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The performance of top taggers, for example in resonance searches, can be significantly enhanced
through an increased set of variables, with a special focus on final-state radiation. We study the
production and the decay of a heavy gauge boson in the upcoming LHC run. For constant signal
efficiency, the multivariate analysis achieves an increased background rejection by up to a factor 30
compared to our previous tagger. Based on this study and the documentation in the Appendix we
release a new HEPTopTagger2 for the upcoming LHC run. It now includes an optimal choice of the
size of the fat jet, N-subjettiness, and different modes of Qjets.
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I. INTRODUCTION

After the discovery of the Higgs boson, a keystone of the Standard Model, one main task for the upcoming
LHC runs will be searches for physics beyond the Standard Model. Several open experimental and theoretical
questions point to additional particles or structures at energies above the electroweak energy scale [1]. A
very generic feature of many extensions of the Standard Model is the presence of additional heavy particles
which preferentially decay to a pair of top quarks [2]. One example for such a resonance could be a heavy
neutral Z ′-gauge boson with a TeV-scale mass. Historically, such states were only searched for using semi-
leptonically decaying top pairs. There, a kinematic reconstruction is based on an approximate reconstruction
of the missing neutrino momentum through a W -mass or top mass condition. In the last LHC run this search
channel was supplemented by resonance searches based on boosted, hadronically decaying top pairs. In the
corresponding ATLAS analysis [3] the HEPTopTagger [4, 5] and the template tagger [6] each showed a
similar reach, comparable with the semileptonic channel. This experimental success is based on rapid progress
in the field of just substructure both experimentally and theoretically, which will gain even more momentum
during the 13 TeV LHC run.

The field of top and Higgs tagging [7] started essentially as a Gedankenexperiment to illustrate recom-
bination jet algorithms [8]. After some early attempts for example to tag hadronically decaying tops [9] it
took off with the development of the BDRS Higgs tagger with its mass drop condition [10] and a filtering
step targeting underlying event and pile-up [11]. The first top taggers were simple, deterministic algorithms
which could identify and reconstruct hadronically decaying top quarks including subjet b-tagging [4, 12–14].
They were based on deliberately simple structures and algorithms, to firmly establish subjet methods in AT-
LAS and CMS. After the experimental success of these completely new analysis tools in the first run of the
LHC, the upcoming run will benefit from more advanced top tagging methods. Those include multivariate
taggers [15], template taggers [6], as well as shower deconstruction [16] or event deconstruction [17]∗. For
those specialized tools the challenge will be to still provide a universal top tagging approach, which on the
one hand allows for optimal experimental results, but on the other hand identifies and reconstructs boosted
top quarks independent of the specialized analysis framework.

Over time, the original HEPTopTagger [4] has gone through several rounds of improvements. The
first modification included a re-formulation of the algorithm, leading to the trademark A-shaped kinematic
cuts [5]. One of the key observations leading to these cuts is that in the absence of a b-tag it is not helpful to
uniquely identify the two W -decay jets because in typical top decays there will be two jet-jet combinations
which reconstruct to an invariant mass around 80 GeV [19]. The first set of new, additional variables [20]
then included a combination of the usual filtered top mass [11] with a pruned top mass [21]. In this upgrade
we introduce a fat jet radius up to R = 1.8 for moderately boosted tops and allow for a choice of Cambridge–
Aachen [22] and kT [23, 24] jet algorithms in all internal clustering and filtering steps except for the mass drop
condition. This improves the tagging performance for highly boosted tops [20]. Recently, the algorithm was
slightly changed to avoid background shaping [15]. In the same study we added a low-pT mode based on Fox–
Wolfram moments [25] to incorporate angular correlations, extending the tagging coverage to pT,t = 150 GeV.

In this paper we present a detailed study of the HEPTopTagger2, collecting all previous modifications,
as well as a whole range of new features targeted at multivariate analyses and statistical approaches to single
events [26, 27]. The main body of the paper will focus on Z ′ searches, where final-state jet radiation turns
out to be the limiting factor of the original tagger. After resolving the issue with final-state radiation we
will step by step improve the tagging algorithm by defining and including additional kinematic information.
Finally, we will compare the multivariate tagging performance with the leading projections based on event
deconstruction [17].

The main background in fully hadronic Z ′ → tt̄ searches is QCD multi-jets production, which allows us to
directly translate all our findings into a performance study based on tagging tt̄ pairs in the Standard Model.
We will show these results together with a review of the complete HEPTopTagger2 algorithm and the code
interface in the Appendix.

∗ Why a kinematic selection as naive as ‘top buckets’ [18] also seems to work is beyond the comprehension of the authors.
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II. RESONANCE RECONSTRUCTION

The key challenge of any top tagger is its broad range of applications and the related optimization of the
algorithms and codes. For example, the HEPTopTagger was developed to solve the combinatorial problems
in tt̄H searches [4]. The first public tagging code was presented for supersymmetric top partner searches
in semi-leptonic top decays [5]. Its proposed applications include single top production to experimentally
separate the s-channel and t-channel production processes [28]. However, its experimental application during
the first LHC run was the search for heavy resonances decaying to hadronic tt̄ searches [3]. For such a
resonance search the kinematic top tagger in combination with a b-tag showed a similar performance as the
usual, approximate reconstruction of semileptonic tt̄ pairs. In this paper we will present a set of improvements
towards the HEPTopTagger2 for a Z ′ search at the 13 TeV LHC. Many of these improvements can be
applied to other LHC processes, as will be discussed in the Appendix.

In using all available information from a pair of boosted top quarks, event deconstruction is currently giving
the leading performance estimates for heavy resonance searches [17]. For the analysis in the main body of
this paper we will follow the analysis framework of Ref. [17], to eventually allow for a comparison in Sec. IV.
For the signal we therefore use Pythia8 [29] to generate Z ′ → tt̄ events with mZ′ = 1500 GeV at 13 TeV
collider energy. Assuming the same couplings as for the Standard Model Z-boson would yield a width of
Γ(Z ′) = 47 GeV; to be consistent with the assumed experimental resolution in Ref. [17] we increase the width
to 65 GeV and only simulate the vector couplings. However, we will see that this choice of the physical Z ′

width does not affect our results which are based on the reconstructed fat jet kinematics. For the Z ′ decay
we assume a 100% branching ratio to top pairs. The two backgrounds are continuum tt̄ production which we
simulate assuming pT,t > 400 GeV, and QCD di-jet production, also requiring pT,j > 400 GeV. Again, we rely
on Pythia8, keeping in mind that for the pure QCD background our di-jet rate might not be a conservative
estimate. All top quarks are forced to decay hadronically. Our simulations for the main body of the paper
include underlying event but do not account for pile–up or detector effects, unless explicitly mentioned. For a
completely realistic study of the signal and background efficiencies of the new HEPTopTagger2 we will have
to rely on upcoming experimental studies. For our multivariate tagging analyses we optimize the background
rejection with respect to the pure QCD background, because it is by far dominant.

Decay kinematics

On the analysis level we first select events with at least two fat jets with

pT,fat > 400 GeV and |yfat| < 2.5 , (1)

reconstructed using the C/A algorithm [22] with cone size R = 1.5, as implemented in FastJet [24]. We limit
ourselves to the two hardest fat jets in each event for the Z ′ search. The corresponding cut flow is given in
Tab. I. Using the old default HEPTopTagger setup [5] we find a double top tagging efficiency of ε2tags = 14%
in the signal, as shown in Tab. I. If we apply a fixed invariant mass window mtt ∈ [1200, 1600] GeV on the
tagged and reconstructed top quarks, the Z ′ tagging efficiency is εZ′ = 10.2%. For the tt̄ background we find
mis-tagging probabilities of ε2tags = 13.7% and εZ′ = 3.3%. For the QCD background sample the double
mistag rates are ε2tags = 6.6 · 10−4 and εZ′ = 1.5 · 10−4. The QCD jets background exceeds the continuum
top pair production by a factor five after all cuts.

