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F. De Leonardis5c,5a), A. D’Orazio5c,5a), M. Doubek1c), K. Eggert10), V. Eremine), F. Ferro6a), A.

Fiergolski5a,d), F. Garcia3a), V. Georgiev1a), S. Giani9), L. Grzanka8,c), C. Guaragnella5c,5a),
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Abstract

The TOTEM experiment has made a precise measurement of the elastic proton-proton differential
cross-section at the centre-of-mass energy

√
s = 8TeV based on a high-statistics data sample ob-

tained with the β ∗ = 90m optics. Both the statistical and systematic uncertainties remain below 1%,
except for the t-independent contribution from the overall normalisation. This unprecedented preci-
sion allows to exclude a purely exponential differential cross-section in the range of four-momentum
transfer squared 0.027 < |t|< 0.2GeV2 with a significance greater than 7σ . Two extended parametri-
sations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with
the data. Using them for the differential cross-section extrapolation to t = 0, and further applying
the optical theorem, yields total cross-section estimates of (101.5± 2.1)mb and (101.9± 2.1)mb,
respectively, in agreement with previous TOTEM measurements.
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1 Introduction

The differential cross-section dσ/dt of hadronic proton-(anti)proton scattering at low |t| has traditionally
been parametrised with a simple exponential function, e−B|t|, giving a satisfactory description of all
past experimental data. Nonetheless, a few experiments have already reported about hints of slight
deviations from this behaviour. At the ISR, for

√
s between 21.5 GeV and 52.8 GeV, elastic pp and

partly p̄p data have shown a change of slope [1, 2] or have been better parametrised with quadratic
exponential functions, e−B|t|−Ct2

[3, 4]. At the Sp̄pS, for
√

s = 546GeV, a change of slope at |t| ≈
0.14GeV2 has been observed, while the inclusion of a quadratic term in the exponent did not improve
the fit significantly [5]. At the Tevatron [6, 7, 8, 9] no deviations from pure exponential functions were
observed, except at larger |t| where the influence of the shoulder (∼ 0.8GeV2 at

√
s = 0.546 TeV and

∼ 0.6GeV2 at 1.8 and 1.96 TeV) becomes visible. At the LHC, at 7 TeV as well as at 8 TeV, all data
published so far [10, 11, 12, 13] have been compatible with a pure exponential shape.

This report presents a new data sample of elastic scattering at the energy of
√

s = 8TeV. Thanks to its
high statistics, an unprecedented precision has been reached in the region 0.027 . |t|. 0.2GeV2. Both
the statistical and systematic components of the differential cross-section uncertainty are controlled at a
level below 1%, except for the overall normalisation (Section 5.2.6). Consequently, the functional form
of the cross-section can be strongly constrained, thus having more impact on theoretical model building
and, in particular, on the extrapolation to t = 0 used for total cross-section determination. Neglecting the
influence of Coulomb scattering in the observed range, the often used purely exponential extrapolation
has been found inadequate, and extended parametrisations are provided, still yielding total cross-section
values compatible with the previous TOTEM results [12] at the same energy.

This article is organised as follows. Section 2 outlines the detector apparatus used for this measurement.
Section 3 summarises the data-taking conditions; details on the LHC beam optics are given in Section 4.
Section 5 describes the data analysis and reconstruction of the differential cross-section. In Section 6
three parametrisations of the differential cross-section are tested, and from those compatible with the
data the total cross-section is derived. The results are summarised in Section 7.

2 Experimental apparatus

The TOTEM experiment is located at the LHC interaction point (IP) 5 together with the CMS exper-
iment. In this article only the Roman Pot (RP) system, the sub-detector relevant for elastic scattering
measurement, is outlined, whereas TOTEM’s full experimental apparatus is described elsewhere [14].
Roman Pots are movable beam-pipe insertions that approach the LHC beam very closely in order to
detect particles scattered at very small angles. They are organised in two stations placed symmetrically
around the IP: one on the left side (in LHC sector 45), one on the right (sector 56). Each station is formed
by two units: near (214m from the IP) and far (220m). Each unit includes three RPs: one approaching
the beam from the top, one from the bottom and one horizontally. Each RP hosts a stack of 10 silicon
strip sensors (pitch 66 µm) with a strongly reduced insensitive region at the edge facing the beam (few
tens of micrometres). The sensors are equipped with trigger-capable electronics. Since elastic scattering
events consist of two anti-parallel protons, the detected events can have two topologies, called diagonals:
45 bottom – 56 top and 45 top – 56 bottom.

