Measurements of ϕ_3/γ at LHCb

Sneha Malde On behalf of the LHCb collaboration

B2TiP meeting Krakow 27th -29th April 2015

Sneha Malde 29th April 2015 Supported by the L'Oreal-Unesco UK and Ireland Fellowship For Women In Science

The CKM angle γ

CKM matrix parametrises quark couplings

The matrix has one complex phase that results in CPV

Unitarity triangle is a representation of this CPV

$$\gamma = -\arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

 γ is the least well known angle

Precision measurement → New Physics test bed

 $\boldsymbol{\gamma}$ is the only angle directly accessible in tree decays

Measurement of the "Standard Model". Theoretical uncertainty: 10⁻⁷

Direct measurement: $\gamma = 73.2^{+6.3\circ}_{-7.0}$

Indirect precision from global CKM fit – includes loop based measurements

$$\gamma = 66.9^{+1.0\circ}_{-3.7}$$

Despite recent progress in the direct measurements better precision still required to test for New Physics.

Goal : Improve the direct precision

The LHCb detector

All measurements profit from the VELO for displaced vertices and the RICH for particle identification

 $B_s \rightarrow D_s K$ benefits in particular from the excellent time resolution.

Int. J Mod. Phys A 30 (2015) 1530022

$B \rightarrow DK$

 $b \rightarrow u$ (suppressed)

Sensitivity to γ from b \rightarrow c and b \rightarrow u interference Require D⁰ and D⁰ to decay to same final state

 $r_B^{\sim} 0.1$

B→D π also possible r_B ~0.01 but higher statistics.

Measured observables are asymmetries and ratio of yields.

Sneha Malde 29th April 2015 Supported by the L'Oreal-Unesco UK and Ireland Fellowship For Women In Science

 $\frac{\mathbf{v}_{ud} \mathbf{V}_{ub}}{\mathbf{V} \mathbf{V}^*}$

 $\gamma = -\arg \left| -\frac{1}{2} \right|$

Pick your D channel

Selection

All analyses shown here employ similar strategies

Using multibody final states – $hh^{(\prime)}\pi^0$

Intermediate resonances dilute the impact of the observables.

$$\begin{aligned} R_{\text{ADS}(K)}^{K\pi\pi^{0}} &\cong (r_{B})^{2} + (r_{D}^{K\pi\pi^{0}})^{2} + 2\kappa_{D}^{K\pi\pi^{0}}r_{B}r_{D}^{K\pi\pi^{0}}\cos(\delta_{B} + \delta_{D}^{K\pi\pi^{0}})\cos\gamma \\ A_{\text{ADS}(K)}^{K\pi\pi^{0}} &\cong \left[2\kappa_{D}^{K\pi\pi^{0}}r_{B}r_{D}^{K\pi\pi^{0}}\sin(\delta_{B} + \delta_{D}^{K\pi\pi^{0}})\sin\gamma\right] / R_{\text{ADS}(K)}^{K\pi\pi^{0}} \\ R_{\text{qGLW}}^{h'h'\pi^{0}} &= 1 + (r_{B})^{2} + (2F_{+}^{h'h'\pi^{0}} - 1) \cdot 2r_{B}\cos\delta_{B}\cos\gamma \\ A_{\text{qGLW}(K)}^{h'h'\pi^{0}} &= (2F_{+}^{h'h'\pi^{0}} - 1) \cdot 2r_{B}\sin\delta_{B}\sin\gamma / R_{\text{qGLW}}^{h'h'\pi^{0}} \end{aligned}$$

Dilution factors all measured

They are large – all three decay modes pursued

$$\kappa^{K\pi\pi^{0}} = 0.82 \pm 0.07$$
$$F^{\pi\pi\pi^{0}} = 0.973 \pm 0.017$$
$$F^{KK\pi^{0}} = 0.732 \pm 0.055$$

PLB 731 (2014) 197, arXiv :1504.05878

Favoured modes

Mass fit shapes driven by the favoured control channel

PID efficiencies constrain the fraction of $B \rightarrow D\pi$ in the $B \rightarrow DK$ channel

Presence of the π^0 reduces purity in comparison to all charged final states. -Wrongly reconstructed D background

Detection and detector asymmetries input – fit observables corrected for these.

Production asymmetries is determined from the favoured decay.