Z′ → tt̄ tt̄ QCD

generator level 105 105 (1.76 pb) 8 · 106 (1.93 nb)

≥ 2 fat jets Eq.(1) 69142 85284 (1.50 pb) 6.7 · 106 (1.62 nb)

hardest 2 fat jets HTT[JHEP1010] tagged 9679 11706 (0.21 pb) 4426 (1.07 pb)

mtt ∈ [1200, 1600] GeV 7031 2817 (0.05 pb) 978 (0.24 pb)

Table I: Number of events and the corresponding Pythia8 cross section used for our analysis. The efficiencies εS,B
for a Z′ extraction are defined as the ratio of the last to the second line in this table.
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Figure 1: Left: ROC curves for the dominant QCD background vs. the Z′ signal after including additional kinematic
information shown in Eq.(2). As in all figures the asterisk corresponds to the original HEPTopTagger described in
Ref. [5]. Right: |∆y| distribution of the reconstructed top quarks for signal and backgrounds.

A straightforward improvement of the basic analysis shown in Tab. I should be to replace the mass window
by a boosted decision tree (BDT) analysis, as implemented in Tmva [30], based on the reconstructed invariant
mass mtt. In the left panel of Fig. 1 we first show the results as receiver operator characteristic (ROC) curve,
correlating the best signal and background efficiencies based on a given set of kinematic observables. This
approach has been used to improve and benchmark the general performance of the HEPTopTagger [15].
Because the QCD jet background is dominant we always set up our multivariate analyses based on the Z ′ signal
and the QCD background sample. Compared to the working point of the original public HEPTopTagger
tool [5] with a fixed mass window mtt ∈ [1200, 1600] GeV the new HEPTopTagger2 including mtt in a
multivariate analysis looks slightly worse. The reason is the change in the order in the algorithm described in
the Appendix. It significantly reduces the background sculpting, but at the expense of background rejection
for example for a constant signal efficiency. On the other hand, the reduced background sculpting removes
a major source of systematic uncertainty when we need to interpret an mtt distribution which shows a peak
which could be due to a signal or to a sculpted background. Moreover, it turns out that the difference between
the old and new taggers vanishes once both of them are used in a fully flexible multivariate framework.

For a better discrimination between signal and background we should include additional variables in our
multivariate analysis. The deterministic structure of the HEPTopTagger will still allow for a particularly
clear separation of the actual tagging and reconstruction from a subsequent kinematic analysis based on the
reconstructed top momenta. The first additional variable we include is the rapidity difference between the
two reconstructed top quarks, |∆y|. The corresponding signal and background distributions are shown in the
right panel of Fig. 1. While this variable might not be too efficient in removing the tt̄ continuum background,
events are visibly less central for QCD jets. The differences can hardly be translated into efficient kinematic
cuts, but they will help as part of a multivariate analysis. In the left panel of Fig. 1 we show the corresponding
improvement in terms of ROC curves. In particular for low signal efficiencies εS < 0.1 we find a significant
reduction of the background fake rates, going beyond the working point of the first HEPTopTagger.

An obvious extension of our set of kinematic observables are the transverse momenta of the reconstructed
top quarks. Note that as part of the ROC analysis we do not have to ensure that the different kinematic
variables are independent of each other, which would be problematic for a combination of mtt and the pT,t
distributions. Again, the improvement from the transverse momentum spectra is shown in the left panel of
Fig. 1. All this illustrates that the kinematic information on the tagged and reconstructed tops can increase
the background rejection by 50% to 100% for fixed signal tagging efficiency. We also see that once we include
the top–pair invariant mass and the transverse momenta, the additional improvement from |∆y| vanishes,
because the 2-particle final state is essentially fully described. As kinematic observables in our multivariate
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Figure 2: ROC curves for different combinations of initial-state jet radiation (ISR) and final-state jet radiation (FSR)
in the Z′ signal generation. The background is QCD with ISR and FSR for all curves.

analysis we choose

{ mtt, pT,t1 , pT,t2 } (decay kinematics). (2)

QCD jets

In purely hadronic searches for new physics, QCD effects beyond fixed order are a major issue in trying
to theoretically understand the signal and backgrounds. Before we devise strategies to deal with final-state
radiation and initial-state radiation in heavy-resonance searches we can estimate their effect on the naive
tagger–based analysis.

On the Monte Carlo level it is possible to separately remove initial-state radiation and final-state radiation
from all signal events. For the QCD jets background this is not sensible, because we need both mechanisms
to generate a sufficient jet multiplicity. The ROC curves in Fig. 2 show the expected improvements in the
absence of additional signal jets. We see that the leading effect spoiling the signal extraction is final-state
radiation (FSR). Initial-state radiation (ISR) affects top tagging in two ways. First, the additional QCD jets
can mimic for example the softer W -decay jet and degrade the tagging efficiency through combinatorics. On
the other hand, ISR jets recoil against the Z ′, affecting the pT spectrum of the top quarks. In particular the
tagging of the softer top decay can benefit from this recoil, which means that for large signal efficiency the
results without ISR become worse than those with all jet activity included.

As a whole, the results shown in Fig. 2 indicate potentially significant improvements of top taggers when we
target the different effects of QCD jet radiation. We will show in the following subsection how a deterministic
top tagger is limited by final-state radiation and how the new HEPTopTagger2 can avoid these issues.
Combinatorial problems related to initial-state radiation will then be one of the key topics in Sec. III.

Final-state radiation

Final-state radiation (FSR) turns one of the key advantages of our top tagger into a significant problem:
unlike some other top tagging approaches, the HEPTopTagger returns the 4-momentum of the tagged
top, including a cut on the reconstructed top mass mrec ∈ [150, 200] GeV [15]. This allows us to trivially
reconstruct mZ′ . Final-state radiation off the top decay products will be captured by the jet clustering and
contribute to the correct filtered top mass value [11]. This way it will not pose a problem as long as the Z ′

decays to on-shell tops.
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Figure 3: Effect of final-state radiation on the invariant mass of the tagged and reconstructed tt̄ system mtt for the
Z′ signal (left) and different approaches to reconstruct the Z′ mass peak (right). Monte Carlo truth is

√
p2
Z′ with an

assumed width of 65 GeV.

However, if the Z ′ decays to slightly off-shell tops, which turn themselves into on-shell tops, this final-state
radiation off the intermediate top mis-aligns the actual Z ′ with the Z ′ as reconstructed from the top quarks
at the moment they decay. Because the hard radiated gluon does not enter the top reconstruction, the top
tag will pass, but lead to an underestimated mZ′ value. In the left panel of Fig. 3 we indeed see that the
mtt distribution for the top-tagged signal correctly peaks around mZ′ , but develops a sizeable asymmetric
tail towards smaller mtt values. While the details of this asymmetric tail from Pythia8 should be subject to
a detailed Monte Carlo study, we simply confirm that turning off final-state radiation by hand gets rid of it
almost entirely. The remaining slight broadening as well as a minimal tail towards smaller mtt values is due
to small losses in the top 4-momentum reconstruction of the tagger. At higher values of mZ′ the asymmetric
tail is further enhanced.

The problem with large asymmetric tails from final-state radiation is that they cannot simply be corrected
for in a universal top tagger. The basic structure of the HEPTopTagger has to identify and reconstruct
top quarks, rather than the decay products of a heavy Z ′ resonance. Therefore, we do not modify the actual
tagger, but we account for final-state radiation through an additional set of kinematic observables.

Following the brief discussion above, including the kinematics of the fat jet in addition to the reconstructed

mpeak [GeV] Γ [GeV] ε±150
Z′ 1/ε±150

tt 1/ε±150
QCD

mtt ∈ [1200, 1600] GeV – – 0.136 22 2805

unfiltered 1539 167 0.141 21 1960

R = 0.3, N = 4 1457 152 0.146 28 2218

R = 0.3, N = 5 1477 144 0.150 25 2098

R = 0.3, N = 6 1489 139 0.151 25 2052

R = 0.3, N = 7 1496 144 0.151 24 2043

R = 0.2, N = 5 1443 140 0.141 29 2329

R = 0.3, N = 5 1477 144 0.150 25 2098

R = 0.4, N = 5 1500 144 0.151 24 2030

R = 0.5, N = 5 1515 143 0.148 23 1993

pruning z = 0.1, fR = 0.5 1443 150 0.138 26 2075

Table II: Breit–Wigner fits and performance of different grooming approaches. The quoted efficiencies are based on a
window for the invariant mass of the two filtered fat jets |mff −mZ′ | < 150 GeV.
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Figure 4: Reconstructed mass distribution of the Z′ signal and the backgrounds based on the tagged tops (left) and
the corresponding filtered fat jets (right).

top 4-momentum should remove the broad asymmetric tail in the reconstructed mZ′ values. Again, we first
select events with two tagged tops, including the top mass condition. Instead of using the 4-momenta of
the tagged tops, we now reconstruct the Z ′ mass from the 4-momenta of the two fat jets of size R = 1.5,
which eventually lead to the top tags. In the presence of underlying event and initial-state radiation the
naive mff distribution peaks roughly at the correct Z ′ mass and shows symmetric tails. To use the invariant
mass of the two fat jets we need to apply filtering [11]. In the right panel of Fig. 3 we compare the filtered
invariant mass from the two fat jets [11] and its pruned value [21], both as implemented in FastJet [24]. As
a reference we also show the mtt distribution from the left panel of the same figure. Unlike the reconstructed
mtt distribution, both, the filtered and the pruned mff distributions give symmetric peaks around the correct
mZ′ value.