This report will use a reference frame where x denotes the horizontal axis (pointing out of the LHC ring),
y the vertical axis (pointing against gravity) and z the beam axis (in the clockwise direction).

3 Data taking

The measurement presented here is based on data taken in July 2012, during the LHC fill number 2836
providing protons colliding at the centre-of-mass energy

√
s = 8TeV. The vertical RPs were inserted at
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Table 1: Optical functions for elastic proton transport. The values refer to the right arm; for the left arm the moduli
are very similar, but Lx and Ly have the opposite sign.

RP unit Lx vx Ly vy

near 2.45m −2.17 239m 0.040
far −0.37m −1.87 264m 0.021

a distance of 9.5 times the transverse beam size, σbeam. Initially two, later three colliding bunch-pairs
were used, each with a typical population of 8 · 1010 protons, yielding an instantaneous luminosity of
about 1028 cm−2s−1 per bunch. The main trigger required a coincidence between the RPs in both arms,
combining the near and far units of a station in OR to ensure maximal efficiency. During the about 11h
long data-taking, a luminosity of 735 µb−1 was accumulated, giving 7.2 ·106 tagged elastic events.

4 Beam optics

The beam optics relates the proton state at the IP to its state at the RP location. At the IP, the direction of
a proton can be described by the scattering angle θ ∗ (with respect to the z axis) and azimuthal angle φ ∗
(about the z axis). Alternatively, the horizontal (x) and vertical (y) projections of the scattering angle can
be used:

θ ∗x = θ ∗ cosφ ∗ , θ ∗y = θ ∗ sinφ ∗ . (1)

A proton emerging from the vertex (x∗, y∗) at the angle (θ ∗x ,θ ∗y ) and with momentum p(1+ξ ), where p
is the nominal initial-state proton momentum, arrives at the RPs in a transverse position

x(zRP) = Lx(zRP)θ ∗x + vx(zRP)x∗ + Dx(zRP)ξ , y(zRP) = Ly(zRP)θ ∗y + vy(zRP)y∗ + Dy(zRP)ξ (2)

relative to the beam centre. This position is determined by the optical functions: effective length Lx,y(z),
magnification vx,y(z) and dispersion Dx,y(z). The relative final-state momentum deviation ξ has the
following contributions:

– Beam momentum offsets ξoff relative to the nominal momentum and time-dependent variations,
ξvar, with σ(ξoff)∼ 10−3 and σ(ξvar)∼ 10−4 (see discussion in Section 5.2.8).

– The momentum loss, ξscatt, in diffractive scattering processes.

For elastic scattering the dispersion terms, Dx,y ξ , can be ignored:

– The protons lose no momentum in elastic collisions (i.e. ξscatt = 0).

– Due to the collinearity of the two elastically scattered protons and the symmetry of the optics of
the two beams, the effects of beam energy deviations (ξoff and ξvar) on the reconstructed scattering
angle (Eq. (5) in Section 5.1.1) are strongly suppressed. Residual effects from optics imperfections
have been verified to be negligible compared to all other uncertainties.

For the reported measurement, a special optics with β ∗ = 90m was used, with essentially the same
characteristics as at

√
s = 7TeV [10], see Table 1 for details. In the vertical plane, it features parallel-

to-point focussing (vy ≈ 0) and large effective length Ly. In the horizontal plane, the almost vanishing
effective length Lx simplifies the separation of elastic and diffractive events: any sizeable horizontal
displacement must be due to a momentum loss ξ .
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5 Analysis

The analysis method is similar to the ones used in the previous publications [11, 12]. However, a different
normalisation approach is used (Section 5.2.6) that makes all t-independent scaling factors irrelevant.

The analysis is presented in two main blocks. Section 5.1 covers all aspects related to the reconstruction
of a single event. Section 5.2 describes the steps of transforming a raw t-distribution into the differen-
tial cross-section. The t-distributions for the two diagonals are analysed separately. After comparison
(Section 5.3) they are finally merged (Section 5.4).

