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Abstract
The first observation of the BY — DT K* decay is reported using 3.0 fb~! of proton-
proton collision data collected by the LHCb experiment. The D’T mesons are
reconstructed through the decay chain DT — vDF (KTK*7F). The branching
fraction relative to that for BY — D*~ 7% decays is measured to be
B(BY— D:TK*)/B(BY— D:~n%) = 0.068 & 0.00515 00,
where the first uncertainty is statistical and the second is systematic. Using a recent
measurement, of B(BY — D?~77), the absolute branching fraction of B? — DT K=
is measured as
B(BY — D:TK*) = (16.3 + 1.2 (stat) 70 (syst) + 4.8 (norm) ) x 107,

where the third uncertainty is due to the uncertainty on the branching fraction of
the normalisation channel.
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1 Introduction

The weak phase 7y is one of the least well-determined CKM parameters. It can be measured
using time-independent deca rates, such as those of BT — DK™ or by time-dependent
studies of B® — DT K decays [1]. In time-dependent measurements with the decays
B(OS) — D(:)) “h*, where h indicates a light meson, the sensitivity to v is a consequence
of the interference between the amplitudes of the b — u and b — ¢ transitions occuring
through B?S)—F?S) mixing. The relevant Feynman diagrams for the B? system are shown

in Fig. [1}

Figure 1: Feynman diagrams of the processes under study. The upper diagrams represent the
two tree topologies (b — ¢ and b — u transitions, respectively) by which a B? meson decays
into the DT K final state; the lower diagrams show the tree diagram of BY — D*~ 7% and the
W-exchange topology of BY — D~ KT,

The BY — DFK¥* decay mode has already been used by LHCb to determine v with
a statistical precision of about 30° 2], in an analysis based on data corresponding to an
integrated luminosity of 1fb™'. An attractive feature of BY — D*TK¥* decays is that the
theoretical formalism that relates the measured CP asymmetries to 7 is the same as for
BY — DFK#* decays, when the angular momentum of the final state is taken into account
in the time evolution of the B%BY decay asymmetries.

The observables of the decay B? — DT K* can be related to those of BO — D®)~r+
as described in Ref. [1] through the U-spin symmetry of strong interactions. This opens

!Charge-conjugate states are implied throughout.



the possibility of a combined extraction of 4. In addition, there is a higher sensitivity to
v in B? — DWF K+ decays than in B — D®~7% decays due to the larger interference
between the b — u and b — ¢ amplitudes in the former.

The ratio R = B(B? — DFK*)/B(B° — D;7") has recently been measured by
LHCb [3] to be R = 0.0762 £ 0.0015 4 0.0020, where the first uncertainty is statistical and
the second systematic. This is compatible with the predicted value of R = 0.08615 07 from
Ref. [1], which is based on SU(3) flavour symmetry and measurements from B factories.
Under the same theoretical assumptions, the ratio R* = B(BY — D:TK*)/B(B? —
D~ r) is predicted to be R* = 0.0997393 [1] and it is therefore interesting to test this
prediction for vector decays.

The B? — D~ 7" and BY — D*T K* decays are experimentally challenging for detectors
operating at hadron colliders because they require the reconstruction of a soft photon
in the D~ — D_ v decay. This paper describes the reconstruction of the B? — D* 7™
decay, previously observed by Belle [4], as well as the first observation of the BY — DT K+
decay and the measurement of R*. This is the first step towards a measurement of the
time-dependent CP asymmetry in these decays.

The pp collision data used in this analysis correspond to an integrated luminosity of
3.0fb™", of which 1.0fb™" were collected by LHCb in 2011 at a centre-of-mass energy of
/s = 7TeV, and the remaining 2.0fb™" in 2012 at /s = S TeV.

The ratio of branching fractions for the decays B — D*TK* to B? — D n* is

evaluated according to
N
R = M
Ny+ g+

where ex and Nx are the overall reconstruction efficiency and the observed yield, respec-
tively, of the decay mode, and X represents either a kaon or a pion (the “bachelor” hadron)
that accompanies the D?~ in the final state.