To be able to use the filtered mff values in our HEPTopTagger analysis we confirm that filtering and
pruning give stable numerical results for the invariant mass of the two fat jets. Results for different parameter
settings are listed in Tab. II. We give the peak positions, which would be subject to a proper calibration, the
fitted Breit–Wigner widths for the symmetric peaks, and the tagging performances for a fixed mass window
|mff −mZ′ | < 150 GeV. Replacing the Breit–Wigner width with a Gaussian would make no difference, but
give a poorer modelling of the tails. Typical widths of the reconstructed Z ′ mass peak will range around
145 GeV, roughly twice the assumed particle width of 65 GeV. Even in the absence of detector effects, this
resolution will replace the assumed particle width of 65 GeV in all of the following analysis. The constant
numbers in Tab. II confirm that the mff criterion is stable for different filtering parameters as well as pruning.

On the other hand, the results shown in Tab. II also indicate that simply replacing the mtt window by a
filtered mff value will not improve the Z ′ extraction. In Fig. 4 we show that the steeply falling QCD jets
background now has a maximum around mff = 1.3 TeV, while for the reconstructed top quarks there exists
a much more pronounced maximum around mtt = 900 GeV. The reason is that top tagging removes events
with many hard QCD jets in two steps: first requiring the correct top mass value from three assumed top
decay products, and second when applying the Z ′ mass window. If we remove the first step, the second one
has to deal with larger backgrounds at high mff values.

If we want to include final-state radiation and at the same time benefit from its additional information, we
need to keep mff as well as mtt in our analysis, and not apply a simple mass window on the mtt distribution.
The kinematics of the Z ′-decay is then described by

{ mtt,mff, pT,t1 , pT,t2 , pT,f1 , pT,f2 } (filtered fat jets). (3)

All default settings of the HEPTopTagger are listed in the Appendix. We filter the fat jets using R = 0.3
and keep the N = 5 hardest substructures. In the left panel of Fig. 5 we show the corresponding ROC curves.
Unlike in the rest of the paper we study the tt̄ and QCD jets backgrounds separately. The improvement of
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Figure 5: Left: performance of the multivariate analysis including the information on the fat jet, as given in Eq.(2),
Eq.(3) and Eq.(4). Only in this plot do we optimize for tt̄ and QCD backgrounds separately. Right: performance
curve for the full analysis only accounting for the dominant QCD jet background.

the full multivariate tagger including the fat jet information of Eq.(3) is obvious for both backgrounds. In
the right panel of Fig. 5 we first show the same improvement, but using a BDT trained on the QCD jets
background only. Compared to the original HEPTopTagger we achieve an improvement of up to a factor
2 in 1/εB for constant signal efficiency. We note that for the QCD background the combination of mis-
tagged top kinematics and fat jet kinematics goes beyond the description of the hard process. For example
initial-state radiation, sensitive to the color structure of the signal and the background, will be captured in
this combination of observables. On the other hand, because the fat jets are defined using the standard jet
algorithms and show a stable filtering performance, we do not envision major experimental problems provided
pile-up subtraction works as well as expected.

The set of kinematic observables listed in Eq.(3) still relies on the deterministic HEPToptagger output.
This means that the identification of a Z ′ signal event is limited by the efficiency of two top tags. The choice
of a working point in the top tagging algorithm will therefore limit our over-all efficiency. On the other hand,
we already know that for hadronic Z ′ searches the QCD jets background is dominant and will only be reduced
through a combination of top tags and Z ′ mass reconstruction.

In addition, we omit a fixed mass window for the reconstructed top mass mrec. Instead, we widely open
the top mass and W -mass constraints in the tagging algorithm. For each of the tops the corresponding mrec

value then becomes an output of the tagger. We provide the multivariate Z ′ analysis with the smaller and
larger of these two output mrec values, which we label as mmin

rec and mmax
rec respectively. Similarly, we avoid

a fixed window for the ratio of the W -mass to the top mass, parametrized as fW in the tagging algorithm.
Its deviation from the true value is given by the value of frec defined in the Appendix. In the multivariate
analysis we include the maximum of the two frec values corresponding to each tagged top.

{ mtt,mff, pT,t1 , pT,t2 , pT,f1 , pT,f2 ,m
min
rec ,m

max
rec , f

max
rec } (variable masses). (4)

The result is shown in the right panel of Fig. 5, where the range of accessible efficiencies eventually extends to
56%. Altogether, the analysis based on the set of kinematic variables shown in Eq.(4) gives us an improvement
of up to a factor 5 in background rejection for a constant Z ′-signal efficiency.

III. UPDATED TAGGER

Fat jets with a geometric size of R = 1.5 or even R = 1.8 have shown to be powerful new analysis objects
at the LHC. The radius of the fat jet is directly related to the energy or boost of the heavy particles which
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can be captured. This means that a multi-purpose top tagger will be based on as large fat jets as possible.
However, to realize their potential such large jets require additional treatment linked to their large geometric
size. Without a dedicated analysis step, underlying event and pile-up will almost entirely wash out any
structure inside the fat jet. Filtering [11] as an integral part of all versions of the HEPTopTagger [4, 5]
effectively reduces the geometric size of the fat jet used to reconstruct the top 4-momentum by introducing
a second clustering stage with higher resolution. This solves the problem with underlying event and pile-up,
but there remains a combinatorial problem caused for example by initial-state radiation. In particular the
softer of the two subjets from the W -decay can easily be faked by a typical QCD jet inside the fat jet.
This will lead to a wrong reconstruction of the top 4-momentum, which we can only counter by applying
harder tagging requirements and hence reducing the tagging efficiency. These so-called type-2 tags [20], where
only two of three top decay jets can be identified with a parton-level decay quark have been in the focus of
HEPTopTagger studies at moderate boost [15, 20, 34]. In the reconstruction of heavy resonances we can
solve the problem of (too) large fat jets by adapting the size of the fat jet to the kinematics of the tagged
top. It turns out that this adaptive size of the fat jet also gives us another powerful kinematic variable for
the multivariate analysis. Finally, we will show how this optimalR modification of our tagging algorithm can
be further improved by including N -subjettiness variables.

OptimalR mode

There have been different attempts to adjust the size of the fat jet for example based on the transverse
momentum of the fat jet [12, 27, 31], but none them lead to a dramatic effect in the performance of taggers.
We instead choose a purely algorithmic way of determining the minimum size of the fat jet [35]. Assuming
that three top decay jets are captured by the fat jet we can run the standard HEPToptagger algorithm
to determine the top mass from the three leading subjets [15]. For a large fat jet size, typically R = 1.5
or R = 1.8, we compute a reference value of mrec, which should be around the top mass. In the usual
tagging algorithm, this computation of mrec from filtered subjets takes into account final-state radiation off
the on-shell top. We then reduce the size of the fat jet in steps of ∆R = 0.1 and compute the corresponding
values of mrec(R). In case of several possible triplets, this includes the step of choosing the one closest to the
physical top mass, as described in step (5) in the Appendix. As a function of the decreasing jet size R the
fat jet mass mrec(R) will form a stable plateau, until the reduced fat jet will be too small to capture all three
top decay jets. At this point mrec(R) will leave the plateau and show a significant drop. For R = 1.5, which
is sufficient for the Z ′ mass in our study, we define this drop through

m
(1.5)
rec −mrec(R)

m
(1.5)
rec

> 0.2 ⇔ R < Ropt . (5)

Once the shrinking fat jet passes this condition we go back one step to the last R value on the plateau and
define this value as Ropt. The smallest value we allow in this study is Ropt = 0.5, but for pT,t >∼ 1 TeV this
value can be adjusted in the tagger setup. This value could be a challenge of the calorimeter resolution, so
the corresponding results are subject to tests based on a full detector simulation in ATLAS and in CMS. In
this paper we typically arrive around Ropt = 0.6. The tagging result for this Ropt value will be the output of
the top tagger.

