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Abstract

The ATCA and uTCA standards include industry-standard data pathway technologies such as Giga-
bit Ethernet which can be used for control communication, but no specific hardware control protocol
is defined. The IPbus suite of software and firmware implements a reliable high-performance con-
trol link for particle physics electronics, and has successfully replaced VME control in several large
projects. In this paper, we outline the IPbus system architecture, and describe recent developments in
the reliability, scalability and performance of IPbus systems, carried out in preparation for deployment
of uTCA-based CMS upgrades before the LHC 2015 run. We also discuss plans for future develop-
ment of the IPbus suite.SUMMARY IPbus will be used for controlling the uTCA electronics in the
CMS HCAL, TCDS, Pixel and Level-1 trigger upgrades. IPbus control has already been extensively
used in the work of these upgrade projects so far, and final uTCA systems will be deployed in the
experiment starting from Autumn 2014. IPbus is also being evaluated for use in the ATLAS and AL-
ICE upgrades, as well as other particle physics experiments. A tightly-integrated suite of software
and firmware components has been developed to implement the IPbus protocol the firmware core, a
reference VHDL implementation of an IPbus server over UDP, decoding IPbus read/write requests
within end-user hardware; uHAL, the C++/Python library providing an end-user API for IPbus reads
and writes; and the ControlHub, a software application which abitrates hardware access to each board
from multiple clients. Over the past two years we have developed a new reliable, higher-throughput
version of the IPbus protocol, firmware and software. We have set up an IPbus test system with re-
alistic network topology in the CMS electronics integration centre, in order to validate the reliability
and performance of the IPbus control system. The software has been optimised to increase the block
write/read throughput towards the Gigabit Ethernet bandwidth, and to improve the scalability with the
number of targets handled by each ControlHub instance. For 1 client and 1 target, the latency is about
250us for sequences of up to tens of transactions and the maximum block read/write throughput is
0.54Gbit/s; the throughput increases to 0.8Gbit/s for 3 or more targets. We have accumulated weeks
of continuous high-throughput random writes and reads over IPbus, without any errors. We also in-
vestigated scenarios with network congestion in the MCH Ethernet switch for a full uTCA crate, and
found that with appropriate configuration this congestion only has a small effect on the IPbus through-
put (12pct reduction). Plans for future work include improving the monitoring of IPbus dataflows
in large systems of hundreds of targets, and investigating further ideas for usability and performance
improvements.
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1. Introduction20

New electronics systems within many particle physics experiments are based on the ATCA and21

µTCA standards (henceforth collectively referred to as xTCA). The xTCA specifications incor-22

porate industry-standard serial communication technologies such as Gigabit Ethernet; however,23

unlike the VMEbus standard, they do not specify a hardware access protocol for controlling xTCA24

boards from external software applications.25

Several important requirements must be considered when designing the architecture and im-26

plementation of a hardware control system. Control systems must have reliable and predictable27

behaviour under all conditions, since they form the main link by which hardware is configured,28

monitored, and debugged in case of problems. The control system architecture for large exper-29

iments should be highly scalable, ideally with the same ease of setup and use from the simple30

‘board on benchtop’ scenario to the final system with hundreds of boards. In modern particle31

physics experiments, the same electronics setup is often used for decades before being replaced,32

and the associated control infrastructure must have the same maintainable lifetime. Hence, it is33

typically beneficial to use widespread industry-standard technologies, in order to avoid the risk of34

reliance on a single vendor. Experience from the CMS experiment’s online systems in LHC Run35

1 also shows that for monitoring and debugging issues in complex scenarios, in general it is help-36

ful to move complexity away from hardware/firmware into software running on commercial PC37

hardware.38
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The IPbus protocol — first developed by J. Mans et al. in 2009 — is a simple control pro-39

tocol for reading and modifying registers within IP-aware hardware. A tightly-integrated suite of40

