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Abstract

Classical radiation reaction is the effect of the electromagnetic field emitted by an accelerated electric charge
on the motion of the charge itself. The self-consistent underlying classical equation of motion including
radiation-reaction effects, the Landau-Lifshitz equation, has never been tested experimentally, in spite of
the first theoretical treatments of radiation reaction having been developed more than a century ago. Here
we show that classical radiation reaction effects, in particular those due to the near electromagnetic field, as
predicted by the Landau-Lifshitz equation, can be measured in principle using presently available facilities,
in the energy emission spectrum of 30-GeV electrons crossing a 0.55-mm thick diamond crystal in the axial
channeling regime. Our theoretical results indicate the feasibility of the suggested setup, e.g., at the CERN
Secondary Beam Areas (SBA) beamlines.
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1. Introduction

The Lorentz equation is one of the cornerstones
of classical electrodynamics and it describes the mo-
tion of an electric charge, an electron for definite-
ness (charge e < 0 and mass m), in the presence
of an external, given electromagnetic field [1]. The
Lorentz equation, however, does not take into ac-
count that, as the electron is being accelerated by
the external field, it emits electromagnetic radia-
tion, which in turn alters the trajectory of the elec-
tron itself (radiation reaction (RR)). The search
for the equation of motion of an electron moving
in a given external electromagnetic field, includ-
ing self-consistently the effects of RR, has already
been pursued since the beginning of the 20th cen-
tury. By starting from the Lorentz equation of
an electron in the presence of an external electro-
magnetic field and of the electromagnetic field pro-
duced by the electron itself, the so-called Lorentz-

Abraham-Dirac (LAD) equation has been derived
[2, 3, 4, 1, 5, 6, 7, 8]. After mass renormaliza-
tion RR effects result in two force terms in the
LAD equation, one proportional to the Liénard for-
mula for the radiated power and accounting for the
energy-momentum loss of the electron due to ra-
diation, the “damping term”, and the other one,
the “Schott” term, related to the electron’s near
field [8] and accounting for the work done by the
field emitted by the electron on the electron itself
[9]. Unlike the damping term, the Schott term,
being proportional to the time derivative of the
acceleration of the electron, 1) renders the LAD
equation a non-Newtonian, third-order time differ-
ential equation; and 2) allows for unphysical fea-
tures of the LAD equation as the existence of “run-
away solutions”, with the electron acceleration ex-
ponentially diverging in the remote future, even if,
for example, the external field identically vanishes
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[1, 5, 6, 7, 8, 9, 10, 11].
The origin of the inconsistencies of the LAD

equation has been identified in [5]. The conclusion
is that in the realm of classical electrodynamics, i.e.,
when quantum effects can be neglected, a “reduc-
tion of order” can be consistently carried out in the
LAD equation, resulting in a second-order differen-
tial equation, known as the Landau-Lifshitz (LL)
equation. Moreover, quoting Spohn [12], the physi-
cal solutions of the LAD equation “are on the criti-
cal manifold and are governed there by an effective
second-order equation” which is the LL equation.
Finally, the LL equation has been also derived from
quantum electrodynamics in [13] (see also [14]).

The rapid progress of laser technology has re-
newed the interest in the problem of RR as the
strong electromagnetic fields produced by lasers can
violently accelerate the electron and consequently
prime a substantial emission of electromagnetic ra-
diation. Correspondingly, a large number of setups
and schemes have been recently proposed to mea-
sure classical RR effects in electron-laser interac-
tion [15, 16, 17, 18, 19, 20] (we refer to the review
[10] for previous proposals). However, experimental
challenges either in the detection of relatively small
RR effects or in the availability of sufficiently strong
lasers has prevented so far any experimental test of
the LL equation. Moreover, since RR effects are
larger for ultrarelativistic electrons, reported laser-
based experimental tests of the LL equation turn
out to be sensitive mainly to the damping term in
the LL equation, which has the most favorable de-
pendence on the electron Lorentz factor.