Measuring Ropt defines another useful variable for the top tagger, because we can also predict Ropt from
the fat jet kinematics. A similar reasoning is used in the original HEPTopTagger algorithm, where a
consistency condition on the reconstructed top momentum pT,t > 200 GeV ensures that the reconstructed
top can actually be captured in the fat jet. In the optimalR mode we first determine the transverse momentum
of the filtered fat jet, pT,f as described in the previous section. Including up to ten hardest subjets after a
filtering step with Rfilt = 0.2 turns out to give the best estimate of pT,f for this purpose. Reducing this number
to five subjets has no measurable effect on the width of the reconstructed pT,f distribution, but slightly shifts
its maximum to smaller values [35]. The final number will be subject to an independent optimization in
ATLAS and CMS.

For pT,f > 200 GeV we derive a closed form by fitting a function R
(calc)
opt ∝ 1/pT,f to simulated data, as

described in the Appendix. The kinematic variables in our the multivariate tagger now read

{ mtt,mff, pT,t1 , pT,t2 , pT,f1 , pT,f2 ,m
min
rec ,m

max
rec , f

max
rec , Ropt −R(calc)

opt } (optimalR). (6)
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Figure 6: Performance of the optimalR mode based on the kinematic variables in Eq.(6), including N -subjettiness
variables as defined in Eq.(8), and including Qjets. As described in the text, for Qjets we need to require a finite
calorimeter resolution, while all other curves do not include any detector effects. We only consider the dominant QCD
background.

For this case of two top tags we choose Ropt − R(calc)
opt as the maximum deviation of the tagged tops. In

this form all subsequent kinematic variables linked to the top tags will be evaluated with the fat jet size

Ropt. For the Z ′ search R
(calc)
opt will be strongly correlated with other kinematic variables listed in Eq.(6).

We nevertheless include it in the BDT because the general multivariate HEPTopTagger2 described in the
Appendix will not include the top momenta in the tagging. The increase of the tagging performance from the
optimalR mode is shown in the left panel of Fig. 6. While for small signal efficiencies the curves for optimalR
and for the variable mass setup of Eq.(4) are identical within numerical fluctuations, we observe a significant
improvement for larger signal efficiencies.

N-subjettiness

The arguably simplest question we can ask as part of a top tagger is the number of hard subjets inside
the fat jet with a given jet mass. This number of subjets can be defined through an observable similar to
event shapes like for example thrust, called N -subjettiness [32, 33]. It is based on N reference axes which
are required to match the k hard substructures,

τN =
1

R0

∑
k pT,k

∑
k

pT,k min (∆R1,k,∆R2,k, · · · ,∆RN,k) , (7)

where ∆Ri,j is the geometric separation between the axis i and the substructure k. In this form N -subjettiness
parametrizes the deviation of the energy flow away from N jets not only related to an integer number of
subjets, but also reflecting the color structure and the related radiation pattern.

In terms of original definition [32] we fix the exponent to β = 1. R0 is an intrinsic cone size, chosen
such that τN < 1. Small values of τN → 0 indicate that the complete substructure is described by N axes,
indicating that there are at most N relevant substructures. The ratio τN/τN−1 will therefore become small
for a fat jet with N hard subjets. For top tagging the ratio τ3/τ2 will be most useful and can even be used as
a tagger itself. Higher τN values will contribute to a multivariate analysis of N -subjettiness, describing the
jet radiation pattern around the assumed three partonic top decay momenta.

We will use N -subjettiness as an additional variable in our multivariate HEPTopTagger. Originally, this
combination did not lead to a significant improvement when added to the A-shaped cuts [15]. However, when
we open the cut fW on the reconstructed ratio mW /mt we observe a significant improvement for the extended
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set of kinematic variables. The complete set of relevant kinematic variables, now including N -subjettiness
variables before and after filtering, is

{ mtt,mff, pT,t1 , pT,t2 , pT,f1 , pT,f2 ,m
min
rec ,m

max
rec , f

max
rec , Ropt−R(calc)

opt , τ1,N , τ
(filt)
1,N , τ2,N , τ

(filt)
2,N } (N -subjettiness).

(8)
For more details on the N -subjettiness variables we refer to the Appendix. As in Eq.(6) all kinematic
variables linked to the top tag will be evaluated with the fat jet size Ropt. The details of implementation of
the N -subjettiness variables is discussed in the Appendix.

Qjets

The main limitation even of the deterministic multivariate HEPTopTagger is the aim to identify a
unique set of subjets from the top decay as part of the tagging procedure, which allows us to reconstruct the
4-momentum of the tagger top and for example compare it to Monte Carlo truth. If the kinematic selection
identifies a wrong set of subjets as the best candidates for the top decay products, an actual top decay can
easily fail the tagging procedure. To avoid this loss in signal efficiency we can allow for more than one set of
candidate subjets to be tested. One approach that not only covers several candidates of subjet combinations,
but which even allows for a statistical analysis of many such assignments is Qjets [26].

During the clustering of the fat jet the standard recombination algorithms combine the closest set of pre-jets
according to a given measure. For the C/A algorithm this measure is the geometric separation dij = ∆R2

ij

of the pre-jets i and j. Qjets generalizes this deterministic choice to a likelihood measure. For each pair of
pre-jets (i, j) it computes the weight

ω
(α)
ij = exp

(
−α

dij − dmin
ij

dmin
ij

)
, (9)

and then chooses the two pre-jets to cluster according to a random number trailing the weights ω
(α)
ij . For this

study we choose α = 0.1, to balance the convergence of the algorithm with our aim of generating alternative
subjet assignments for the top tagger. The standard jet algorithm corresponds to the limit α → ∞. The
global weight for a clustering history is defined as

Ω(α) =
∏

mergings

ω
(α)
ij =

 ∏
mergings

exp

(
−
dij − dmin

ij

dmin
ij

)α consistent−→ 1 . (10)

The universal limiting case Ω(α) → 1 for a perfect clustering history indicates that in searching for the largest
global weight Ω the choice of α should not make a major difference. The Qjets clustering procedure can be
repeated many times, where in this study we typically rely on 100 clustering histories. They can be ranked by
their global weights Ω(α) instead of the independent local weights used by a deterministic jet algorithm. For
each history we apply the unclustering and top tagging algorithm. As long as the deterministic jet algorithm
picks a reasonable merging history for a signal event we expect the outcome of the deterministic tagger and
the tagger acting on the clustering history with the highest global weight to be close.

The first advantage of Qjets appears when during an early clustering step the deterministic measure
dij identifies the wrong merging in the sense that the remaining history cannot be described well by QCD.

This deterministic history will by definition receive the maximum global weight Ω(α) = 1. However, an
alternative history in better agreement with QCD could reach a similarly large global weight. Because Qjets
provides many alternative clustering histories, we can search for a set of top tags with comparably large global
weights. For example, we can use the two positively tagged Qjets histories with the highest global weight
in the multivariate analysis. This way, a possibly misleading deterministic result is corrected. This should
improve the performance in particular when we enforce high signal efficiencies, where the tagger becomes most
vulnerable to a wrong clustering input. It turns out that already this simple modification gives a sizeable
improvement in the signal efficiency.
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The second improvement to the usual top tagger is based on HEPTopTagger output for the full set of 100
clustering histories. First, we include the fraction of positive top tags based on the default HEPTopTagger
settings among all 100 Qjets histories, εQjets, as introduced in the Appendix. Next, we extract statistical
information from distributions of the Qjets histories, like for example the reconstructed top mass mrec.
This distribution is defined for εQjets × 100 histories. Signal events will strongly peak around the top mass
with a possible secondary peak around the W -mass. QCD background events will instead show a smooth
decrease. The two most relevant observables in the mrec distribution are the mean and the variance of this
reconstructed top mass distribution with 100 entries, symbolically denoted as {mQjets

rec }.