IPbus software and firmware components which can be used to construct reliable, scalable, high-41

performance control systems has previously been presented in Ref. [1]. This IPbus suite will be42

used to control the xTCA off-detector electronics in the Phase-1 upgrades to the CMS experi-43

ment [2], as well as the ATLAS experiment’s Phase-0 and Phase-1 upgrades [3]. In this paper, we44

present recent improvements in the reliability, scalability and performance of the IPbus suite, based45

on a new version of the protocol.46

2. IPbus protocol47

The IPbus protocol is a simple protocol for controlling IP-aware hardware devices which have a48

virtual A32/D32 bus. It defines the following operations:49

Read A read of user-definable depth. Two types of read are defined: incrementing (for multiple50

continuous registers in the IPbus address space) and non-incrementing (for a port or FIFO).51

Write A write of user-definable depth. As with reads, two types of write are defined: incrementing52

and non-incrementing.53

Read-Modify-Write bits (RMWbits) An atomic bit-masked write, defined as X := (X &A) |B.54

This allows one to efficiently set/clear a subset of bits within a 32-bit register.55

Read-Modify-Write sum (RMWsum) An atomic increment operation, defined as X := X + A,56

which is useful for adding values to a register (or subtracting, using two’s complement).57

The IPbus protocol lies in the application layer of the networking model and is transport protocol58

agnostic. Each IPbus host device (typically hardware in a remote electronics crate) has an IP59

address and port number on which it accepts IPbus control packets. The protocol is transactional60

— for each read, write or RMW operation, the IPbus client (typically software) sends a request to61

the IPbus device; the device then sends back a response message containing an error code (equal62

to 0 for a successful transaction), followed by return data in case of reads. In order to minimise63

latency, multiple transactions can be concatenated into a single IPbus packet.64

Version 2.0 of the IPbus protocol [4] (finalised in early 2013) includes a reliability mechanism,65

through which the IPbus client can correct for any packet loss, duplication or re-ordering, if using66

an unreliable transport such as UDP. This mechanism is based on the client setting sequential packet67

ID values. In systems with multiple control applications, IPbus traffic must be routed via a network68

element that understands the IPbus protocol and thus can buffer the incoming request packets and69

reset their IDs (in practice, this is the role of the ControlHub).70

3. Firmware and software suite71

The IPbus software and firmware suite consists of the following components:72

IPbus firmware A module that implements the IPbus protocol within end-user hardware73

– 2 –



Table 1. Resource usage of IPbus firmware core.

Resource Usage
Minimal configuration Fully-featured

Flip flops 2000 3500
Slices 1000 2900
Block RAMs 5 17

ControlHub Software application that mediates simultaneous hardware access from multiple µHAL74

clients, and implements the IPbus reliability mechanism over UDP75

µHAL C++ and Python end-user programming interface for writes, reads and RMW operations76

End-user instructions and source code for these components are available through the CERN CAC-77

TUS (Code Archive for CMS Trigger UpgradeS) website and SVN repository [5]. The software is78

packaged as RPMs for Scientific Linux versions 5 and 6, and available through a YUM repository.79

3.1 IPbus firmware80

The IPbus 2.0 firmware module is a reference system-on-a-chip implementation of an IPbus 2.081

UDP server in VHDL; it interprets IPbus transactions on an FPGA. It has been designed as a82

common module to run alongside a device’s main processing logic (e.g. trigger algorithms) on the83

same FPGA, only using resources from within the FPGA. As a result of this, the IPbus firmware84

core must have a low resource usage, which is an important consideration in the choice of transport85

protocol. The TCP protocol exhibits various highly-desirable features of a transport protocol, such86

as reliable, ordered data transmission and congestion avoidance; however, the underlying algorithm87

is significantly more complex than for the other ubiquitous transport layer protocol, UDP. Hence,88

UDP has been chosen as the transport protocol; any loss, re-ordering or duplication of the IPbus89

UDP packets is automatically corrected by the ControlHub using the IPbus reliability mechanism.90