2 LHCDb detector

The LHCb detector [5,6] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < n < 5, designed for the study of particles containing b or ¢ quarks. The
detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The
tracking system provides a measurement of momentum, p, of charged particles with a
relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The
minimum distance of a track to a primary vertex, the impact parameter, is measured
with a resolution of (15 + 29/pr) um, where pr is the component of the momentum
transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished
using information from two ring-imaging Cherenkov detectors. Photons, electrons and
hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower



detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified
by a system composed of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger which consists of a hardware stage,
based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. At the hardware trigger stage, events are
required to have a muon with high pr or a hadron, photon or electron with high transverse
energy in the calorimeters. For hadrons, the transverse energy threshold is 3.5 GeV. The
software trigger requires a two-, three- or four-track secondary vertex with a significant
displacement from the primary pp interaction vertices (PVs). At least one charged particle
must have a transverse momentum pr > 1.7 GeV/c and be inconsistent with originating
from a PV. A multivariate algorithm [7] is used for the identification of secondary vertices
consistent with the decay of a b hadron. The pr of the photon from D}~ decay is too low
to contribute to the trigger decision.

In the simulation, pp collisions are generated using PYTHIA [8] with a specific LHCb
configuration [9]. Decays of hadronic particles are described by EVTGEN [10], in which final-
state radiation is generated using PHOTOS [11]. The interaction of the generated particles
with the detector, and its response, are implemented using the GEANT4 toolkit [12] as
described in Ref. [13].

3 Event selection

Candidate B? mesons are reconstructed by combining a D~ candidate with an additional
pion or kaon of opposite charge. The preselection and selection for the two decays analysed
for the measurement of R* differ only by the particle identification (PID) [14] requirements
imposed on the bachelor tracks. The D}~ and D, candidates are reconstructed in the
D;~ and K~ K*n~ decay modes, respectively. Each of the three D, daughters tracks is
required to have a good track quality, momentum p > 1000 MeV/¢, transverse momentum
pr > 100 MeV/c and a large impact parameter with respect to any PV. More stringent
requirements are imposed for bachelor tracks, namely p > 5000 MeV/c and pp > 500 MeV/c.
A good quality secondary vertex is required for the resulting D7 -bachelor combination.
Photons are identified using energy deposits in the electromagnetic calorimeter that are
not associated with any track in the tracking system. Due to the small difference between
the masses of the DX~ and D mesons, called A, in the following, the photons from
the D~ decay have an average transverse energy of a few hundred MeV/c®. A cut on
a photon confidence level variable is used to suppress background events from hadrons,
electrons and 7° decays [6]. This confidence level variable takes into account the expected
absence of matching between the calorimeter cluster and any track, the energy recorded in
the preshower detector and the topology of the energy deposit in the electromagnetic and
hadronic calorimeters.

Additional preselection requirements are applied to cope with a large background mainly
due to genuine photons that are not D~ decay products, or hadrons that are misidentified
as photons. The reconstructed mass of the D, candidate and the reconstructed A,
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Figure 2: (left) The K~ K7~ invariant mass and (right) mass difference Ay of the B? —
D*~ 7t candidates. The points represent data. On the right plot the solid line represents the
signal expected from the simulations.

value are required to be in a + 20 MeV/c? window around their known values [15]. The
B?S) —D; KT (") decays are vetoed by a cut on the invariant mass of the D K™
(7)) system. PID requirements are applied to all final-state hadrons. Finally, the
maximum distance in the 7—¢ plane between the D and the photon is required to satisfy
VAN? + Ap? < 1, where An (Ay) is the pseudo-rapidity (azimuthal angle) distance
between the corresponding candidates.