Our multivariate analysis we base on the second approach. We start with the top-tagged Qjets history
with the highest global weight and run the tagging algorithm of this history only. In addition, we include the
statistical information of the mrec distribution of the subset of the 100 Qjets histories which defines a top
candidate. The complete list of observables including the Qjets information now reads

{ mtt,mff, pT,t1 , pT,t2 , pT,f1 , pT,f2 ,m
min
rec ,m

max
rec , f

max
rec , Ropt−R(calc)

opt , {τN}, εmin
Qjets, {mQjets

rec } } (Qjets), (11)

where {τN} represents the appropriate set of filtered and unfiltered N -subjettiness variables (for example
N = 1, 2, 3 for each of the two tops). For the two tags in the Z ′ analysis we choose the smaller εQjets value of
the two. All variables from the tagger are evaluated for the optimized R size and the clustering history with
the largest global weight.

In Fig. 6 we show the effect of the Qjets histories in addition to the other improvements. A key difference
between the previous discussion and the Qjets approach is that we now need to include some kind of detector
resolution, to limit Qjets to a manageable number of significantly different merging histories. For that reason
we divide the calorimeter into η× φ cells of size 0.1× 0.1 and pre-cluster the entire set of calorimeter entries
before applying any jet algorithm. Because this detector resolution effect is not included for the previous
results, the Qjets ROC curve does not consistently exceed the N -subjettiness curve without Qjets. On
the other hand, we still observe the expected improvement towards large signal efficiencies. The moderate
drop at small signal efficiencies gives us confidence that a full detector simulation will not lead to significant
degradation of our results.

IV. FULL EVENT INFORMATION

Going back to the discussion in Sec. II the remaining question is how the new HEPTopTagger2 per-
formance compares to other approaches designed for the upcoming LHC run. The benchmark for such a
comparison is event deconstruction, or more specifically the projections for a Z ′ resonance search [17]. As
mentioned in our discussion of jet radiation in Sec.II the borders between the hard process or the Z ′ decay
on the one side and QCD jet radiation and its sensitivity to the signal and background color structure on
the other side are washed out when we include for example filtered subjets or N -subjettiness information.
We therefore start with a brief discussion of the additional information from jets in the entire event and then
move on to the comparison with the leading benchmark in proposed Z ′ analyses.

Additional jets

To determine to what degree the jet structure of purely hadronic Z ′ → tt̄ events helps the extraction of
the signal from the tt̄ and QCD jets background we first study the number and kinematic distribution of
small C/A jets with R = 0.2 and pT,j > 10 GeV in addition to the fat jets fulfilling Eq.(1). We choose
these very small jets in order to test information which might be available from so-called microjets in shower
deconstruction. Our discussion should not be applied to an LHC analysis one-to-one and is instead aimed at
capturing as much information as possible. Without any major cuts, the number of jets will consist of three
decay jets per top quark, FSR jets, and ISR jets. For an inclusive event sample, we should be able to tell
apart the different processes from the number of jets and the kinematics of the individual jets [36].

After a first level of cuts we see in Fig. 7 that the Z ′ signal and the tt̄ background both peak at 10
microjets, e.g. four jets from ISR and FSR combined. For the background the number is slightly larger,
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Figure 7: Information on the hardest jet before top tagging (upper row) and the hardest jet left over after top tagging
(lower row). For the jets defined with R = 0.2 and pT > 10 GeV we show the number of jets, the hardest jet’s
transverse momentum, and its mass in Z′ candidate events (left to right).

because we generate the scale of the hard process also through a large number of jets. We also see that the
transverse momentum of the hardest jet is slightly larger for the signal. We could include these jet patterns in
a multivariate analysis, but at this stage this information would be very heavily correlated with the variables
from the top tagger.

In a second step we focus on the jet activity which does not contribute to the top tagging. Inside the fat jets
we know that the top tagger includes information based on subjets with typically R = 0.3 and pT >∼ 20 GeV
after filtering. After two tags we then remove all calorimeter data associated with the filtered triplet of either
of the top candidates and re-cluster the remnants into microjets with R = 0.2 and pT,j > 10 GeV. In the
lower panels of Fig. 7 we see how after removing the signal decay jets the remaining number of jets peaks
around two ISR or FSR jets. For the QCD background this number is higher, because it takes a larger number
of equally distributed jets in the detector to fake a boosted massive top inside each fat jet. The transverse
momentum of the hardest of the remaining QCD jets also peaks at very small values for the signal and the
tt̄ background, as one would expect for example for a small number of ISR jets. The bulk of the hardest
QCD jets per event shows transverse momenta around pT,j = 50− 200 GeV, still small compared to the hard
scale imprinted on the multi-jet background through the kinematic selection of Eq.(1). We should be able to
use this additional information for our BDT analysis, to improve the signal extraction. In the right panel of
Fig. 7 we see the corresponding ROC curve. It turns out that almost all of the information available through
the extra jet radiation is already included in our combined analysis of top tags and subjet kinematics.

Based on this piece of information we assume that additional jet information inside and outside the fat jets
hardly changes the stable results of the updated top tagger, so we can compare the new HEPTopTagger2
to other multivariate methods.
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Figure 8: Comparison of the multivariate HEPTopTagger2 analysis presented in this paper with the event decon-
struction approach of Ref. [17]. All HEPTopTagger2 curves correspond to Fig. 6, but now with a collider energy
of 14 TeV instead of 13 TeV, This comparison in the absence of an experimental validation should be taken as first
estimate.

Comparison with other approaches

The most promising projections for boosted top identification and specifically searches for tt̄ resonances
during the upcoming LHC runs are available for shower deconstruction [16] or event deconstruction [17].
This method is based on a construction of likelihoods representing possible shower histories for a jet or a
fat jet. The underlying objects are so-called C/A [22, 24] microjets with R = 0.2 and pT > 10 GeV [17].
They are slightly softer and smaller than the subjets in a typical top tagger, but we have seen that the
additional information from those jets should not make a big difference. Unlike general template methods,
shower deconstruction relies on the soft and/or collinear approximation of QCD to compute the likelihood
of a given shower history in terms of splitting probabilities and Sudakov factors (non-splitting probabilities).
Based on the possible shower histories the likelihood ratio of a fat jet coming from a boosted top quark or
from the QCD jet background acts as a measure for the top tag. One problem with shower deconstruction,
like any probabilistic approach, is that we cannot separate the identification and the reconstruction of the
boosted top quark. This means we cannot for example show the quality of the reconstructed 4-momentum
compared to Monte Carlo truth.

The Z ′ analysis using event deconstruction starts with two fat jets of size R = 1.5 and the acceptance cuts
given in Eq.(1). The number of microjets is limited to 9 per fat jet. In addition to the likelihood separating
the top or QCD origin of each of the two fat jets, the event likelihood measure now also includes a likelihood
describing the resonant or non-resonant production of the pair of fat jets given their 4-momenta. At the level
of the hard process this part is not very different from the established matrix element method [37] and largely
replaces an analysis of the mtt and pT,t distributions defining the multivariate analysis of Eq.(2). In Ref. [17]
the observable width of the mtt resonance is assumed to range around 65 GeV, an assumption we follow. In
our analysis the precise resolution for example after detector effects only plays a secondary role, because the
resolution of the HEPTopTagger2 is limited to 145 GeV, as shown in Tab.II.

In Fig. 8 we show the performance of the analysis developed in this paper with the recent benchmark of
event deconstruction. One difference to the HEPTopTagger results shown in Fig. 6 is that we now show
Z ′ efficiencies up to 68%, confirming that Qjets indeed gives us a major improvement for very large signal
efficiencies. Another difference is that for a direct comparison we now assume a collider energy of 14 TeV.
Both, event deconstruction and the new HEPTopTagger show a comparable performance for the upcoming
run. The final answer on both methods will only be given by experimental studies including data.
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V. CONCLUSION

We demonstrated how the updated HEPTopTagger2 performs in searches for Z ′ bosons or other heavy
resonances decaying to top pairs in the upcoming LHC run. Based on the original HEPTopTagger [5] we
modify the tagging algorithm and add several additional kinematic variables to a multivariate analysis:

– fat jet kinematics to account for final-state radiation in resonance searches;

– algorithmically optimized size of the original fat jet combined with its prediction (optimalR mode);

– N -subjettiness probing the more general subjet structures inside the fat jet;

– Qjets with a global picture of the most likely clustering histories giving a top tag.