In the present Letter we adopt a different per-
spective and put forward a presently feasible exper-
imental setup to measure classical RR effects on the
radiation field, generated in the interaction of ultra-
relativistic electrons with an aligned crystal. The
experiment can already be performed at, e.g., the
CERN Secondary Beam Areas (SBA) beamlines.
In fact, in the proposed setup 30-GeV electrons im-
pinge into a 0.55-mm thick diamond crystal and
emit a significant amount of radiation due to axial
channeling [21, 22, 23, 24]. Our numerical simula-
tions indicate that in this regime RR effects sub-
stantially alter the electromagnetic emission spec-
trum. Moreover, unlike experimental proposals em-
ploying lasers, the distinct structure of the elec-
tric field of the crystal at axial channeling renders
the emission spectrum more sensitive to a term in
the LL equation originating from the controversial
Schott term in the LAD equation. As we will see

below, this term depends in general on the space-
time derivatives of the background field. This fea-
ture makes our setup prominent also with respect
to synchrotron facilities where the electron dynam-
ics is dominated by the damping term. We also
mention that at an electron energy ε0 = 30 GeV
and for a typical synchrotron radius R = 1 km, the
relative electron energy loss per turn is ∆ε/ε0 =
8.9 × 10−5ε0[GeV]3/R[m] = 2.4 × 10−3 [25], which
would induce too small effects on the emitted radi-
ation to be measured. In addition, in order for the
synchrotron to operate during many turns, the elec-
tron energy loss has to be precisely compensated
preventing again any possibility of “accumulating”
and measuring RR effects on the emitted radiation.

2. The physical model

When a high-energy electron impinges onto a
single crystal along a direction of high symmetry,
its motion can become transversely bound and its
dynamics determined by a coherent scattering in
the collective, screened field of many atoms aligned
along the direction of symmetry (axial channeling)
[21, 22, 23, 24]. In this regime the electron experi-
ences an effective potential in the transverse direc-
tions (continuum potential), resulting from the av-
erage of the atomic potential along the direction of
symmetry. For the sake of simplicity, in the present
and in the next section we assume that the atomic
potential is due to a single string. By indicating as
z the direction corresponding to the symmetry axis
of the crystal and by ρ = (x, y) the coordinates in
the transverse plane, with the atomic string cross-
ing this plane at ρ = 0, the continuum potential
Φ(ρ) depends only on the distance ρ = |ρ| and it
can be approximated as [23]:

Φ(ρ) = Φ0

[
ln

(
1 +

1

%2 + η

)
− ln

(
1 +

1

%2c + η

)]
,

(1)
where % = ρ/as and %c = ρc/as. Here, the pa-
rameters Φ0, ρc, η, and as depend on the crys-
tal and ρ ≤ ρc. A convenient choice to investi-
gate classical RR effects is diamond, with, e.g., the
〈111〉 as symmetry axis and for which Φ0 = 29 V,
ρc = 0.765 Å, η = 0.025, and as = 0.326 Å. In
fact, the relatively low value of Φ0 as compared to
other crystals allows one to neglect quantum effects
also at relatively high electron energies. The depth
ΦM = Φ(0) of the potential in diamond is such that
UM = U(0) = −103 eV, where U(ρ) = eΦ(ρ) is the
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electron potential energy (units with ~ = c = 1 and
α = e2 ≈ 1/137 are employed throughout).

In general, the channeling regime of interaction
features ultrastrong electromagnetic fields, which
can lead to substantial energy loss of the radiat-
ing electron. In order for quantum effects to be
negligible, we require that χ = γ0E/Ecr � 1 [23],
where γ0 is the initial Lorentz factor of the electron,
E is a measure of the amplitude of the electric field
E(ρ) = −∇Φ(ρ) = (2Φ0/as)%/[(η+ %2 + (η+ %2)2]
in the crystal, and Ecr = m2/|e| = 1.3×1016 V/cm
is the critical electric field of QED. By employ-
ing E ∼ ΦM/ρc as an estimate of E, it is χ =
1.5× 10−5ε0[GeV]|UM [eV]|/ρc[Å].