To further reduce the combinatorial background while preserving a high signal efficiency,
a multivariate approach is used. This follows closely the selection based on a boosted
decision tree (BDT) [16}/17] used in the measurement of the ratio of BY — DTK® to
BY— D " branching fractions [3]. The algorithm is trained with simulated B? — D*~x
events as signal, and candidates in data with an invariant mass greater than 5500 MeV/c?
as background. The five variables with the highest discriminating power are found to be
the B? transverse flight distance, the photon transverse momentum, the xip of the B?
candidate (where x3p is defined as the difference in x? of the associated PV, reconstructed
with and without the considered particle), the angle between the B momentum vector
and the vector connecting its production and decay vertices, and the transverse momentum
of the bachelor particle. Eight additional variables, among them the transverse momenta
of the remaining final-state particles, are also used. The trained algorithm is then applied
to both the B? — D:*¥K* and B® — D!~ n" decays.

The M(K~K*n~) and Ay invariant mass distributions, as obtained from the decay
mode BY — D:~ 7", are shown in Fig. [2l These distributions have been obtained with all
of the analysis requirements applied except that on the plotted variable. In both cases
the BY invariant mass is restricted to a + 70 MeV/c? region around the known mass. A
prominent peaking structure is observed in the Ay, distribution around 145 MeV/c?, due
to the radiative D}~ to D decay.



4 Signal yields

The signal yields are obtained using unbinned maximum likelihood fits to the BY can-
didate invariant mass distributions and are performed separately for B? — D~ 7" and
BY — D*TK* decays.

The signal shapes are parametrised by a double-sided Crystal Ball (CB) function [18],
which consists of a central Gaussian part, with mean and width as parameters, and
power-law tails on both lower and upper sides, to account for energy loss due to final-state
radiation and detector resolution effects. The two mean values are constrained to be
equal. When fitting the D*~7" and D*TK* simulated mass distributions all parameters
are floated. When fitting data, the power-law tails parameters are fixed to the result of
the fit to the corresponding simulation. Furthermore, both widths of the CB are set to
those obtained from the signal simulation, scaled by a variable parameter in the fit to
allow for differences in the mass resolution between data and simulation. The common
mean of the double-sided CB is allowed to vary.

Three background categories are identified. Partially reconstructed background decays
are due to B? decay modes that are similar to signal but with at least one additional
photon, as for example in the case of the B — DT p* decays with p* — 7° (— v7) 7.
Fully reconstructed background events are due to B? decays to the same final states as
the BY signal, D:~nt and DT K*. The B? — D*~nt decays gives rise to a peak in the
BY — D*F K% decay mode when the 7 is misidentified as a K, a cross feed contribution.
The cross feed due to K* to 7% misidentification is negligible. Finally, a combinatorial
background, where a genuine D, meson is combined with a random (or fake) photon and
a random bachelor track, can also contribute.

The number of partially and fully reconstructed background components is different
for each of the two final states. The invariant mass shapes for these backgrounds are
obtained from simulation and are represented in the fit as non-parametric probability
density functions (PDFs). The yields of these background components are free parameters
in the fit, with the exception of the D*~n*, D p* and D~ p* contributions in the DT K*
fit. The size of the D* 7" cross feed is calculated from the D* 7" yield and the 7 to K
misidentification probability. The D, p* and D* p* contributions are determined in a
similar manner, summed and fixed in the fit.

To model the combinatorial background a non-parametric PDF is used. This is obtained
from the events of the Ay, sideband in the interval [185,205] MeV/c?, with all other cuts
unchanged.

The results of the fitting procedure applied to the two considered decay modes are
shown in Fig. . The fitted yields are 16513 + 227 and 1025 + 71 for the BY — D~ x*
and BY — DT K* cases, respectively. When the x? test is applied to gauge the quality of
the fits, the latter fit has a y? value of 88.5 for 100 bins and 7 free parameters, the quality
of the former fit is equally good.

