Measurement of the inclusive photon and photon+jet production cross-sections at \sqrt{s} = 7 TeV with the ATLAS detector

XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects @ Dallas, TX

Matthias Saimpert¹

On behalf of the ATLAS collaboration

¹CEA Saclay, Irfu/SPP - France

April 29th 2015

Isolated prompt photon production in ATLAS

- photons are produced from 3 different mechanisms in proton-proton collisions at the LHC:
 - From the hard parton scattering \rightarrow direct photons (*)
 - From parton fragmentation \rightarrow fragmentation photons $^{(**)}$
 - From hadron and tau decays \rightarrow non prompt photons

- Only prompt photons (direct + fragmentation) are measured in order to keep sensitivity to perturbative QCD
- A maximum transverse energy deposit around the candidates is required in order to reduce the non-prompt photon background and fragmentation
 - \rightarrow similar cut applied to theory
 - \rightarrow measurement of isolated prompt photons

Motivations

Test of perturbative QCD

- \rightarrow Process very sensitive to higher order effects
- \rightarrow Full Next-to-Leading Order (NLO) calculation available: JETPHOX

Important for Higgs studies and many new physics searches

 \rightarrow H \rightarrow $\gamma\gamma$, one of the most interesting Higgs decay channel at the LHC \rightarrow Composite Higgs, SUSY and extra-dimension searches look at final states with photons in ATLAS

Constraint on parton fragmentation

- ightarrow Poorly known theoretically: non-perturbative process
- ightarrow Fragmentation functions fitted to data

Potential to constraint the gluon density function in the proton at high x

 \rightarrow u-g main process for inclusive photon production

Measurement of the inclusive isolated prompt photon production at \sqrt{s} = 7 TeV with \mathcal{L} = 4.6 fb⁻¹

• $\gamma + X$ final states, full 2011 dataset

Total fiducial cross section measurement: $\sigma(\gamma + X) = 236 \pm 2(stat)^{+13}_{-9}(syst) \pm 4(lumi)$ pb

Differential cross section measurement for $E_{\rm T}^{\gamma}$ > 100 GeV in $|\eta^{\gamma}| < 1.37$ (barrel) and $1.52 < |\eta^{\gamma}| < 2.37$ (end-caps)

Phys. Rev. D 89, 052004 (2014)

Event Selection

Online selection: single photon trigger $E_T^{\gamma} > 80 \text{ GeV}$

Offline selection: good collision data, good photon candidate, $\rightarrow E_T^{\gamma} > 100 \text{ GeV}, |\eta^{\gamma}| < 1.37 \text{ OR } 1.52 < |\eta^{\gamma}| < 2.37$

- Huge background from boosted $\pi^0, \eta^0
 ightarrow \gamma\gamma$ decays
 - ightarrow Photon tight ID, based on electromagnetic shower shape profiles
 - \rightarrow Photon isolation energy $E_{\rm T}^{\rm iso} < 7~{\rm GeV}$

Scalar sum of the calorimeter cell transverse energies within a cone of radius $\Delta R = 0.4$ around the photon candidate, corrected for photon contribution.

Pile up and underlying event effects subtracted on an event by event basis.

$_{ m a}$ after full selection, $\simeq 1 imes 10^6$ events in the barrel, half in the end-caps

Inclusive photon and photon + jet measurements at \sqrt{s} = 7 TeV in ATLAS April 29th 2015 4 / 18

Residual background estimation

- After selection, the residual background from boosted π⁰, η⁰ → γγ decays contaminates the signal region (up to 6%)*
 *Some electrons misreconstructed as photons are also present (0.5% for E_T^γ < 400 GeV) and subtracted using a data-driven technique based on a Z mass peak study.
 In order to estimate it, use of the 2D side band data-driven method
 Another ID is used to define background control regions so that
 - Another ID is used to define background control regions so that isolation and photon ID stay uncorrelated*

