8)

the sound velocity at fixed entropy per particle

c2
s =

(
∂p

∂ε

)
s/n

=
n2 ∂2p

∂T 2 − 2sn ∂2p
∂T ∂μ

+ s2 ∂2p

∂μ2

(ε + p)
(

∂2p

∂T 2
∂2p

∂μ2 − ∂2p
∂T ∂μ

∂2p
∂T ∂μ

) , (A9)

and a modified sound velocity at fixed particle density

c̃2
s =

(
∂p

∂ε

)
n

=
s ∂2p

∂μ2 − n ∂2p
∂T ∂μ

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

. (A10)

Both sound velocities agree for vanishing baryon number density, n = 0. Note that the usual relations

cP

cV

= κT

κS

, cP − cV = T α2

κT

, κT − κS = T α2

cP

, c2
s = 1

κS(ε + p)
(A11)

are fulfilled. Moreover, one has

c̃2
s = α

cV κT

,
1

cV

− 1

cP

= T c̃4
s

c2
s (ε + p)

. (A12)

For the evolution equations of linear perturbations as discussed in Sec. IV we need also

(
∂p

∂ε

)
n

=
s ∂2p

∂μ2 − n ∂2p
∂T ∂μ

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

,

(
∂p

∂n

)
ε

=
T n ∂2p

∂T 2 + (T s + μn) ∂2p
∂T ∂μ

+ μs ∂2p

∂μ2

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

,

(
∂(μ/T )

∂ε

)
n

=
1
T

∂2p
∂T ∂μ

− μ
T 2

∂2p
∂T ∂μ

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

,

(
∂(μ/T )

∂n

)
ε

=
∂2p

∂T 2 − μ2

T 2
∂2p

∂μ2

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

,

(
∂ζ

∂ε

)
n

=
∂ζ
∂T

∂2p

∂μ2 − ∂ζ
∂μ

∂2p
∂T ∂μ

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

,

(
∂ζ

∂n

)
ε

=
∂ζ
∂μ

(
T ∂2p

∂T 2 + μ ∂2p
∂T ∂μ

)
− ∂ζ

∂T

(
T ∂2p

∂T ∂μ
+ μ∂2p

∂μ2

)
T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

,

(
∂η

∂ε

)
n

=
∂η
∂T

∂2p

∂μ2 − ∂η
∂μ

∂2p
∂T ∂μ

T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

,

(
∂η

∂n

)
ε

=
∂η
∂μ

(
T ∂2p

∂T 2 + μ ∂2p
∂T ∂μ

)
− ∂η

∂T

(
T ∂2p

∂T ∂μ
+ μ∂2p

∂μ2

)
T ∂2p

∂T 2
∂2p

∂μ2 − T ∂2p
∂T ∂μ

∂2p
∂T ∂μ

, (A13)

where, similarly to pressure p(T ,μ), the bulk viscosity ζ (T ,μ) and shear viscosity η(T ,μ) are functions of T and μ on the right
hand side.

APPENDIX B: LINEARIZED RELATIVISTIC FLUID DYNAMICS

In this appendix we discuss a background-fluctuation splitting for the fluid dynamic equations as it is used in Sec. IV. We
split the fluid dynamic fields into a background part and a perturbation according to

uμ = ūμ + δuμ, ε = ε̄ + δε, n = n̄ + δn, πbulk = π̄bulk + δπbulk, (B1)

and so on. The projector orthogonal to the fluid velocity is given by

�μν = �̄μν + δ�μν, (B2)
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with δ�μν = ūμδuν + δuμūν . If one restricts to a linear treatment of perturbations, the equations of motion for the background
are simply the full equations of motion (5). For the perturbations in energy and particle number density one obtains from Eq. (5)

ūμ∂μδε + δuμ∂με̄ + (ε̄ + p̄ + π̄bulk)∇μδuμ + (δε + δp + δπbulk)∇μūμ + π̄μν∇μδuν + δπμν∇μūν = 0,

ūμ∂μδn + δuμ∂μn̄ + n̄∇μδuμ + δn∇μūμ + ∇μδνμ = 0, (B3)

and for the fluid velocity

(ε̄ + p̄ + π̄bulk)ūμ∇μδuν + (ε̄ + p̄ + π̄bulk)δuμ∇μūν + (δε + δp + δπbulk)ūμ∇μūν

+�̄νμ∂μ(δp + δπbulk) + δ�νμ∂μ(p̄ + π̄bulk) + �̄ν
α∇μδπμα + δ�ν

α∇μπ̄μα = 0. (B4)

In these equations one can see δε and δn as independent variables, to which other thermodynamic variables and the transport
coefficients are related in the standard way, e.g.,

δp =
(

∂p

∂ε

)
n

δε +
(

∂p

∂n

)
ε

δn, ∂μδp =
(

∂p

∂ε

)
n

∂μδε +
(

∂p

∂n

)
ε

∂μδn + ∂μ

(
∂p

∂ε

)
n

δε + ∂μ

(
∂p

∂n

)
ε

δn. (B5)