The IPbus firmware module has been designed to be simple to integrate into variety of plat-91

forms, and there are example designs for several development boards and standard platforms. The92

source code is currently Xilinx-specific, but has been successfully adapted for Altera devices. In93

addition to UDP, the IPbus firmware module also implements: the echo request/reply semantics94

from ICMP (RFC 792, used in the Unix ping command); ARP (RFC 826, used for resolving95

IP addresses into MAC addresses); and RARP (RFC 903, used for requesting an IP address on96

startup). Several parameters are configurable at build time, including: the Ethernet frame MTU;97

the number of buffers for incoming/outgoing IPbus packets which determines the maximum pos-98

sible control throughput; and the method used for IP address assignment — RARP, IPMI, or fixed99

IP address. The resource usage of the IPbus firmware core under ‘minimal’ and ‘fully-featured’100

configurations is shown in table 1.101

3.2 ControlHub102

The ControlHub is a software application that forms a single point of access for IPbus control of103

each device; specifically, it arbitrates simultaneous access from multiple control applications to104

one or more devices, and it implements the IPbus reliability mechanism for the ControlHub–device105
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UDP packets. Since the ControlHub is a software application, the µHAL–ControlHub communi-106

cation uses TCP, which has sophisticated congestion mitigation and flow-control algorithms.107

Design requirements and implementation. The ControlHub must be at least as reliable and108

transparent as a VME crate controller, since failure or crash within the ControlHub could disrupt109

the communications of several upstream control or monitoring applications. Additionally its design110

must allow multiple clients to communicate with multiple targets reliably, efficiently and indepen-111

dently.112

Erlang is a general-purpose, concurrent programming language, designed by Ericsson to build113

high-availability, fault-tolerant applications. The main structural unit in Erlang is the process.114

Erlang processes are lightweight compared to operating system processes; they share no state,115

instead communicating by message passing. These features are well-suited to the ControlHub’s116

requirements for high reliability, performance, and scalability in routing IPbus transactions, and117

therefore the ControlHub is implemented in Erlang. The ControlHub uses a separate Erlang process118

for each connected µHAL client and each IPbus device, ensuring workload can be spread across119

multiple CPU cores; its internal structure is described in more detail in Ref. [1].120

3.3 µHAL library121

µHAL is the Hardware Access Library (HAL) providing an end-user C++/Python API for IPbus122

reads, writes and RMW transactions. It is based on a delayed dispatch model in which multi-123

ple transactions are queued and concatenated within the transport layer payload buffers until the124

dispatch method is called.125

In µHAL each device’s register layout is specified by XML files. Each node of the XML tree126

represents either a single register, block RAM, FIFO, or a collection of these; the nodes in one127

file can reference other address files, such that the interfaces to repeated instances of a firmware128

module can be generated with minimal copy-paste of address file contents. This enables the user129

to write control software in a manner that intuitively mirrors the modular, hierarchical structure of130

large firmware designs.131

The µHAL interface to each device (based on the methods of the HwInterface and Node132

classes) can run in one of two modes of operation. In the local-client mode, the µHAL library133

communicates directly with device over UDP. In the remote-client mode, the µHAL library com-134

municates with hardware exclusively via a ControlHub. These differing modes of operation are135

implemented through the inheritance of of common interface, such that users can switch be-136

tween the modes of operation by simply changing the prefix of a single string when creating a137

HwInterface instance.138

µHAL is also packaged with an example GUI that is useful for monitoring the values of a139

subset of registers on a device during hardware development.140

4. Control system topology141

The topologies of an IPbus control system in some common scenarios are shown in figure 1. The142

simplest system (upper left) is a single target running the IPbus firmware, directly connected by a143

– 4 –



PC

Control
Hub

Control
 app

Monitor
app

Medium-scale system

Large-scale system

PC
Control

Hub

PC
Control app

PC
Control

Hub

Monitoring thread

Control thread

Local DAQ

Small-scale system

PC

Control
application

 XILINX 

Figure 1. Example topologies of IPbus control systems involving µTCA hardware, from small to large
scale.