5.1 Event analysis

Event kinematics are determined from the coordinates of track hits in the RPs after proper alignment (see
Section 5.1.2), using the LHC optics (see Section 5.1.3).

5.1.1 Kinematics reconstruction

The scattering angles and vertex position are first determined for each proton (i.e. from each arm) sepa-
rately by inverting the proton transport, Eq. (2), assuming ξ = 0. The following formulae optimise the
robustness against optics imperfections:

θ ∗L,R
x =

vN
x xF− vF

x xN

vN
x LF

x − vF
x LN

x
, θ ∗L,R

y =
1
2

(
yN

LN
y

+
yF

LF
y

)
, x∗L,R =

LF
x xN−LN

x xF

vN
x LF

x − vF
x LN

x
, (3)

where the N and F superscripts refer to the near and far units, L and R to the left and right arm, respec-
tively. This one-arm reconstruction is used for tagging elastic events, where the left and right arm protons
are compared.

Once an event is selected, the information from both arms is merged yielding better angular resolution:

θ ∗x =
θ ∗Lx +θ ∗Rx

2
, θ ∗y =

θ ∗Ly +θ ∗Ry

2
. (4)

Eventually, the full scattering angle and four-momentum transfer squared are calculated as

θ ∗ =
√

θ ∗x
2 +θ ∗y

2 , t =−p2
(

θ ∗x
2 +θ ∗y

2
)

, (5)

where p denotes the beam momentum.

5.1.2 Alignment

The standard three-step procedure [15] has been applied: beam-based alignment prior to the run (as for
LHC collimators) followed by two off-line methods. First, track-based alignment for relative positions
among RPs, and second, alignment with elastic events for absolute position with respect to the beam.
The final uncertainties per unit (common for top and bottom RPs) are: 2 µm (horizontal shift), 100 µm
(vertical shift) and 0.2mrad (rotation about the beam axis). Propagated through Eqs. (3) and (4) to the
scattering angles reconstructed from both arms, the shifts lead to uncertainties of 0.8 µrad (horizontal)
and 0.2 µrad (vertical). The relatively large impact of horizontal misalignment is due to the almost
vanishing effective length Lx (cf. Eq. (3)). RP rotations induce a bias in the reconstructed horizontal
scattering angle:

θ ∗x → θ ∗x + cθ ∗y , (6)

where the proportionality constant c has a mean of 0 and a standard deviation of 0.02.



4 TOTEM Collaboration (G. Antchev et al.)

5.1.3 Optics

In order to reduce the impact of imperfect optics knowledge, the LHC optics calibration [16] has been
applied. This method uses various RP observables to determine fine corrections to the optical functions
presented in Eq. (2).

The residual errors induce a bias in the reconstructed scattering angles:

θ ∗x → (1+dx)θ ∗x , θ ∗y → (1+dy)θ ∗y . (7)

For the two-arm reconstruction, Eq. (4), the biases dx and dy have uncertainties of 0.21% and 0.25%,
respectively, and a correlation factor of −0.70. These estimates include the effects of magnet field
harmonics. For evaluating the impact on the t-distribution, it is convenient to decompose the correlated
biases dx and dy into eigenvectors of the covariance matrix:(

dx

dy

)
= η1

(
−0.182%
+0.235%

)
︸ ︷︷ ︸

mode 1

+ η2

(
−0.096%
−0.074%

)
︸ ︷︷ ︸

mode 2

(8)

normalised such that the factors η1,2 have unit variance.

5.1.4 Resolution

Statistical fluctuations in the reconstructed scattering angles are caused by the beam divergence and,
in the horizontal projection (due to the small Lx), also by the sensor resolution. They are studied by
comparing the scattering angles reconstructed from the two arms, in particular through differences θ ∗Rx,y −
θ ∗Lx,y as illustrated in Figure 1. The distributions exhibit small deviations from a Gaussian shape which
decrease with time.