In the classical regime χ � 1 the electron dy-
namics including RR effects is described by the
LL equation [5]. The LL equation for an electron
with arbitrary momentum p(t) = mγ(t)β(t), with
γ(t) = ε(t)/m = 1/

√
1− β2(t) and β(t) = ṙ(t) =

dr(t)/dt, reads:

dp

dt
=eE +

2

3

e2

m

{
eγ(β ·∇)E +

e2

m
(β ·E)E

− e2

m
γ2[E2 − (β ·E)2]β

}
.

(2)

Here the first two terms of the RR force originate
from the Schott term in the LAD equation whereas
the last “damping” one corresponds to the Liénard
formula. Unlike the first “derivative” term, how-
ever, the second term of the RR force is strictly re-
lated to the damping one as only their sum ensures
that the on-shell condition ε(t) =

√
m2 + p2(t) is

preserved during the electron motion.
Now, we assume that the crystal extends from

z = 0 to z = L and that at the initial time t = 0, the
electron’s position and velocity are r0 = (x0, 0, 0),
with 0 < x0 ≤ ρc, and β0 = (0, 0, βz,0), respectively

(ε0 = mγ0 = m/
√

1− β2
z,0). With these initial

conditions, due to the symmetry of the potential
Φ(ρ), it is y(t) = 0 and Ey(ρ) = 0 along the electron
trajectory. Thus, Eq. (2) substantially simplifies
and only the equation

dβx
dt

= −
(
Fx

ε
+

2

3

e2

m2

dFx

dx
βx

)
(1− β2

x), (3)

for βx(t) is needed below, with Fx(x) = |e|Ex(x, 0).
If one first neglects RR, the total energy ε(t) +

U(|x(t)|) is a constant of motion. In the ultrarela-
tivistic regime γ0 � 1 of interest here and for typ-
ical crystal parameters it results |βx(t)| � 1, such

that ε(t) ≈ ε0[1 + β2
x(t)/2] (see, e.g., [21, 22, 23]).

Indeed, energy conservation implies that |βx(t)| ≤√
2|UM − U(x0)|/ε0 � 1 (recall that |U(ρ)| ∼

100 eV [22, 23]). Finally, with the considered initial
conditions, the quantity βx(t) is periodic in time,
with period T0 =

√
8ε0
∫ x0

0
dx/

√
|U(x)− U(x0)|

and angular frequency ω0 = 2π/T0 [22].

3. Analytical results

The considerations above based on the single-
string approximation allow us to evaluate the ef-
fects of RR on the electron dynamics analytically.
In fact, as it can be verified a posteriori, it is safe
to assume that |βx(t)| � 1 and that βz(t) ≈ 1
also including RR. Thus, by multiplying Eq. (2) by
px(t) and by neglecting corrections proportional to
β2
x(t) ∼ |UM |/ε0, it is easy to prove that (see also

[5])

ε(t) =
ε0

1 + (2/3)α(γ0/m3)
∫ t

0
dt′F 2

x (x(t′))
, (4)

where the integral is performed along the electron
trajectory. In order to get an analytical insight
on the motion of the electron, we assume here
that |x(t)| � as

√
η, such that Fx(x) ≈ F0x/as

√
η

and dFx(x)/dx ≈ F0/as
√
η, where F0 = |e|E0 =

2|U0|/as
√
η, with U0 = eΦ0 (U0 = −29 eV for di-

amond). Equation (3) with 1 − β2
x(t) ≈ 1 and Eq.