From the constitutive relation of first order fluid dynamics in Eq. (6) one finds

δπμν = −2η̄ δσμν − 2δη σ̄ μν (B6)

with

δσμν = 1
2 �̄μα∇αδuν + 1

2�̄να∇αδuμ − 1
3�̄μν∇αδuα + 1

2δ�μα∇αūν + 1
2δ�να∇αūμ − 1

3δ�μν∇αūα. (B7)

Similarly, for the bulk viscous pressure in Eq. (7) one finds

δπbulk = −ζ̄ δθ − δζ θ̄ , (B8)

with

δθ = ∇μδuμ. (B9)

Finally, the perturbation of the diffusion current is obtained from Eq. (8) as

δνα = −κ̄

[
n̄T̄

ε̄ + p̄

]2

δια − δ

(
κ

[
nT

ε + p

]2
)

ῑα, (B10)

with

δια = �̄αβ∂β δ(μ/T ) + δ�αβ∂β(μ̄/T̄ ), (B11)

and

∂βδ(μ/T ) =
(

∂(μ/T )

∂ε

)
n

∂βδε +
(

∂(μ/T )

∂n

)
ε

∂βδn + ∂β

(
∂(μ/T )

∂ε

)
n

δε + ∂β

(
∂(μ/T )

∂n

)
ε

δn. (B12)

Equations (B3) and (B4) also involve the following divergence of the shear stress perturbation

∇μδπμν = − 2(∂μη̄)δσμν − 2η̄∇μδσμν − 2(∂μδη)σ̄ μν − 2δη∇μσ̄ μν, (B13)

with

∇μδσμν = 1
2�̄μα∇μ∇αδuν + 1

2 �̄να∇μ∇αδuμ − 1
3�̄μν∇μ∇αδuα + 1

2δ�μα∇μ∇αūν + 1
2δ�να∇μ∇αūμ − 1

3δ�μν∇μ∇αūα

+ ūμ(∇μūα)∇αδuν + 1
6 (∇μūμ)ūα∇αδuν + ūν(∇μδuα)∇αūμ − 2

3 ūν(∇μδuμ)∇αūα + 1
2δuν(∇μūα)∇αūμ

− 1
3δuν(∇μūμ)∇αūα + ūμ(∇μδuα)∇αūν + 1

6 (∇μūμ)δuα∇αūν + δuμ(∇μūα)∇αūν + 1
6 (∇μδuμ)ūα∇αūν, (B14)

the derivative of the bulk viscous pressure perturbation

∂μδπbulk = −(∂μζ̄ )δθ − θ̄∂μδθ − (∂μδθ )θ̄ − δζ∂μθ̄, (B15)

with

∂μδθ = ∇μ∇αδuα, (B16)

and finally the divergence of the perturbation in the diffusion current

∇ανα = − ∂α

[
κ̄

(
n̄T̄

ε̄ + p̄

)2
]
δια − κ̄

(
n̄T̄

ε̄ + p̄

)2

∇αδια − ∇αδ

[
κ

(
nT

ε + p

)2
]
ῑα − δ

[
κ

(
nT

ε + p

)2
]
∇αῑα, (B17)
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with

∇αδια = �̄αβ∇α∂β δ(μ/T ) + ∇α�̄αβ ∂β δ(μ/T ) + ∇αδ�αβ∂β(μ̄/T̄ ) + δ�αβ∇α∂β(μ̄/T̄ ) (B18)

and

∇α∂βδ(μ/T ) =
(

∂(μ/T )

∂ε

)
n

∇α∂βδε +
(

∂(μ/T )

∂n

)
ε

∇α∂βδn + ∂α

(
∂(μ/T )

∂ε

)
n

∂βδε + ∂α

(
∂(μ/T )

∂n

)
ε

∂βδn

+ ∂β

(
∂(μ/T )

∂ε

)
n

∂αδε + ∂β

(
∂(μ/T )

∂n

)
ε

∂αδn + ∇α∂β

(
∂(μ/T )

∂ε

)
n

δε + ∇α∂β

(
∂(μ/T )

∂n

)
ε

δn. (B19)

Note that the expression in Eq. (B19) is contracted in Eq. (B18) with the projector �̄αβ . In many circumstances the background
field changes only in the direction of ūμ such that Eq. (B19) simplifies substantially.

Note that the formulas compiled in this appendix allow us to obtain for a given background solution and thermodynamic
equation of state linear evolution equations for the perturbations around this background solution. The independent variables of
these linearized equations are the three independent components of δuμ (one constraint is given by the condition ūμδuμ = 0) as
well as δε and δn. In the first order formalism of relativistic fluid dynamics, the equations for the perturbations are of parabolic
type while they are expected to become of elliptic type when relaxation time terms are kept.
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