Since in good approximation the fluctuations are independent in each arm, the angular resolution for the
two-arm reconstruction, Eq. (4), is given by half of the standard deviation of the θ ∗Rx,y −θ ∗Lx,y distributions.
As shown in Figure 2, the resolution deteriorates slightly with time, which can be expected mainly due
to the emittance growth. The small difference in θ ∗x resolution between the diagonals can be attributed
to different RPs, each with slightly different spatial resolution, being involved in the two diagonals.

Measurements of beam emittances [17] show that the vertical beam divergences of the two beams are
equal within a tolerance of about 15%. Exploiting this equality, one can deconvolute the distribution
of θ ∗Ry − θ ∗Ly in order to obtain the beam-divergence distribution, used e.g. for acceptance corrections
discussed in Section 5.2.3 (only required in the vertical plane).

5.2 Differential cross-section

For a given t bin, the differential cross-section is evaluated by selecting and counting elastic events:

dσ
dt

(bin) = N U (bin)B
1
∆t ∑

t∈bin
A (θ ∗,θ ∗y )E (θ ∗y ) , (9)

where ∆t is the width of the bin, N is a normalisation factor, and the other symbols stand for various cor-
rection factors: U for unfolding of resolution effects, B for background subtraction, A for acceptance
correction and E for detection and reconstruction efficiency.

5.2.1 Event tagging

The cuts used to select elastic events are summarised in Table 2. Cuts 1 and 2 require the reconstructed-
track collinearity between the left and right arm. Cuts 3 and 4 control the elasticity – if a proton loses
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Fig. 1: Difference between vertical scattering angles reconstructed in the right and left arm, for the diagonal 45
bottom - 56 top. Upper graph (red): data from run start (0.5 to 1.5h from the beginning of the run). Lower graph
(blue): data from run end (10.5 to 11.5h), scaled by 0.1. The solid lines represent Gaussian fits.
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Fig. 2: Angular resolution for the two-arm reconstruction, Eq. (4), as a function of time (from the beginning of the
run). The step in θ ∗y resolution around 7h is due to inclusion of another colliding bunch-pair with a larger vertical
emittance.
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Table 2: The elastic selection cuts. The superscripts R and L refer to the right and left arm, N and F correspond
to the near and far units, respectively. The constant α = LF

y /LN
y −1≈ 0.11. The right-most column gives a typical

RMS of the cut distribution.

discriminator cut quantity RMS (≡ 1σ )
1 θ ∗Rx −θ ∗Lx 9.5 µrad
2 θ ∗Ry −θ ∗Ly 3.3 µrad
3 α yR,N− (yR,F− yR,N) 18 µm
4 α yL,N− (yL,F− yL,N) 18 µm
5 x∗R− x∗L 8.5 µm

momentum, the vertical position-angle correlation at the RPs is lost. Cut 5 ensures that the two protons
come from the same vertex (horizontally). The correlation plots corresponding to these cuts are shown
in Figure 3.

Monte-Carlo simulation suggests that applying all the five cuts at 3σ level would lead to a loss of about
2% of elastic events. Setting the thresholds to 4σ yields a tolerable loss of about 0.07% and therefore
the cuts are applied at the 4σ level.

The tagging efficiency is studied experimentally by applying the cuts also at the 5σ level. This selection
yields about 0.5% more events in every t bin – thus the inefficiency is irrelevant for this analysis since
the overall normalisation is determined from another dataset, see Section 5.2.6.

5.2.2 Background

Expectable background (i.e. non-elastic events passing the tagging cuts) may come from central diffrac-
tion as well as pile-up of single diffraction and/or beam-halo protons. The background rate is studied
by plotting the discriminators from Table 2 under various cut combinations, see an example in Fig-
ure 4. While the central part (signal) remains essentially constant, the tails (background) are strongly
suppressed with increasing number of cuts applied. This interpretation is further supported by the dis-
criminator distributions from non-diagonal RP configurations, see the dotted curves in the figure. While
these top – top or bottom – bottom configurations cannot contain any elastic signal, they are likely to have
a similar share of events causing background to the presented analysis. And indeed, the figure shows a
good agreement at the distribution tails. Integrating the non-diagonal curve over the signal region (see
the dashed lines in the figure) yields a background estimate of 1−B < 10−4.