*A systematic uncertainty is assigned to this assumption

Alternative background subtraction methods lead to differences from 2 to 3% on the cross-sections, taken as a systematic uncertainty

Inclusive photon and photon + jet measurements at \sqrt{s} = 7 TeV in ATLAS April 29th 2015 5 / 18

Unfolding

The measured cross section is unfolded from detector effects using bin-by-bin corrections factors C_i:

$$\left(\frac{d\sigma}{d\mathcal{O}}\right)_{i} = \frac{N^{obs.} - N^{bkg.}}{C_{i}^{MC} \cdot \Delta \mathcal{O} \cdot \mathcal{L}}$$
; $C_{i}^{MC} = \frac{N_{i,reconstructed}^{MC}}{N_{i,generated}^{MC}}$

C_i computed from the signal MC samples,

 \rightarrow take into account acceptance and smearing effects $^{(*)}$, identification efficiency $^{(*)}$, trigger efficiency $^{(**)}$

(*) Correction factors for MC shower shapes are derived to match the ones observed in data

(**) Very close to 100%. Estimated from data using photon triggers with lower thresholds.

Main systematic uncertainties from reconstruction (C_i) :

Theoretical predictions

JETPHOX Monte Carlo program is used

- Full NLO calculation $O(\alpha \alpha_s^2)$ for both direct and fragmentation components
- Fiducial selection: $E_T^{\gamma} > 100 \text{ GeV}$, $|\eta^{\gamma}| < 1.37 \text{ OR } 1.52 < |\eta^{\gamma}| < 2.37$

Parton level isolation cut implemented^(*), $\Delta R = 0.4$, $E_{T}^{iso} < 7 \text{ GeV}$

 $^{(\ast)}$ particle level correction factors derived from LO MC samples with Parton Shower (PYTHIA, HERWIG)

Fragmentation function: BFG set II, PDF: CT10 and MSTW2008NLO

Renormalization, factorization, fragmentation scales all set to $E^{\gamma}_{
m T}$

Theoretical uncertainties

- **3 scales varied** from $E_T^{\gamma}/2$ to $2 \times E_T^{\gamma}$: **12 to 20% (largest)**
- **PDF uncertainties** evaluated from CT10 eigenvectors: from **5 to 15%** from low to high E_T^{γ}
- **a**s uncertainty: varied $\pm 0.002 \rightarrow 4.5\%$ with small E_{π}^{γ} dependence
- Added in quadrature

Inclusive photon at $\sqrt{s} = 7$ TeV: Final results

Total fiducial cross section: $\sigma(\gamma + X) = 236 \pm 2(stat)^{+13}_{-9}(syst) \pm 4(lumi)$ pb

JETPHOX predictions: $203(212) \pm 25(24)$ pb for CT10 (MSTW2008NLO) PDF sets

NLO (JETPHOX) in agreement with data, even if lower at low E^γ_T

Pythia description (LO) fairly good. HERWIG (LO) fails by 10-20%.

- **Theoretical uncertainties:** from 10 to 20%, dominated by the scale
- **Total experimental systematics:** < 6% (7%) in barrel (end-caps)

Sensitivity to the parton density distributions

ATL-PHYS-PUB-2013-018

Inclusive photon production dominated by u-g process at the LHC \rightarrow sensitivity to the gluon PDF

(right) inclusive cross section ratio to CT10 using different sets of PDFs

1000 E⁷_T [GeV]

Good potential to constrain further the gluon PDF at high x

Inclusive photon and photon + jet measurements at \sqrt{s} = 7 TeV in ATLAS April 29th 2015 9 / 18

Sensitivity to the parton density distributions

- (left) measurement vs JETPHOX predictions with various PDFs
- (right) ratio of the different predictions to measurement and pull distributions
- The scale uncertainty from theory until mid- E_T^{γ} limits the final sensitivity to PDFs \rightarrow a NNLO calculation would be very profitable
- No final statement can be made for now (fail at low E_{T}^{γ} ?)