ADS-like modes

arXiv:1504.05442

GLW-like modes

Interpretation of these results

2D likelihood scans of γ -r_B

1, 2 σ contours shown Cross marks the best of of combination of other LHCb results

Although with this set of measurements γ is unconstrained $r_B = 0.11 + / - 0.03$

Will help further constrain γ , $r_{B_{\!\scriptscriptstyle \!\!\!\!\!}}\,\delta_{B}$ when entered into the combination

arXiv:1504.05442

Other B decays: $B \rightarrow DK\pi\pi$ (1)

- Analyse KK, ππ, πK decay modes of the D
- r_B, δ_B are different to $B \rightarrow DK, \gamma$ is common
- Additional coherence factor due to different resonances in B →DKππ and B→DKππ
- Determined alongside the other physics parameters of interest
- Kππ system phasespace is restricted to enhance coherence
 - M(Kππ)<2 GeV/c²
 - $M(K\pi)$ within 100 MeV/c² of K*
- $B \rightarrow D\pi\pi\pi$ also studied for CPV

LHCB-Paper-2015-020

Different selection used for the GLW and ADS modes

Looser selection possible in the GLW modes due to higher signal yields.

First observation of all these decays

LHCB-Paper-2015-020

Constraints on γ

Strong constraints set on γ at the 68.3% CL.

This decay channel has potential

Additional information from $B \rightarrow D\pi\pi\pi$ adds a little sensitivity

Coherence factor close to 1 though no constraints set in the physical limit [0,1]

LHCB-Paper-2015-020

The golden modes – $K_s \pi \pi$, $K_s KK$

These decays analysed in regions of the Dalitz plot – not much sensitivity if analysed inclusively.

Binning shapes optimised for statistical sensitivity.

Symmetry of Dalitz plot defines positive and negative bins.

Reduces the analysis to a counting experiment in bins of the Dalitz plot - model independent

Data from $D \rightarrow K_s KK$ easily added as two additional bins.

Analysis strategy

To determine γ : Count the number of observed events in a region of the Dalitz plot.

$$N_{i}^{\pm} = h \left(K_{\pm i} + r_{B}^{2} K_{\mp i} + 2\sqrt{K_{i} K_{-i}} \left[x_{\pm} c_{i} \pm y_{\pm} s_{i} \right] \right)$$

D from B[±] events in
bin *i* of Dalitz plot
$$Fraction of events in bin forpure D0 sample with theefficiency profile of signal
$$x_{\pm} = r_{B} \cos(\delta_{B} \pm \gamma)$$

$$y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma)$$$$

 K_i are inputs from other LHCb decays - use $B^0 \rightarrow D^{*+} \mu^- \nu$, $D^{*+} \rightarrow D^0 \pi^+$

Charge of the π tags the D⁰ flavour.

c_i and s_i are inputs from CLEO - the are measurements of the cosine and sine of the average strong phase difference

Simultaneous mass fit to candidates in all bins to extract best x,y

Combined measurement of 3 fb⁻¹ data

Results

JHEP 10 (2014) 97

Constraints on γ

$$\gamma = (62^{+15}_{-14})^{\circ}$$
$$r_B = (8.0^{+1.9}_{-2.1}) \times 10^{-2}$$
$$\delta_B = (134^{+14}_{-15})^{\circ}$$

Precision matches that of either B factory $\boldsymbol{\gamma}$ combinations

Both diagrams colour suppressed \rightarrow large r_B (large interference)

Initial B⁰ flavour tagged by the charge of the kaon in the $K^{0*} \rightarrow K\pi$

(no need for time-dependent analysis)

Interference requires same D final state

So far two-body D decay modes considered with 3 fb⁻¹

 γ common to all analyses; here different B decay means different r_B and δ_B

KK, $\pi\pi$ in B⁰ \rightarrow DK^{*0}

$\pi K \text{ in } B^0 \rightarrow DK^{*0}$

PRD 90 (2014) 112002

Interpretation

Coherence factor κ determined from simulation of a realistic model of the resonance content of B⁰ \rightarrow DK π