One of the distinctive features of the present analysis is the reconstruction of the decay
mode DI~ — D~y at a hadron collider. The background-subtracted 1 and pr distributions
of these photons have been obtained using the invariant mass fit results described above
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Figure 3: Invariant mass distribution of (top) B? — D*~n+ and (bottom) BY — D:TK=
candidates with fit results superimposed. The fitted signal corresponding to the first observation
of BY — D!TK¥ is shown by the dotted line in the lower plot.

and the sPlot method. These measured distributions are compared to the predictions
of the simulation in Fig. [d It is noted that most of the measured photons are very soft,
with the average pr well below 1 GeV/ec.
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Figure 4: Distributions of (left) n and (right) pr of the photons for the D*~ 7+ (blue) and
DT KT (magenta) decays. Data, background-subtracted using the sPlot method, are represented
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5 Systematic uncertainties

Potential systematic uncertainties on R* are those due to the background modelling and
the analysis selections, including the BDT and the PID cuts. Their effects are shown in
Table (1] as relative variations of the final result, with their sum in quadrature assigned as
the overall systematic uncertainty. The order in which the systematic uncertainties are
described in the following text corresponds to successive rows in Table

Combinatorial background modelling uncertainties are studied by varying the default
Ay range used for the combinatorial background determination, [185,205] MeV/c?, to
[205,225] and [225,245] MeV/c?. An alternative modelling of this background, using a
parametric shape obtained from the D mass sidebands, is also tested. Finally, the
statistical uncertainty due to the number of events in the range [185,205] MeV/c? is
evaluated using the bootstrap technique [20,[21]. The corresponding uncertainty is taken
to be the largest spread among the four differents checks.

The uncertainty due to the finite size of the simulated samples used to study the
partially reconstructed backgrounds is studied using the bootstrap technique.

The uncertainties due to the D*~ 7" cross feed and the D, p™ and D¥ p* contributions
to the DT K¥ fit are estimated by varying their expected yields. For the D=7 cross feed
the £10 variation is obtained using the D~z fit results. In the D p™ and DI p* cases
the branching ratio uncertainties and photon kinematic distributions are different from
the D* 7" ones so the uncertainty in the yields are large. These yields are conservatively
varied by +50 %. The observed differences in the final result are assigned as the systematic
uncertainties associated with these sources.

The systematic uncertainty associated with the BDT is studied by reweighting the
simulation to improve the agreement with data [3].

The m and K PID efficiencies used for the bachelor track have been extracted from



a D't — Dzt calibration sample and parametrized as a function of several kinematic
quantities of these tracks. The uncertainties in this procedure, propagated to the final
result, lead to the PID systematic uncertainty.

The systematic uncertainty from the hardware trigger efficiency arises from differences
in the pion and kaon trigger efficiencies which are not reproduced in the simulation [22].
The uncertainty is scaled with the fraction of events where a signal track was responsible
for triggering.

Table 1: Estimated systematic uncertainties on R*.

source relative variation (%)
combinatorial background i
simulation sample size +1.4
D7t cross feed +0.8
D™ pt “cross feed” .
BDT +0.5
PID uncertainties +1.0
hardware trigger +1.0
total 52

6 Results

The ratio of branching fractions, measured in this analysis for the first time, is
R* = B(B? — D:FK*)/B(B? — D:~nt) = 0.068 + 0.005 (stat) 005 (syst),

where the overall systematic uncertainty is mainly due to the uncertainty on the com-
binatorial background estimate. The result for R* differs from the uncorrected B? —
D:FK#* to BY — D: 7" events ratio by a factor depending on the simulation and the
PID efficiencies. This factor is determined to be 1.095 + 0.016 and is dominated by the K
to m PID efficiency ratio.

The measured value of R* is consistent with the theoretical prediction of R* =
0.0991005¢ [1], within the very large uncertainty of the latter. The theory is found to
provide a good description of the measurements for both R* and R |3]. Other theoretical
predictions of R* have been published in Refs. [23-27].

Combining the measured value of R* with the value of B(B? — D: ") obtained by
Belle [4] leads to

B(B? — D:FK*) = (16.3 £ 1.2 (stat) *37 (syst) £ 4.8 (norm) ) x 1072,
where the uncertainties are statistical, systematic and due to the uncertainty on B(B? —

D7 t).
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