(4) show that the electron dynamics along the x di-
rection is characterized by three time scales: one,
T0 ≈ 2π/

√
F0/
√
ηε0as, proper of the Lorentz dy-

namics and two additional,

τs =
6

α

η

γ0

(
Ecr

E0

)2(
as
x0

)2

λC , τd =
3

α

√
η
Ecr

E0
as

(5)

introduced by RR and corresponding to the term
containing F 2

x (x) in Eq. (4) and to the one
proportional to dFx(x)/dx in Eq. (3), respec-
tively (λC = 1/m = 3.9 × 10−3 Å is the
Compton wavelength). Now, it is T0[Å] =
1.4 × 105as[Å]

√
ηε0[GeV]/|U0[eV]|, τs[Å] = 7.0 ×

1012 η2as[Å]4/(ε0[GeV]U0[eV]2x0[Å]2), and τd[Å] =
2.7 × 1010 ηas[Å]2/U0[eV], thus for a typical ini-
tial energy of ε0 = 10 GeV and for x0 =
0.2 as

√
η in diamond, it results τd/τs ≈ 0.044 and

T0/τd ≈ 23T0/τs = 1.7 × 10−3. This suggests
to solve Eq. (3) by employing the method of
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Figure 1: (Color online) The rapidly oscillating electron’s
coordinate x(t) (continuous black curve) and the analytical
expression x0 exp(−t/τd) of the envelope (dashed red curve),
for numerical parameters given in the text.

separation of time scales, which provides x(t) ≈
x0 exp(−t/τd) cos(ϕ(t)), where ϕ(t) =

∫ t

0
dt′ω0(t′),

with ω2
0(t) = F0/

√
ηε(t)as, and

ε(t) ≈ ε0
1 + (τd/τs)[1− exp(−2t/τd)]

. (6)

An alternative derivation of this equation can be
obtained starting from the observation that the mo-
mentum dPr and the energy dEr of the radiation
emitted during a time dt are related by (see [26, 27])
dPr = β(t)dEr and that energy and longitudinal
momentum conservation imply that dε = −dEr and
dpz = −dPz,r (see in particular [26, 27] and also
[28, 29, 30] for additional details). In Fig. 1 and
Fig. 2 we show a numerical example for diamond
indicating the validity of the analytical estimation
for x(t) and for ε(t) in Eq. (6) in comparison with
a numerical integration of Eq. (2). The initial en-
ergy of the electron is 10 GeV, the initial position
is x0 = 0.2 as

√
η, and the final time corresponds

to a crystal thickness of 0.55 mm (see also below).
The above numerical example only aims at showing
the validity of our approximated analytical treat-
ment and it has to be pointed out that for the used
numerical parameters quantum effects in the trans-
verse motion of the electron could not be neglected
(as it will be clear below, the electrons initially so
close to an atomic string do not significantly con-
tribute to the average emission spectra measured
in experiments). We have ensured in the above nu-
merical example that the trend shown in Fig. 1,
with RR “focusing” the electron’s transverse mo-
tion to amplitudes much smaller than as

√
η, occurs
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Figure 2: (Color online) Time evolution of the electron en-
ergy from a numerical integration of Eq. (2) (continuous
black curve) and according to Eq. (6) (dashed red curve),
for the same parameters as in Fig. 1.

for all allowed x0 ≤ ρc.