Dynamics of isolated-photon + jet production at \sqrt{s} = 7 TeV with \mathcal{L} = 37 pb⁻¹

 \checkmark γ + jet + X final states, full 2010 dataset

Differential cross section measurement for $E_{\rm T}^{\gamma}$, $p_{\rm T}^{\rm jet}$, $|\gamma^{\rm jet}|$, $\Delta \phi^{\gamma \rm jet}$, $m^{\gamma \rm jet}$, $\cos \theta^{\gamma \rm jet}$.

Additional motivations:

Angular correlation measurement (MC tuning)

Check of one of the main $H \rightarrow \gamma \gamma$ reducible background

Nucl. Phys. B 875 (2013) 483-535

Event Selection and $\cos \theta^{\gamma j}$ observable

Online selection: single photon trigger $E_{\rm T}^{\gamma} > 40 \, {\rm GeV}$

- Photon selection: similar to $\gamma + X$ measurement but $E_{\rm T}^{\gamma} > 45$ GeV, isolation requirement: $E_{\rm T}^{\rm iso} < 3$ GeV, $\Delta R = 0.4$.
- **Jet selection:** at least 1 reconstructed with anti- $k_{\rm T}$ algorithm of R = 0.6, $p_{\rm T}^{jet} > 40$ GeV, $|y^{jet}| < 2.37$, $\Delta R^{\gamma j} > 1$, quality requirements.
- $\theta^{\gamma j}$ corresponds to the scattering angle in the center-of-mass frame. $|\cos\theta^{\gamma j}| = |tanh(\Delta y/2)|$ is sensitive to the spin of the exchanged particle

 \rightarrow interesting to differentiate direct/fragmentation photons.

Additional cuts for $m_{\gamma j}$ and $|cos\theta^{\gamma j}|$ measurements: $|\eta^{\gamma} + y_{jet}| < 2.37$, $|cos\theta^{\gamma j}| < 0.83$ and $m_{\gamma j} > 161$ GeV to get a uniform coverage.

Residual background subtraction, unfolding and related systematic uncertainties

œ

- Around 124,000 selected events after selection
- Main residual background from jets faking photons, \simeq 10% of events. systematic uncert. \simeq 2% $^{(*)}$

 $^{(*)}$ Similar to inclusive photon measurement, 2D sideband data-driven method used.

 \rightarrow the direct/fragmentation photon ratio of LO MC samples (PYTHIA, HERWIG) is fitted for each observable in order to improve the data/MC agreement for unfolding.

Bin by bin correction factors used for unfolding (*).

Integrated efficiency \simeq 68%.

Main uncertainties in the case of $|\cos \theta^{\gamma j}|$, added in quadrature:

(*) Similar to inclusive photon measurement

Jet energy scale (\simeq 5%)

- **Detector material uncertainty** (\simeq 5%)
- Photon isolation (\simeq 4%)
- Photon identification (2%), photon energy scale (1%)

2010 dataset luminosity uncertainty: 3.4%

Theoretical predictions and related systematic uncertainties

JETPHOX Monte Carlo program is used

- Number of flavours set to 5.
- Full NLO calculation $O(\alpha \alpha_s^2)$ for both direct and fragmentation components
- Parton level isolation cut implemented, $\Delta R = 0.4$, $E_T^{iso} < 4$ GeV. Corrected for non perturbative effects to match the cut applied on data
- Fragmentation function: BFG set II, PDF: CTEQ6.6, CT10 and MSTW2008NLO
- Renormalization, factorization, fragmentation scales all set to $E^{\gamma}_{
 m T}$

Theoretical uncertainties (for $|\cos \theta^{\gamma j}|$)

- **3 scales varied** from $E_T^{\gamma}/2$ to $2 \times E_T^{\gamma}$: $\simeq 14\%$
- **PDF uncertainties** evaluated from CTEQ6.6: $\simeq 3.5\%$
- **a**_s uncertainty: varied $\pm 0.002 \rightarrow 2.5\%$
- Non-perturbative corrections of partonic isolation (0.5%) (*)