Each of these improvements can be added to the top tagging individually. For the specific Z ′ resonance
search we altogether achieve an increase of the background rejection by a factor of 30 for a constant Z ′-signal
efficiency of 10%. Compared to the original tagger [5] the background sculpting in the invariant mass of
the top pair is significantly reduced [15]. These updated results are at least competitive with the leading
estimates for other tagging methods.

Because the multivariate Z ′ analysis includes several layers of improvement, not necessarily linked to the
actual top tagging, we also show in the Appendix the corresponding improvements for top tagging in tt̄ events.
There, we test the updated tagger for moderate (pT,t > 200 GeV) and sizeable (pT,t > 600 GeV) boost and
find a significant improvement in particular for larger boost. The limiting factor for moderate boost still is
capturing all three top decay jets inside a fat jet, which has to be targeted by a dedicated low-pT mode [20].
The corresponding HEPTopTagger2 described in the Appendix will be made publicly available [5, 38]. In
particular for Qjets there exist different modes which need to be tested on data.

Comparing the improvement of the Z ′ analysis with that in the individual top tags shows that the benefits
for the full Z ′ case are significantly larger than those just from the top tags. A lesson from this is that it is
useful to consider the optimization of top tagging, not only in its own right, but also in the context of full
search analyses.
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Appendix: HEPTopTagger2

In the past it has proven useful to publish details about the HEPTopTagger algorithm. We describe
the new structure reflecting all changes in Refs.[5, 15, 20] in this Appendix. Because the main body of the
paper is focused on the performance in resonance searches we then present benchmark results based on purely
hadronic tt̄ events in the Standard Model. They can be directly translated for example into semi-leptonically
decaying tt̄ pairs. Finally, the enhanced capabilities of the HEPTopTagger2 have lead to enough of a
complexity of the actual code that we briefly describe the run modes, the input parameters, and the available
output information from the tagger.

Algorithm

The basic HEPTopTagger2 algorithm largely follows the original algorithm described in Ref. [5], but is
based on FastJet3 [24] and includes a number of new features:

1. define a C/A fat jet with Rfat = 1.8 and determine the splitting history through the default clustering.

2. identify all hard subjets using a mass drop criterion: undo the last clustering of the jet j, into two
subjets j1, j2 with mj1 > mj2 ; require mj1 < fdrop mj with fdrop = 0.8 to keep both; otherwise, keep
only j1; further decompose or add each subjet ji to the list of relevant substructures. A global soft
cutoff mji > mmin = 30 GeV can be adjusted†.

3. iterate through all triplets of three hard subjets: filter them with resolution Rfilt = min(0.3,∆Rjk/2);
use the Nfilt = 5 hardest filtered constituents and calculate their combined jet mass; re-cluster these
five subjets into three assumed top decay jets; reject all triplets outside m123 ≡ mrec ∈ [150, 200] GeV;
keep the event if at least one such triplet exists. For the multivariate analysis this window is opened to
mrec < 1 TeV, which allows us to use mrec as a kinematic output of the tagger.

This set of re-clustering and filtering steps by default uses the C/A jet algorithm [22]. However, to
guarantee infrared safety and enhance the performance at large boosts [20] it can be switched to kT
jets [23].

4. order the three subjets j1, j2, j3 by pT ; if the masses (m12,m13,m23) satisfy one of the following three
criteria, accept them as a top candidate:

0.2 < arctan
m13

m12
< 1.3 and Rmin <

m23

m123
< Rmax

R2
min

(
1 +

(
m13

m12

)2
)
< 1−

(
m23

m123

)2

< R2
max

(
1 +

(
m13

m12

)2
)

and
m23

m123
> 0.35

R2
min

(
1 +

(
m12

m13

)2
)
< 1−

(
m23

m123

)2

< R2
max

(
1 +

(
m12

m13

)2
)

and
m23

m123
> 0.35 (12)

where Rmin,max = (1 ∓ fW )mW /mt defines the parameter fW , by default set to fW = 0.15. The soft
cutoff m23 > 0.35 m123 as well as the limits [0.2, 1.3] in the first line can be adjusted. All kinematic
cuts are listed in Tab. V and can be adapted in a multivariate approach. In the multivariate case we
open the W -mass window to fW = 0.3. The ratio of the W -mass to the top mass can then be used as
a kinematic output defined as

frec = min
ij

∣∣∣∣∣∣∣
mij

m123
mW

mt

− 1

∣∣∣∣∣∣∣ (13)

† We have checked that replacing the mass drop criterion with a soft drop criterion [13] does not improve the performance of
the tagger noticeably.
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5. of all triplets passing the above criteria in a given fat jet choose the one with m123 ≡ mrec closest to
mt. This selection has shown to be the most efficient, and applying it after all kinematic cuts minimizes
the background sculpting. The mrec and frec values supplied to the multivariate analysis are those
corresponding to this triplet.

6. for consistency, require the reconstructed pT,t to exceed 200 GeV.

7. in the low-pT mode [20] reduce this threshold to pT,t > 150 GeV; compute the Fox–Wolfram mo-
ments [25]

Hx
` =

N∑
i,j=1

W x
ij P`(cos Ωij)

with WT
ij =

pTi pTj

(
∑
pTi)

2 and WU
ij =

1

N2
. (14)

of the subjets relative to each other and relative to the reconstructed top momentum. This mode is not
part of the usual tagger and relies on external GSL libraries [39] for Legendre polynomials.

8. in the optimalR mode repeat steps 1 to 3 with a decreasing fat jet radius in steps of ∆R = 0.1; based

on the condition m
(1.8)
rec −mrec > 0.2m

(1.8)
rec determine the minimum radius Ropt > 0.5; follow steps 4

to 6 with this modified fat jet. We also parametrize the expected value for Ropt in terms of pT,f based
on the numerical simulation of the top decay kinematics illustrated in Fig. 9

R
(calc)
opt =

327

pT,f
. (15)

9. in the N -subjettiness mode [15] compute the τj [32] as defined in Eq.(7) from the filtered and unfiltered
subjets, as described below. Again, this mode is not part of our tagger code and relies on the FastJet
Contrib [24, 38] add-on for N–subjettiness [32].

10. in the Qjets mode replace the deterministic output of step 1 by a set of possible histories defined in
Eq.(10); run the tagger for each of them, giving a set of clustering histories with global weights Ω, and
a positive or negative tagging result.

T,filt
p

200 400 600 800 1000

bj
j

R

0

1

2

>200, 400, 600 GeV combined
T

p

Figure 9: R
(calc)
opt fit based on Standard Model tt̄ samples with pT,t > 200, 400, 600 GeV for the parton level distance

of decay products Rbjj . The fat jets are filtered with R = 0.2, N = 10. The functional form of the fit curve is given
in Eq.(15).
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Figure 10: Performance of the HEPTopTagger2 for tt̄ production in the Standard Model. We show the incremental
improvements from the extended multivariate analyses for top quarks with pT,t > 200 GeV and pT,t > 600 GeV.

Following this description the low-pT (7) and N -subjettiness (9) modes simply add kinematic observables
to the tagger output. These observables can be included in a multivariate analysis or can be cut on in the
deterministic top tagging decision. The improvement in the low-pT mode is illustrated in detail in Ref. [15]
while the impact of N -subjettiness variables on the resonance search is illustrated in Fig. 6.

In contrast, the optimalR mode and the Qjets mode modify the clustering histories (1) underlying the
mass drop search (2). Depending on the modified fat jet size or on the Qjets weight they return a set of
tagging outputs. For the optimalR mode it is straightforward to choose the smallest reasonable fat jet size
Ropt for the actual tagging. The Qjets histories can be evaluated in a range of possible ways.

Performance

The main body of this paper focuses on tt̄ resonance searches using the HEPTopTagger described above.
While the combination of tagged top kinematics and fat jet kinematics in Sec.II does not directly translate
into to a universal top tagger, the multivariate aspects discussed in Sec. III, namely optimalR, N -subjettiness,
and Qjets do. Here, we show efficiencies for extracting tt̄ events from the QCD multi-jet background.