4. Numerical results

The above considerations provide an analytical
insight on the effects of RR but hold under the
assumption that the crystal potential can be ap-
proximated by the expression in Eq. (1). Below,
we will investigate numerically the effects of RR
on the emission spectra of electrons crossing a dia-
mond crystal along the axis 〈100〉, with the crystal
field being represented more realistically than above
by a periodic replica of the Doyle-Turner poten-
tial [31]. Considering the distribution of the strings
along the x-y plane perpendicular to the axis 〈100〉
of diamond, at each instant we have included the
effects of the 16+25=41 strings within a square cen-
tered on the string closest to the electron. In or-
der to obtain results more easily comparable with
experimental results, the reported single-particle
spectra result from the average over 200 electrons
all with the same incoming momentum (along the
z-direction) and energy ε0 = 30 GeV, and uni-
formly distributed over the cell −a/4 ≤ x, y ≤ a/4,
with a = 3.57 Å being the diamond lattice con-
stant. Now, RR effects are clearly larger for thicker
crystals. However, an upper limit to “meaning-
ful” values of the crystal thickness is set by the
dechanneling, i.e., by the fact that, due to multiple
Coulomb scattering with the atoms in the crystal,
the transverse amplitude of the electron motion in-
creases and, after a certain distance ld (dechannel-
ing length), the electron leaves the “channel” gen-
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erated by a single atomic string [22, 23]. The term
“meaningful” above thus refers to the fact that for
a crystal thickness much larger than ld, the electron
will not anyway emit channeling radiation after a
distance of the order of ld. An order-of-magnitude
estimate of the dechanneling length ld for an elec-
tron initially propagating along the atomic string
is given by ld = (α/4π)(|UM |γ0/m)X0, where
X0 = [4Z2α3nλ2C log(183Z−1/3)]−1, with Z being
the crystal atomic number and n its atomic den-
sity, is the radiation length in the amorphous case
[23]. In order to implement the effects of mul-
tiple scattering and of dechanneling on the elec-
tron motion, we started from the kinetic equation
describing the evolution of the transverse velocity
with respect to time, which can be approximated as
a Fokker-Planck equation with diffusion coefficient
D/4 = β2

⊥/4L, where β2
⊥ = (4π/α)L/γ20X0 and L is

the thickness of the crystal [22, 23] (note that the
dechanneling length corresponds to the thickness

obtained by equating the quantity

√
2β2
⊥ with the

Lindhard critical angle θc =
√

2|UM |/ε0). Based on
the equivalence between the Fokker-Planck kinetic
equation and a single-particle stochastic equation
[32], we have added the stochastic term dβ⊥,s =√
D/2 dSt to the equation of motion for the trans-

verse velocity β⊥ of the electron, where St is
the vector stochastic variable corresponding to the
Wiener process and having the dimension of the
square root of time [32]. Each spectrum has then
been obtained by averaging over five spectra, ev-
ery one being obtained with an independent se-
quence of random numbers corresponding to the
stochastic variable St. We point out that the dif-
fusion coefficient D corresponds to the amorphous
case, whereas the electrons within a disk of radius
u⊥ ≈ 0.04 Å and centered on a string, with u⊥
being the average thermal vibration amplitude on
the plane perpendicular to the string, would see a
relatively high nuclear density and would dechan-
nel at distances significantly smaller than ld. In
order to include the effect of the higher nuclear
density in the vicinity of the strings, we have fol-
lowed Ref. [33] and we have multiplied the diffu-
sion coefficient D by the enhancing factor P (r) =

(s/πu2⊥) exp(−ρ2/u2⊥), where s = 1/nd = 1.6 Å
2

is
the area for each string, with n = 1.77× 1023 cm−3

for diamond and d = a = 3.57 Å being the distance
between two atoms in a string, and where ρ is the
distance of the electron from the closest string.

In Fig. 3 three single-electron energy spectra
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Figure 3: (Color online) Radiation energy spectra for nu-
merical parameters given in the text without RR (dashed
green curve), with RR excluding the derivative term in the
LL equation (dotted blue curve), and with RR including the
derivative term in the LL equation (continuous red curve).
The inset shows the corresponding spectra without multiple
scattering.