5.2.3 Acceptance correction

Two proton detection limitations have been identified: detector coverage (mostly at the edge facing the
beam, i.e. relevant for small |θ ∗y |) and LHC apertures (|θ ∗y | ≈ 100 µrad). The correction accounting
for these limitations includes two contributions – a geometrical correction Ageom reflecting the fraction
of the phase space within the acceptance and a component Afluct correcting for fluctuations around the
acceptance limits (cuts in θ ∗y ):

A (θ ∗,θ ∗y ) = Ageom(θ ∗) Afluct(θ ∗y ) . (10)

The calculation of the geometrical correction Ageom is based on the azimuthal symmetry of elastic scat-
tering, experimentally verified for the data within acceptance. As shown in Figure 5, for a given value of
θ ∗ the correction is given by:

Ageom(θ ∗) =
full arc length

arc length within acceptance
. (11)
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Fig. 3: Correlation plots for the event selection cuts summarised in Table 2, using all events with diagonal topology
45 top – 56 bottom. The black solid lines delimit the signal (±4σ ) region.
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article.)
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Fig. 6: Full acceptance correction, A , for diagonal 45 bottom – 56 top. The points give the mean value per bin,
the error bars indicate the standard deviation. The sharp shape change at |t| ≈ 0.16GeV2 is caused by the LHC
aperture cuts. The data left of the dashed vertical line are discarded due to excessively large acceptance correction.

The correction Afluct is calculated analytically from the probability that any of the two elastic protons
leaves the region of acceptance due to the beam divergence. The beam divergence distribution is mod-
elled as a Gaussian with the spread determined by the method described in Section 5.1.4. This correction
contribution is sizeable only close to the acceptance limits but is kept below 1.5 by discarding data with
larger corrections. The uncertainties are related to the resolution parameters (vertical beam divergence,
left-right asymmetry and non-Gaussian shape), and all stay below 0.1%.

Figure 6 shows an example for the t-dependence of the acceptance correction for one diagonal. Since a
single diagonal cannot cover more than half of the phase space, the minimum value of the correction is
2. As indicated in the figure, data points with too large correction (A & 5) are discarded.

5.2.4 Inefficiency corrections

Since the overall normalisation is determined from another dataset (see Section 5.2.6), any inefficiency
correction that does not alter the t-distribution shape does not need to be considered in this analysis
(trigger, data acquisition and pile-up inefficiency discussed in [11, 12]). The inefficiencies left are related
to the inability of a RP to resolve the elastic proton track.

One such case is when a single RP cannot detect and/or reconstruct a proton track, with no correlation
to other RPs. This type of inefficiency, I3/4, is evaluated by removing the RP from the tagging cuts
(Table 2), repeating the event selection and calculating the fraction of recovered events. A typical exam-
ple is given in Figure 7, showing that the efficiency decreases gently with the vertical scattering angle.
This dependence stems from the fact that protons with larger |θ ∗y | hit the RPs further from their edge and
therefore the potentially created secondary particles have more chance to induce additional signal in the
sensors and thus prevent from resolving the elastic proton track.

Another source of inefficiency are proton interactions in a near RP affecting simultaneously the far
RP downstream. The contribution from these near-far correlated inefficiencies, I2/4, is determined
by evaluating the rate of events with high track multiplicity (& 5) in both near and far RPs. Events with
high track multiplicity simultaneously in a near top and near bottom RP are not counted as such a shower
is likely to have started upstream from the RP station and thus unrelated to the elastic proton interacting
with detectors. The outcome, I2/4 ≈ 1.5%, is compatible between left/right arms and top/bottom RP
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pairs, in addition it compares well to Monte-Carlo simulations (e.g. section 7.5 in [18]).

The full correction is calculated as

E (θ ∗y ) =
1

1−
(

∑
i∈RPs

I i
3/4(θ ∗y )+2I2/4

) . (12)

The first term in the parentheses sums the contributions from the four RPs of a diagonal and grows from
about 7 to 10% from the lowest to the highest |θ ∗y |. The second term amounts to about 3%.