Our analyses are based on fully hadronic tt̄ signal and QCD dijet background samples generated with
Pythia8 [29]. For the general top tagger analysis in this Appendix we include underlying event in the event
generation and mimic the limited detector resolution by clustering the hadronic activity into η × φ cells of
size 0.1× 0.1, similar to the Qjets results shown in Fig. 6. Instead of the hard acceptance cuts in Eq.(1) we
now allow for softer fat jets. Two multivariate BDT analyses focus on tt̄ samples with

pT,fat > 200 GeV |yfat| < 2.5 pT,t > 200, 600 GeV , (16)

where the top momenta are evaluated on the Monte Carlo truth level. We select events with fat C/A jets of
radius Rfat = 1.8 and |yfat| < 2.5 constructed with FastJet.

Background efficiencies εB are defined as relative to the number of those fat jets. For the signal efficiencies
we require that the fat jets can be matched to a parton level top quark within ∆R < 0.8. Using the original
version of the HEPTopTagger [5] we find for the pT > 600 GeV samples a signal efficiency of εS = 35.6%
and a mis-tagging rate εB = 2.7%. The first change in the algorithm addresses the signal efficiency and
background sculpting. In the original algorithm the triplet of subjets closest to the true top mass is selected
and only later the mass plane cuts are applied. Therefore, the tagger will fail if this triplet does not pass the
mass plane constraints and no alternative triplet is analyzed. To eliminate this limitation, we first apply the
mass plane constraints and then pick the triple closest to the top mass, as described above.
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As in the main text we study further improvements of the tagger based on ROC curves. To allow for
such improvements we loosen the cuts of the tagger to mrec < 1 TeV and fW = 0.3. The initial set of BDT
parameters in analogy to Eq.(4) is

{ mrec, frec } (variable masses). (17)

The large cone size of R = 1.8 is not always appropriate, so the optimalR mode optimizes the radius of each
fat jet. Starting from the initial cone size we stepwise reduce the size of the fat jet until the criterion Eq.(5)
indicates that we miss a top decay jet. For the last stable R size we run the usual tagging algorithm. We can
calculate the expected value Rcalc

opt for the critical radius based on the transverse momentum of the filtered
fat jet. For a fat jet originating from a top decay this prediction should agree with the measured value, while
for a background fat jet the two are only strongly correlated when the entire subjet kinematics is a perfect
match to a top decay. For the optimalR mode we set up a BDT analysis with the observables

{ mrec, frec, Ropt −R(calc)
opt } (optimalR). (18)

All tagging observables are evaluated for a fat jet with size Ropt. In Fig. 10 we show the improvement from
the optimized size of the fat jet. Obviously, it is more impressive for larger boost, while for pT,t > 200 GeV
the optimalR mode hardly leads to a reduction in fat jet size.

The N -subjettiness variables are best applied independently for fat jets which would pass and would not
pass the initial tagging criterion. The optimalR working point

mrec ∈ [150, 200] GeV frec < 0.175 Ropt −R(calc)
opt < 0.3 , (19)

which corresponds to the signal efficiency εS = 0.22(0.27) in Fig. 10, defines these two categories. Fat
jets passing Eq.(19) can be assumed to include a complete set of top decay products and are filtered with

R
(1)
filt = 0.2 and N

(1)
filter = 5; fat jets failing this criterion are instead filtered with R

(0)
filt = 0.3 and N

(0)
filter = 3. The

unfiltered N -subjettiness variables τi defined in Eq.(7) and their filtered counter parts τ
(0)
i , τ

(1)
i are included

up to i ≤ 3. The reference axes are chosen as kT -axes. We then set up two independent BDTs with

{ mrec, frec, Ropt −R(calc)
opt ,m

(1)
fat , τ

(1)
3 , τ

(1)
3 /τ

(1)
2 , τ

(1)
2 /τ

(1)
1 , τ2, τ3/τ2, τ2/τ1 } (N -subjettiness, pass)

{ mrec, frec, Ropt −R(calc)
opt ,m

(0)
fat , τ

(0)
3 , τ

(0)
3 /τ

(0)
2 , τ

(0)
2 /τ

(0)
1 , τ1, τ3/τ2, τ2/τ1 } (N -subjettiness, fail), (20)

and later combine them into one ROC curve. This precise condition is represented by the more generic Eq.(8).
In Fig. 10 we show the corresponding ROC curves for a successively improved tagger.

Finally, we can replace the deterministic clustering history from the usual jet algorithm with a set of Qjets
histories with large global weights Ω(α) defined in Eq.(10) for α = 0.1. This way we avoid cases where the
deterministic clustering history entering the top tagging algorithm is misled during the independent evaluation
of splittings in the usual jet algorithm. When defining jets as analysis objects for a hard process this does
not pose a problem, but for subjet analyses it can have an effect.

Our analysis is based on 100 Qjets histories per fat jet. In Tab. III we show their signal and background
efficiency if required to lead to individual top tags. As the reference value we use the default HEPTopTagger
with fixed mass windows. Based on 100 Qjets histories we then define the fraction εQjets of histories which
lead to a top tag with the default tagging setup. We see that for moderately boosted tops the deterministic
signal tagging efficiency can be reproduced by requiring 30% of the Qjets histories to deliver a positive tag.
The corresponding mis-tag probability is slightly reduced compared to the deterministic tagger. For harder
tops the corresponding value is around εQjets > 20%, with no improvement in the background rejection.

As discussed in Sec. III Qjets offers two strategies to improve the top tagger. To maximize the improvement
in the tagging performance and to limit the CPU time we base the multivariate analysis on the tagged history
with the largest global weight. As additional parameters we include the value of εQjets as well as the mean
and variance of the mrec distribution with the 100 Qjets entries, symbolically denoted as {mQjets

rec }. For the
BDT analysis the variables are

{ mrec, frec, Ropt −R(calc)
opt ,mfat, τN , τ

(filt)
N , εQjets, {mQjets

rec } } (Qjets) (21)
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Figure 11: Performance of the HEPTopTagger2 for tt̄ production in the Standard Model. For pT,t > 200 GeV and
pT,t > 600 GeV we we focus on different Qjets setups, based on a more basic multivariate tagger without optimalR
and N -subjettiness.

As usual, all variables from the tagger are evaluated for the optimized R size and the clustering history with
the largest global weight. The additional improvement is shown in Fig. 10.

Because Qjets offers a variety of improvements to the tagger, we study different setups based on the stage
with multivariate mass windows in Fig. 11. We start by replacing the deterministic C/A output with the most
likely Qjets history and including εQjets in the multivariate analysis. This leads to a moderate improvement
of the tagger at large transverse momenta and at large signal efficiencies. Adding the statistical information
from the εQjets × 100 entries in the mrec information leads to a sizeable improvement over a wide range of
signal efficiencies. This is the mode we use for the Z ′ analysis as well as in Fig. 10.

Next, we add the second-best Qjets history to the tagger, such that the multivariate tagger (including
εQjets) is free to construct a criterion based on one or two tags in the two best Qjets histories. For most of
the ROC curves this comparably simple approach is as successful as the full statistical information. Finally,
adding the statistical information on the mrec distribution leads to a mild improvement.

tt̄ QCD

default HTT 0.337 0.0212

εQjets > 0.1 0.435 0.0318

εQjets > 0.2 0.384 0.0231

εQjets > 0.3 0.341 0.0174

εQjets > 0.4 0.298 0.0123

εQjets > 0.5 0.250 0.0089

εQjets > 0.6 0.212 0.0064

εQjets > 0.7 0.163 0.0036

εQjets > 0.8 0.118 0.0021

εQjets > 0.9 0.064 0.0007

tt̄ QCD

default HTT 0.465 0.0489

εQjets > 0.1 0.524 0.0661

εQjets > 0.2 0.447 0.0461

εQjets > 0.3 0.388 0.0342

εQjets > 0.4 0.336 0.0245

εQjets > 0.5 0.281 0.0168

εQjets > 0.6 0.236 0.0118

εQjets > 0.7 0.181 0.0062

εQjets > 0.8 0.133 0.0032

εQjets > 0.9 0.069 0.0009

Table III: Tagging efficiencies for pT > 200 GeV (left) and pT > 600 GeV (right). εQjets is defined as the number of
Qjets tags per number of Qjets runs. For this table we test 10.000 fat jets with 100 Qjets iterations.
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name description

EARLY MASSRATIO SORT MASS apply the 2D mass plane requirements, then select the candidate which
minimizes |mcand −mt|

LATE MASSRATIO SORT MASS select the candidate which minimizes |mcand −mt|
EARLY MASSRATIO SORT MODDJADE apply the 2D mass plane requirements, then select the candidate with

the highest modified Jade distance

LATE MASSRATIO SORT MODDJADE select the candidate with the highest modified Jade distance

TWO STEP FILTER only analyze the candidate built with the highest pT,t after unclustering

Table IV: HEPTopTagger working modes.