dW/dω are shown as a function of ω/ε0, with ω
being the emitted radiation angular frequency, and
for a crystal thickness of L ≈ ld/3 = 0.55 mm.
In order to test specifically the importance of the
derivative term in the LL equation (2), we show the
spectrum without RR terms (dashed green curve),
with RR terms except the derivative one (dotted
blue curve), and with all RR terms (continuous red
curve). The inset shows the corresponding spectra
without the inclusion of multiple scattering. The
spectra are calculated by integrating the differen-
tial spectrum [1]

dW

dωdΩ
=

e2

4π2

∣∣∣∣∣
∫ ∞
−∞

dt
n× [(n− β)× β̇]

(1− n · β)2
eiω(t−n·r)

∣∣∣∣∣
2

(7)
with respect to the solid angle Ω along the obser-
vation direction n (see also [34] for details) and by
integrating numerically either the Lorentz equation
or the LL equation along the whole electron tra-
jectory. The Lorentz equation corresponds to the
dashed green curve and the LL equation to the dot-
ted blue curve (without the derivative term) and to
the continuous red curve (with the derivative term).
For the considered numerical parameters, the local
constant crossed field approximation [23], which re-
quires 〈K(t)〉 � 1, where 〈K(t)〉 =

√
2〈γ2(t)β2

⊥(t)〉
is the average Free-Electron Laser (FEL) parame-

ter, with 〈f(t)〉 = L−1
∫ L

0
dtf(t), cannot be applied
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Figure 4: (Color online) The average FEL parameter 〈K(t)〉
with RR (part a)) and the average electric field 〈χ(t)〉 ex-
perienced by the electron in units of Ecr without (part b))
and with (part c)) RR as functions of the initial transverse
coordinates of the electron (a crystal atomic string is at the
origin of the coordinates). The numerical parameters are the
same as in Fig. 3.

here. In fact, as it can be seen in Fig. 4a, where for
the sake of simplicity multiple scattering is ignored,
it turns out that for the above numerical parame-
ters it is 〈K(t)〉 . 1. Going back to Fig. 3, the main
effect of RR is to increase the radiation yield at low
frequencies and the derivative term in the LL equa-
tion enhances this effect. The resulting lowering of
the average emitted radiation frequency can be un-
derstood qualitatively as RR effects tend to reduce
the electron energy and the average electric field
experienced by the electron. The reduction of the
average electric field experienced by the electron,
corresponding to the parameter 〈χ(t)〉 is not obvi-
ous because RR also induces a cooling effect in the
transverse motion (see, e.g. Fig. 1) which, for some
values of the initial electron’s position, might let the
electron spend more time in regions where the elec-
tric field is large. In Figs. 4b and 4c we show the
quantity 〈χ(t)〉 as a function of x0 and y0 without
RR (Fig. 4b) and with RR (Fig. 4c)) and, again,
ignoring multiple scattering for simplicity (as it can
be seen from Fig. 3 multiple scattering does not al-
ter qualitatively the effects of RR). Although, for
some values of x0 and y0 RR indeed induces an in-
crease of 〈χ(t)〉, for those initial conditions closer to
the atomic string and corresponding to the largest
values of 〈χ(t)〉, RR induces a reduction. It is worth
mentioning here that RR effects are most important
at the peak of the emission spectrum corresponding
to photon energies of the order of 0.025 ε0, where

quantum effects are safely negligible. The enhance-
ment of RR effects due to the derivative term in
the LL equation can be qualitatively understood
going back to the simplified model in Section 2 and
by noticing that the derivative dFx/dx is largest
at small x, where dFx/dx > 0, such that the cor-
responding term in Eq. (3) acts as an additional
“cooling” term.

It is also worth observing that multiple scattering
with the nuclei tends to increase the transverse elec-
tron energy. As expected, this “heating” effect, on
the one hand decreases the overall emission yield
and, on the other hand, also suppresses the cool-
ing effect due to RR (see Fig. 3). However, Fig.
3 shows that for the chosen numerical parameters,
the effects of RR and in particular of the derivative
term in the LL equation are still sizable, although
detecting the latter experimentally may prove to be
challenging.