5.2.5 Unfolding of resolution effects

The correction for resolution effects has been determined by the following iterative procedure. The
differential cross-section data are fitted by a smooth curve which serves as an input to a Monte-Carlo
simulation using the resolution parameters determined in Section 5.1.4. Making a ratio between simu-
lated histograms with and without smearing effects gives a set of per-bin correction factors. Applying
them to the yet uncorrected differential cross-section yields a better estimate of the true t-distribution
which can be used as input to the next iteration. The iterations stop when the difference between the in-
put and output t-distributions becomes negligible, which is typically achieved after the second iteration.
Thanks to the good angular resolution (see Section 5.1.4), the final correction is not large, as shown in
Figure 8.

For the uncertainty estimate, the uncertainties of θ ∗x and θ ∗y resolutions (accommodating the full time
variation) as well as fit-model dependence have been considered, the first contribution being dominant.

5.2.6 Normalisation

The normalisation N is determined by requiring the same cross-section integral between |t|= 0.027 and
0.083GeV2 as for dataset 1 from [12], where the luminosity-independent calibration was applied. The
leading uncertainty of the scaling factor 4.2% comes from the luminosity-independent method.
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5.2.7 Binning

Two binnings have been considered. The “optimised” option sets the bin size to 1σ of the resolution in
t. The “per-mille” binning is built such that each bin collects about one per-mille of the events.

5.2.8 Beam energy uncertainty

Besides the systematic uncertainties mentioned at the above analysis steps, the uncertainty of the beam
momentum needs to be considered when the scattering angles are translated into t, see Eq. (5). The beam
momentum at

√
s = 8TeV is derived from the current-to-field calibration functions of the LHC dipole

magnets (see Section 4 in [19], Section 3.1 in [20]), yielding a relative momentum uncertainty of 0.07%.
Taking into account a further contribution of 0.02% from quadrupole misalignments, the total relative
beam momentum uncertainty amounts to 0.1%, which is the value used in the present analysis.

The precision of this method has been confirmed by direct beam energy measurements at 450GeV [21,
22]. Another confirmation is given in [20] (Eq. (29)), where an alternative beam-momentum measure-
ment based on common proton-ion injections is extrapolated from the injection beam energy of 450GeV
to the data-taking energy of 4TeV using the LHC magnetic model. The outcome is consistent with the
nominal beam momentum within an uncertainty of 0.1%. When the proton-ion method is directly ap-
plied at 4TeV, see Eq. (28) in [20], the measurement result is consistent with the above evaluations, but
the uncertainty of this method, 0.65%, is larger.

Finally, energy variations with time during a fill do not exceed ±0.03% (Section 10 in [20]) and are
hence negligible.

5.2.9 Propagation of systematic uncertainties

The systematic effects are propagated to the t-distribution with help of a Monte-Carlo simulation. A
fit of the final differential cross-section data is used to generate the true t-distribution. Simultaneously,
another t-distribution is built, having introduced one of the above mentioned systematic effects at 1σ
level. The difference between the t-distributions gives the systematic effect on the differential cross-
section. Formally, this procedure is equivalent to evaluating

δ sq(t)≡
∂ (dσ/dt)

∂q
δq , (13)



12 TOTEM Collaboration (G. Antchev et al.)

−1

−0.5

0

0.5

1

re
la

tiv
e

cr
os

s-
se

ct
io

n
va

ri
at

io
n

[%
]

0 0.05 0.1 0.15 0.2
|t | [GeV2]

−0.2

−0.1

0

0.1

0.2

re
la

tiv
e

cr
os

s-
se

ct
io

n
va

ri
at

io
n

[%
]

0 0.05 0.1 0.15 0.2
|t | [GeV2]

alignment:
horizontal
vertical

alignment + optics:
tilt in x-y plane

optics:
mode 1
mode 2

acceptance correction:
beam divergence RMS uncertainty

beam divergence left-right asymmetry
beam divergence non-gaussianity

uncorrelated 1-RP efficiencies:
slope uncertainty

beam momentum:

offset from nominal
unfolding:

θ ∗x resolution uncertainty
envelope of uncertainties:

±1 σ

Fig. 9: Impact of t-dependent systematic effects on the differential cross-section. Each curve corresponds to a
systematic error at 1σ , cf. Eq. (13). The two contributions due to optics correspond to the two vectors in Eq. (8).
The envelope is determined by summing all shown contributions in quadrature for each |t| value. The right plot
provides a vertical zoom; note that the envelope is out of scale.

where δq corresponds to 1σ bias in the quantity q responsible for a given systematic effect.