single Ethernet cable to a computer running a C++/Python control application based on the µHAL144

library. This is the typical layout during early hardware development.145

In a more complex scenario such as a beam test or integration tests, there will typically be146

several devices, with multiple control, monitoring and DAQ applications, as shown in figure 1 (up-147

per right). Due to multiple applications simultaneously communicating with the devices, the IPbus148

traffic would be routed via a ControlHub, which would also recover any lost packets making the149

IPbus communication 100 % reliable.150

For a full-scale IPbus system at a large experiment (such as ATLAS or CMS) there would151

be hundreds of IPbus devices spread across many crates, and the control/monitoring applications152

would be spread across many computers, as shown in figure 1 (lower). In this case the use of an153

Ethernet network naturally allows scalability with the ease of extending the network using multiple154

switches and routers. Additionally the recovery from computer failure is simplified with the pos-155

sibility of having spare computers already connected to the network. Notably, the network could156

be divided into a separate subnet for each subdetector so that the network’s logical segmentation157

matches the typical IPbus dataflow. The exact number of devices per ControlHub would be adapted158

based on performance requirements.159

IPbus test system. A test system was set up in the CMS electronics integration centre at CERN,160

in order to investigate the reliability and performance of the IPbus suite using very similar network161

layout and hardware to that planned for final deployment in the CMS experiment. The test sys-162
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tem consists of network infrastructure, two computers, and one µTCA shelf containing 12 µTCA163

boards (AMCs), each running the IPbus 2.0 firmware core. The computers are Dell PowerEdge164

R300 rack PCs; three of the AMCs are GLIBs [6] and the other nine are Mini-T5s [7].165

5. System reliability166

The reliability and robustness of the IPbus suite has been ensured by extensive testing of both the167

software and firmware in a range of scenarios.168

The software is tested by itself (independent of the hardware) each night using a dummy hard-169

ware executable which emulates the response of an IPbus device. A suite of unit test executables170

are run in order to test µHAL and the ControlHub with basic read/write/RMW operations to the171

dummy hardware running on the same machine. By configuring the operating system to randomly172

drop IP packets, these executables are also used to test the ControlHub’s reliability mechanism.173

The full IPbus control link (µHAL–ControlHub–firmware) has been tested with a variety of174

µTCA boards, using a µHAL-based C++ executable. This executable issues random sequences of175

reads, writes and RMW transactions to a device using random addresses, random depths for the176

reads and writes, and random values for the data written and the RMW parameters. The executable177

checks that all of the returned error codes indicate success, and checks that the values returned178

by the reads and RMW transactions are always correct. The released version of the firmware179

core was validated by running the executable for over 20 hours (corresponding to over 10 billion180

transactions) against the IPbus firmware core loaded on each of the Mini-T5, GLIB and MP7181

boards. No errors were observed during this final testing.182

6. Performance183

The latency and block transfer throughput are two important parameters of a control system:184

Latency is defined as the total round-trip time taken to perform an IPbus transaction, as measured185

in the µHAL client application.186

Throughput is defined as the amount of user data transferred or received per unit of time.187

In order to predict the performance of the future CMS IPbus control system, and verify the design of188

the IPbus components and their planned layout, the system performance was measured in several189

benchmark scenarios. These measurements were carried out in the IPbus test system, with the190

µHAL clients running on one computer and the ControlHub on the other computer.191

1-to-1 block transfers. The block read/write latency and throughput for one µHAL client con-192

trolling one device via the ControlHub, is shown in figure 2. The median single-word write/read193

latency is approximately 250 µs. Although this single-word latency is significantly larger than194

with VME/PCIe-based control, for multiple transactions or large block transfers this is compen-195

sated by concatenating multiple transactions into each packet, and by having multiple packets in196

flight around the system at any given time. Hence, the block read/write throughput for payloads197

larger than 1 MByte is above 0.5 Gbit/s.198
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Figure 2. The median write/read and throughput as a function of depth, for one software client controlling
one IPbus device, via the ControlHub.
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Figure 3. The latency and total system polling frequency for n clients each simultaneously polling a register
in one of the m targets.