Finally, on the one hand, our numerical model
including the effect of multiple atomic strings on
the electron motion takes into account automati-
cally the radiation by dechanneled electrons in the
corresponding potential. On the other hand, it can
be checked that the contribution dWIB/dω of in-
coherent bremsstrahlung to the emission spectrum
for the numerical example in Fig. 3 is negligible. In
fact, starting from the Bethe-Heitler cross section
(see e.g. Eq. (27) in [24]), it can be seen that in the
region ω � ε0, the function dWIB/dω is approxi-
mately constant and

dWIB

dω
≈ 16

3
Z2α3nλ2CL log(183Z−1/3) =

4

3

L

X0
.

(8)
By plugging the numerical parameters correspond-
ing to the plots in Fig. 3, one obtains that
dWIB/dω ≈ 5 × 10−3. In addition, we have en-
sured that by also accounting for the higher nuclear
density experienced by the electrons close to the
atomic strings at channeling than in an amorphous
medium, the effect of incoherent bremsstrahlung is
still negligible. In fact, following [33], this amounts
in multiplying the quantity dWIB/dω by the en-
hancing factor 〈P (r(t))〉. We have ensured that,
by including the effects of RR and of multiple scat-
tering, the quantity 〈P (r(t))〉 is typically smaller
than 10 for almost all initial conditions as in Fig. 4
and that its average value with respect to the initial
conditions is typically less than 3.
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Figure 5: Sketch of a possible experimental setup (top view).
S1-S3 denote scintillators and M1-M6 denote position-
sensitive MIMOSA detectors [35].

5. Experimental considerations

Measurement of the spectra in Fig. 3 is possi-
ble using a setup as shown in Fig. 5. After passing
the scintillators S1-S3, the electrons go through two
position-sensitive MIMOSA detectors M1 and M2
[35] encased in Helium to reduce multiple scatter-
ing, in order to determine their incoming angle [36].
By deflecting the charged particles outgoing from
the crystal via the large magnet, only the emitted
photons hit a converter foil to produce electron-
positron pairs. By measuring the energy of the
pairs employing the small magnet, the energy of the
photons can be determined. The case considered
here of electrons initially moving along the atomic
string is a reasonable approximation as long as the
electrons impinge with angles to the atomic string
on a scale of order of or smaller than the Lindhard
critical angle θc. Electrons with an angular diver-
gence comparable to θc can indeed be achieved at
the CERN SBA [37]. The spectrum including RR
in the inset in Fig. 3 corresponds to each electron
emitting approximately 4.4 photons capable of pair
production in the converter foil. In order to avoid
pileup and obtain single-photon spectra, the con-
verter foil should have correspondingly a thickness
smaller than about one fifth of the radiation length.
In the region around the peak of the red curve in
the inset in Fig. 3 where dW/dω > 1 about 3.5
photons are emitted. In order to resolve the peak
in 200 bins with 104 counts in each bin correspond-
ing to an uncertainty of 1%, which would allow to
discriminate among the three higher peaks of the
curves in the inset in Fig. 3, would thus require
about 2.9 × 106 electrons. At the CERN SBA a
rate of 2000 electrons per minute can be achieved
implying a measurement time of about 24 hours.

6. Conclusions

In conclusion, we have demonstrated that the
predictions of the LL equation can be feasibly tested

experimentally by measuring the channeling radia-
tion emitted by ultra-relativistic electrons imping-
ing onto a diamond crystal slab. The required ex-
perimental conditions are available at the CERN
SBA beamlines. Most importantly, the effects of
the derivative term in the LL equation are shown
to affect the emission spectra much more than in
previous proposals based on intense lasers fields al-
though the measurability of such effects may be
challenging. In this respect, we point out that
the present one represents the first investigation
on testing the LL equation in aligned crystals and
a more complete and quantitatively precise study
would include other effects than those already con-
sidered here as the incidence angle of the electrons
or the efficiency and the resolution of the detectors.
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