The Monte-Carlo simulations show that the combined effect of several systematic errors is well approx-
imated by linear combination of the individual contributions from Eq. (13).

5.3 Systematic cross-checks

Compatible results have been obtained from data originating from different bunches, different diagonals
and different time periods.

In addition, the complete analysis chain has been applied in two independent analysis implementations,
yielding compatible results.

5.4 Final data merging

Finally, the differential cross-section histograms from both diagonals are merged. This is accomplished
by a per-bin weighted average, with the weight given by inverse squared statistical uncertainty. The sta-
tistical and systematic uncertainties are propagated accordingly. For the systematic ones, the correlation
between the diagonals is taken into account. For example, the vertical (mis-)alignment of the RPs within
one unit is almost fully correlated, thus the effect on the differential cross-section is opposite in the two
diagonals, and consequently its impact is strongly reduced once the diagonals are merged.

The final systematic uncertainties, except the 4.2% coming from the normalisation, are summarised in
Figure 9 where their impact on the differential cross-section is shown. The leading uncertainties include
normalisation, optics imperfections and beam momentum offset. Their effects are quantified in Table 3,
which can be used to approximate the covariance matrix of systematic uncertainties:

Vi j = ∑
q

δ sq(i) δ sq( j) , (14)
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Table 3: The elastic differential cross-section as determined in this analysis using the “optimised” binning. The
three left-most columns describe the bins in t. The representative point gives the t value suitable for fitting [23]. The
other columns are related to the differential cross-section. The four right-most columns give the leading systematic
biases in dσ/dt for 1σ -shifts in the respective quantities, δ sq, see Eqs. (13) and (14). The two contributions due
to optics correspond to the two vectors in Eq. (8).

|t| bin [GeV2] dσ/dt [mb/GeV2]
left right represent. value statistical systematic normalisation optics optics beam

edge edge point uncertainty uncertainty N mode 1 mode 2 momentum
0.02697 0.03005 0.02850 305.09 0.527 12.85 +12.83 −0.479 −0.263 +0.257
0.03005 0.03325 0.03164 287.95 0.478 12.08 +12.06 −0.502 −0.217 +0.206
0.03325 0.03658 0.03491 269.24 0.436 11.32 +11.31 −0.491 −0.174 +0.159
0.03658 0.04005 0.03831 251.31 0.401 10.59 +10.57 −0.478 −0.135 +0.115
0.04005 0.04365 0.04184 235.15 0.371 9.874 + 9.861 −0.465 −0.0981 +0.0750
0.04365 0.04740 0.04551 218.32 0.343 9.185 + 9.172 −0.451 −0.0647 +0.0383
0.04740 0.05129 0.04933 202.64 0.318 8.521 + 8.509 −0.437 −0.0343 +0.0052
0.05129 0.05534 0.05330 187.10 0.295 7.882 + 7.870 −0.421 −0.0070 −0.0244
0.05534 0.05956 0.05743 173.06 0.274 7.270 + 7.257 −0.405 +0.0172 −0.0504
0.05956 0.06394 0.06173 158.77 0.255 6.685 + 6.672 −0.388 +0.0385 −0.0731
0.06394 0.06850 0.06620 144.93 0.236 6.127 + 6.114 −0.370 +0.0569 −0.0925
0.06850 0.07324 0.07085 133.12 0.219 5.597 + 5.584 −0.352 +0.0724 −0.109
0.07324 0.07817 0.07568 121.24 0.203 5.096 + 5.082 −0.334 +0.0853 −0.122
0.07817 0.08329 0.08071 109.77 0.188 4.623 + 4.609 −0.316 +0.0957 −0.132
0.08329 0.08862 0.08593 99.077 0.174 4.179 + 4.164 −0.297 +0.104 −0.140
0.08862 0.09417 0.09137 89.126 0.161 3.762 + 3.747 −0.279 +0.109 −0.145
0.09417 0.09994 0.09702 79.951 0.148 3.374 + 3.359 −0.260 +0.113 −0.147
0.09994 0.10593 0.10290 71.614 0.137 3.014 + 2.998 −0.242 +0.115 −0.148
0.10593 0.11217 0.10902 63.340 0.125 2.680 + 2.664 −0.224 +0.115 −0.147
0.11217 0.11866 0.11538 56.218 0.115 2.373 + 2.357 −0.206 +0.114 −0.144
0.11866 0.12540 0.12199 49.404 0.105 2.092 + 2.075 −0.189 +0.111 −0.139
0.12540 0.13242 0.12887 43.300 0.0961 1.835 + 1.818 −0.173 +0.107 −0.134
0.13242 0.13972 0.13602 37.790 0.0876 1.601 + 1.585 −0.157 +0.102 −0.127
0.13972 0.14730 0.14346 32.650 0.0795 1.391 + 1.374 −0.142 +0.0974 −0.120
0.14730 0.15520 0.15120 28.113 0.0720 1.201 + 1.185 −0.127 +0.0924 −0.112
0.15520 0.16340 0.15925 24.155 0.0659 1.030 + 1.016 −0.0955 +0.0866 −0.104
0.16340 0.17194 0.16761 20.645 0.0616 0.877 + 0.866 −0.0590 +0.0804 −0.0951
0.17194 0.18082 0.17632 17.486 0.0574 0.743 + 0.733 −0.0302 +0.0739 −0.0865
0.18082 0.19005 0.18537 14.679 0.0543 0.626 + 0.617 −0.0081 +0.0673 −0.0780
0.19005 0.19965 0.19478 12.291 0.0504 0.524 + 0.515 +0.0052 +0.0606 −0.0697