n-to-m polling. The system performance for multiple µHAL clients polling a single-word reg-199

ister in multiple devices is shown in via one ControlHub was also measured. The mean polling200

latency, and total system polling frequency, for 1, 2 or 4 clients per device are shown in figure 3201

as a function of the number of devices. The latency experienced by each client gradually increases202

with the number of clients or devices, due to the the increasing load of network interrupts on the203

computers. However, the total polling frequency increases with the number of clients or devices in204

the system, as the ControlHub spreads its increasing workload over the four CPU cores.205

n-to-n block transfers. The performance for continuous block reads and writes of all 12 boards206

in the µTCA crate was also measured. The Ethernet connection to a µTCA crate is via a Gigabit207

Ethernet socket on the front panel of the crate management module, the MCH (MicroTCA Carrier208

Hub). Each individual AMC in a µTCA crate is connected to the MCH’s Ethernet switch by209

a separate bidirectional 1 Gbit/s link. In theory, this network topology could lead to congestion210

in the MCH switch during simultaneous block reads from multiple AMCs. For block reads, the211

reply packets are significantly larger than the request packets, and so the total instantaneous return212

bandwidth from the 12 AMCs into the MCH could exceed the 1 Gbit/s capacity of the link from213
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Figure 4. The total system throughput for n IPbus clients each simultaneously writing to / reading from one
of n devices, via one ControlHub, using a NAT MCH (left) or a Vadatech MCH (right).

the MCH to the local network. However, within the IPbus protocol only a limited number of214

requests are in flight to each target at any given time, which imposes an upper limit on the total215

size of packets that would have to be buffered within the MCH switch. In practice whether or not216

such congestion leads to reduced performance depends on various factors, including the number of217

packets in flight to each AMC, and the design of the MCH switch. Within the CMS collaboration,218

MCH modules are currently being purchased from two vendors: NAT and Vadatech.219

The IPbus system throughput for multi-client block reads and writes with multiple targets are220

shown in figure 4 for both the NAT and Vadatech MCHs. For the NAT MCH (V3.4), the read and221

write throughputs are similar; over 75 % of the Gigabit Ethernet bandwidth is utilised with three222

or more devices. However, using the Vadatech MCH (model UTC002-210-440-010), the system223

throughput degrades for simultaneous block reads from four or more devices due to congestion in224

the MCH switch, with read throughput approximately 20 % lower than write throughput for 8 or225

more targets. In order to reduce congestion, the system performance was re-measured with fewer226

packets in flight to each device; this can be achieved by editing one line in the ControlHub config-227

uration file. With 11 packets in flight to each device (default value is 16), there is less congestion-228

induced packet loss, and so the simultaneous read throughput is above 0.75 Gbit/s for three or more229

devices; however, the maximum 1-client-to-1-target throughput decreases by approximately 12 %.230

7. Conclusions231

A new reliable, high-performance version of the IPbus protocol has been developed along with the232

associated suite of software and firmware, in order to control xTCA hardware via Gigabit Ethernet.233

An IPbus test system with realistic network topology was set up in the CMS electronics integration234

centre in order to verify the control system’s reliability, and investigate its performance. For one235

software client controlling one device, the single-word read/write latency is approximately 250 µs236

and the block read/write throughput is above 0.5 Gbit/s for payloads larger than 1 MByte; the total237

block read/write throughput is above 0.75 Gbit/s for three or more boards in a single µTCA shelf.238

The first large-scale IPbus system in the CMS experiment was deployed in August 2014, in239

preparation for the start of LHC Run 2 in 2015. Hence, development is now focused on simplifying240
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the monitoring of IPbus dataflows in large systems of hundreds of devices. The IPbus software241

and firmware suite will be optimised in order to improve performance with 10 Gigabit Ethernet.242

Additionally, an IPbus locking mechanism is being considered in order to provide exclusive access243

to IPbus devices from a single client for extended configuration sequences.244
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