 κ = 0.95±0.03

Measurements of all observables combined to determine r_B , $\delta_B \gamma$

Ambiguities from the trigonometric relations

Some constraints can be set at the 68.3% CL

 r_{B} value larger than that for $B \rightarrow DK$

Promising decay to study further

PRD 90 (2014) 112002

Time dependent methods

Measure CP violation in the interference of mixing and decay

Both decay amplitudes $\sim \lambda^3 \rightarrow$ Large interference

Tree level process like other analyses shown

Time-dependence increases the complexity of the analysis

Decay rate relations

$$\begin{split} \frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 (1+|\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \qquad \lambda_f \equiv \frac{q}{p} \left(\frac{\overline{A}_f}{A_f}\right) \\ &+ C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right], \\ \frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1+|\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right] \\ &- C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right], \end{split}$$

$$\begin{split} C_{f} = & \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}}, \\ A_{f}^{\Delta\Gamma} = & \frac{-2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, & A_{\overline{f}}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, & \beta_{s} \text{-mixing phase} \\ S_{f} = & \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, & S_{\overline{f}} = \frac{-2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \end{split}$$

Parametrising signal

Three D_s^- decays considered: K⁻K⁺ π^- , $\pi^-\pi^+\pi^-$, K⁻ $\pi^+\pi^-$: Plots show all D_s states combined Simultaneous fit in 3 variables: M(B_s), M(D_s) and PID variable on the Kaon from the B Allows for signal/background discrimination, and for determination of signal weights

Tagging and decay time performance

Flavour tagging:

Combination of SS and OS taggers

Efficiency of tagging an event = 67.5%

Effective tagging power = 5.07%

Decay time acceptance:

 $B_s \rightarrow D_s \pi$ with additional corrections from simulation

Decay time resolution:

Use the per-event error. Average resolution is 47 fs

External Inputs:

 $\Gamma_{\rm s}$, $\Delta\Gamma_{\rm s}$, $\Gamma_{\rm d}$, $\Gamma_{\Lambda b} \Delta m_{\rm s}$ all fixed from other measurements.

JHEP 11 (2014) 060

Results

The sum is greater than the parts

$$\gamma = 72.9^{+9.2\circ}_{-9.9}$$

Most observables treated Gaussian Assume Gaussian systematic fluctuations

Non-physical regions excluded.

External parameters and D mixing taken into account

Does not yet include the $D \rightarrow hh^{(')}\pi^0$, B $\rightarrow Dh\pi\pi$ results shown earlier.

Plugin method for nominal results – exclude $B \rightarrow D\pi$ measurements

Bayesian interpretation in good agreement.

LHCB-CONF-2014-004

Including $B \rightarrow D\pi$

Central value shifts up and peak sharpens when $B \rightarrow D\pi$ is added – ADS+GLW from 1fb⁻¹

Second solution result understandable by looking at the r_B^{π} values.

Fit favours an unexpectedly high r_B^{π} value

More $B \rightarrow D\pi$ results soon – will help resolve this feature.

LHCB-CONF-2014-004

Run 1 final say

Prospects beyond Run I

Projections for the GGSZ contours as more data is gathered

Expect to quadruple our dataset in Run II (2015 - 2017)

Current γ sensitivity at end of Run I ~ 8° Expected Run II sensitivity 4° LHCb upgrade will take considerably more data from 2018

Final combined sensitivity ~1°

Currently statistically limited

Controlling systematic uncertainties is the key

Systematic uncertainties

External inputs

Updated charm inputs from BES-III required - Large suite of results from CLEO-c all could use improvement in precision

- $c_{i},\,s_{i}\,$ Limiting uncertainty of 2°
 - Current update when finished would bring uncertainty down to ~ 1°
 - There are smarter things to be done
 - Optimal binning based on experiment background model
 - Take experimental efficiency model into account
 - Finer binning
 - These would improve the statistical reach of a given dataset, and remove other smaller systematic uncertainties

Higher order physics effects that can be controlled

D mixing, K_s^0 mixing, CPV and regeneration

Understanding the CPV in backgrounds that start to become significant.

Experimental uncertainties

-How much to trust MC simulation for e.g Dalitz plot efficiencies.-Controlling the level of detection and production asymmetries.

Summary

LHCb benefits from high statistics with high purity. Exploring new B decays Success of analysis with π^0 LHCb can also target unique B_s decay modes Expected sensitivity by year end $\gamma \sim 8^\circ$ On target to meet Run II projected sensitivity