 $^{(st)}$ similar but neglected in the case of the inclusive photon cross section measurement

Added in quadrature

Final results: $m{E}_{\mathbf{T}}^{\gamma}$, $m{p}_{\mathbf{T}}^{jet}$

Check of perturbative QCD before looking at angular correlations

- Good description of data by JETPHOX NLO calculation
- MSTW2008nlo rises the predictions by 5% with respect to CTEQ6.6, CT10
- Using LO calculation, one can show that fragmentation effects decrease as a function of E_T^{γ} and p_T^{jet}

Final results: $|\mathbf{y}^{jet}|$, $\mathbf{\Delta}\phi^{\gamma jet}$

Good description of |y^{jet}| by JETPHOX NLO calculation

Fragmentation stable as a function of |y^{jet}|

Expected failure of NLO calculation for $\Delta \phi^{\gamma j}$ due to two/three-body final state and momentum conservation: $\Delta \phi^{\gamma j} > \pi/2$ (no parton shower)

Δ $\phi^{\gamma j}$: Good description by Pythia, HERWIG fails

Final results: $m^{\gamma jet}$, $cos \ \theta^{\gamma jet}$

Main angular correlation results: $m^{\gamma jet}$, $|\cos \theta^{\gamma jet}|$

Good description of $m^{\gamma jet}$ but large error bars

 Good description of |cos θ^{γjet}|, variable very sensitive to the fragmentation component at high values

$|\cos \theta^{\gamma jet}|$ shape consistent with a predominance of spin 1/2 exchange

Conclusion

- The standard model predictions of the inclusive photon and photon + jet production processes in pp collisions at $\sqrt{s} = 7$ TeV have been checked successfully
- The inclusive photon measurement have the potential to constrain the gluon density of the proton at Run 2

 \rightarrow a NNLO calculation to decrease the scale uncertainty of the predictions would be very profitable

The measurement of several observables sensitive to fragmentation has been done, ex: $|\cos \theta^{\gamma jet}|$.

 \rightarrow In general, a good agreement is observed.

- Very useful to tune MC generators and understand better the main reducible background for H $\to \gamma\gamma$

Inclusive photon at $\sqrt{s} = 8$ TeV, $\mathcal{L} = 20.3$ fb⁻¹

Inclusive photon and photon + jet measurements at \sqrt{s} = 7 TeV in ATLAS April 29th 2015 18 / 18

Measurement of the inclusive photon and photon+jet production cross-sections at \sqrt{s} = 7 TeV with the ATLAS detector

Backup slides

Matthias Saimpert¹

On behalf of the ATLAS collaboration

¹CEA Saclay, Irfu/SPP - France

April 29th 2015

Inclusive photon measurement: comparison with LO generators (direct component only)

Inclusive photon measurement: cross section vs $|\eta^{\gamma}|$ and signal purity

combined LO and NLO contributions to the inclusive photon cross section

Analysis of inclusive photon cross section uncertainties using CT10 or ABM 11 PDF

Inclusive photon and photon + jet measurements at \sqrt{s} = 7 TeV in ATLAS April 29th 2015 18 / 18

Photon + jet measurement: bias regions

Photon + jet measurement: no extra cut

œ

Inclusive photon and photon + jet measurements at \sqrt{s} = 7 TeV in ATLAS April 29th 2015 18 / 18

Photon + jet measurement: Fit of the direct/fragmentation component

Photon + jet measurement: comparison with LO generators

Photon + jet measurement: comparison with LO generators

Photon + jet measurement: comparison with LO generators

Photon identification performance: 2011 vs 2012

Inclusive photon and photon + jet measurements at \sqrt{s} = 7 TeV in ATLAS April 29th 2015 18 / 18

Photon identification performance: 2011 vs 2012

 γ