Interface

To apply the HEPTopTagger algorithm to a fat C/A jet constructed with FastJet3 [24], the only
necessary steps are executing the default constructor HEPTopTagger(fastjet::PseudoJet jet) followed
by running the tagger using void run(). This will analyze the fat jet using the optimalR procedure with
the default settings given in Tab. V. The available operation modes are shown in Tab. IV. All configurable
parameters are listed in Tab. V. Functions to retrieve results are presented in Tab. VI.
QHTT() sets up the Qjets mode. It is applied to a fully configured HEPTopTagger by void

run(HEPTopTagger htt). All configurable parameters are given in Tab. VII. A list of functions to access the
results is presented in Tab. VIII.

In addition, we provide a framework for the calculation of Fox–Wolfram moments that relies on an existing
installation of GSL [39]. While the constructor FWM(vector<fastjet::PseudoJet> jets) allows the cal-
culation of Fox–Wolfram moments for a given set of jets, FWM(HEPTopTagger htt, unsigned selection)
uses the b, W1, and W2 momenta from the HEPTopTagger run and calculates the Fox–Wolfram moments
in the top rest frame. The boost axis ~a itself can be included [15]. Subsets of these four vectors can be set
via unsigned selection, as a sequence of 0 or 1 in the order abW1W2. In Tab. IX we show how to extract
the Fox–Wolfram moment of a given order of the Legendre polynomials.

Finally, we include an example class LowPt() for a fixed low-pT mode working point returning a tagging
decision including the set low-pT mode by is tagged(HEPTopTagger).
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name default description

general:

do optimalR(bool) true use optimalR approach

unclustering:

set mass drop threshold(double) 0.8 mass drop threshold

set max subjet mass(double) 30 max subjet mass for unclustering

filtering:

set filtering R(double) 0.3 max subjet distance for filtering

set filtering n(unsigned) 5 max subjet number for filtering

set filtering minpt subjet(double) 0. min subjet pT for filtering

set filtering jetalgorithm(

fastjet::JetAlgorithm)

cambridge algorithm jet algorithm for filtering

reclustering:

set reclustering jetalgorithm(

fastjet::JetAlgorithm)

cambridge algorithm jet algorithm for reclustering

candidate selection:

set mode(enum) EARLY MASSRATIO SORT MASS run mode, see Tab. IV

set mt(double) 172.3 true top mass

set mw(double) 80.4 true W mass

set top mass range(double, double) 150, 200 top mass window

set fw(double) 0.15 width of A–shaped bands fW

set mass ratio range(

double, double)

(1− fW )mW /mt = 0.397
(1 + fW )mW /mt = 0.537

width of cut in 2D mass plane

set mass ratio cut(double,

double, double)

0.35, 0.2, 1.3 boundaries in 2D mass plane

set top minpt(double) 200 min pT,t consistency cut

pruning:

set pruning zcut(double) 0.1 zcut for pruned mass mprune

set pruning rcut factor(double) 0.5 rcut for pruned mass mprune

optimalR:

set optimalR max(double) size of the input fat jet max jet size

set optimalR min(double) 0.5 min jet size

set optimalR step(double) 0.1 step size (multiple of 0.1)

set optimalR threshold(double) 0.2 optimalR mass threshold

calculation of R
(calc)
opt :

set filtering optimalR calc R(double) 0.2 max subjet distance for filtering

set filtering optimalR calc n(unsigned) 10 max subjet number for filtering

set optimalR calc fun(double

(*f)(double))

327/pT,filt dependency of R
(calc)
opt on pT,filt

optimalR type:

set optimalR type top mass range(double,

double)

150. 200. mass range for optimalR type 1

set optimalR type f rec(double) 0.175 max frec for optimalR type 1

set optimalR type max diff(double) 0.3 max Ropt−R(calc)
opt for optimalR type 1

N -subjettiness:

set filtering optimalR pass R(double) 0.2 Rfilt for optimalR type 1

set filtering optimalR pass n(unsigned) 5 Nfilt optimalR type 1

set filtering optimalR fail R(double) 0.3 Rfilt for optimalR type 0

set filtering optimalR fail n(unsigned) 3 Nfilt for optimalR type 0

Table V: Additional parameters of the HEPTopTagger algorithm. All functions have a return type of void.
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name description

bool is maybe top() top mass window requirement passed?

bool is masscut passed() 2D mass plane requirements passed?

bool is minptcut passed() candidate pT,t threshold passed?

bool is tagged() top mass window, 2D mass plane requirement, and pT,t

threshold passed?

double delta top() |mrec −mt|
double djsum() modified Jade distance

double pruned mass() pruned top mass

double unfiltered mass() mass of the triplet of subjets after unclustering before
filtering

double f rec() minimal |(mij/mrec)/(mW /mt)− 1|
const PseudoJet & t() top candidate 4-vector

const PseudoJet & b() subjet corresponding to the b

const PseudoJet & W() combined subjets corresponding to the W

const PseudoJet & W1() leading subjet from the W

const PseudoJet & W2() sub-leading subjet from the W

const std::vector<PseudoJet> & top subjets() three subjets from the top, ordered: b, W1, W2

const PseudoJet & j1() leading subjet

const PseudoJet & j2() sub-leading subjet

const PseudoJet & j3() sub-sub-leading subjet

const std::vector<PseudoJet> & top hadrons() all top constituents

const std::vector<PseudoJet> & hardparts() hard subtructures after unclustering, sorted by pT

const PseudoJet & fat inital() original fat jet (after Qjets reclustering)

const PseudoJet & fat Ropt() fat jet reduced to Ropt

void get setting() print settings to stdout

void get info() print tagger information to stdout

HEPTopTagger HTTagger(unsigned i) HEPTopTagger candidate for a distance parameter
R = i/10. By default all functions above return val-
ues at R = Ropt. This function accesses candidates for
different values of R.

double Ropt() Ropt

double Ropt calc() R
(calc)
opt

int optimalR type() result of set optimalR working point. 1 = pass, 0 = fail

double nsub unfiltered(int order,

fastjet::contrib::Njettiness::AxesMode axes =

fastjet::contrib::Njettiness::kt axes, double

beta = 1., double R0 = 1.);

N–subjettiness τi for the unfiltered fat jet

double nsub filtered(int order,

fastjet::contrib::Njettiness::AxesMode axes =

fastjet::contrib::Njettiness::kt axes, double

beta = 1., double R0 = 1.);

N–subjettiness τ
(filt)
i for the fat jet after filtering depend-

ing on optimalR type().

double q weight() weight of used Qjets history

Table VI: Functions to retrieve results of the HEPTopTagger algorithm.
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name default description

set iterations(unsigned) 100 number of Qjets iterations

set q zcut(double) 0.1 zcut for pruning in Qjets

set q dcut fctr(double) 0.5 Dcut factor for pruning in Qjets

set q exp(double a, double b) 0., 0. (C/A) set distance measure for Qjets
dij = min(pT,i, pT,j)

a max(pT,i, pT,j)
bR2

ij

set q rigidity(double) 0.1 rigidity α for Qjets

set q truncation fctr(double) 0. threshold for merging probability ωij in Qjets

Table VII: Parameters of the Qjets frame for the HEPTopTagger. All functions have a return type of void.

name description

HEPTopTagger leading() HEPTopTagger with leading tagged history

HEPTopTagger subleading() HEPTopTagger with subleading tagged history

double weight leading() Qjets weight of the leading tagged history

double weight subleading() Qjets weight of the subleading tagged history

double eps q() εQjets

double m mean() 〈m〉 for the tagged histories

double m2 mean() 〈m2〉 for the tagged histories

Table VIII: Functions to retrieve results of the Qjets frame.

name description

double U(unsigned) FWM of given order with unit weight

double Pt(unsigned,

fastjet::PseudoJet=(0., 0., 1., 0.))
FWM of given order with pT weight relative to the given reference
vector.

Table IX: Functions to retrieve Fox–Wolfram moments.
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