where i and j are bin indices (row numbers in Table 3) and the sum goes over the leading error contribu-
tions q (four right-most columns in the table).

5.5 Statistical uncertainty adjustment

The statistical fluctuations in the differential cross-section using the “optimised” binning have been
slightly overestimated, whereas the “per-mille” binning does not suffer from this problem. One way
to demonstrate this is to split the data into groups of consecutive points small enough for a linear func-
tion to approximate well the differential cross-section within each group. Then, performing straight-line
fits through each group yields on average χ2 values slightly too low. Alternatively, the issue can be
demonstrated as follows. The data sample is divided into several sub-samples corresponding to the same
luminosity, and the analysis method described in the earlier sections is repeated for each of these sub-
samples. Then, fluctuations of each bin content are determined from the several sub-samples, giving
values slightly lower than the uncertainty estimates.

As a remedy, the statistical uncertainties in the “optimised” binning have been divided by a factor of
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Fig. 10: Differential cross-section using “optimised” binning, as given in Table 3.

1.176. This value has been determined by requiring both binnings to give the same value of χ2/ndf for
fits of dσ/dt to the fit function in Eq. (15) with Nb = 3 which has enough flexibility to describe the data.

6 Results

The final differential cross-section in the “optimised” binning is presented in Table 3 and
Figure 10. In order to visualise small deviations from the leading pure-exponential behaviour, Fig-
ure 11 shows the relative difference of the cross-section from a reference exponential (pure exponential
fit using statistical uncertainties only). This plot immediately suggests a non-exponentiality of the data:
pure exponentials would look like (almost) linear functions in this kind of representation.

To study the detailed behaviour of the differential cross-section, a series of fits has been made using the
parametrisation:

dσ
dt

(t) =
dσ
dt

∣∣∣∣
t=0

exp

(
Nb

∑
i=1

bi t i

)
, (15)

which includes the pure exponential (Nb = 1) and its straight-forward extensions (Nb = 2,3).

The fits have been performed by the standard least-squares method, in particular minimising:

χ2 = ∆TV−1∆ , ∆i =
dσ
dt

∣∣∣∣
bin i
− 1

∆ti

∫
bin i

f (t)dt , V = Vstat +Vsyst , (16)

where ∆ is a vector of differences between the differential cross-section data and a fit function f , with ∆ti
representing the width of the i-th bin. The covariance matrix V is given by the sum of the statistical com-
ponent Vstat (statistical uncertainty squared from Table 3 on the diagonal) and the systematic component
Vsyst (see Eq. (14)).

The quality of fits is judged on the basis of several measures. The first is the value of χ2 after minimisa-
tion divided by the number of degrees of freedom (ndf). Secondly, the p-value stands for the probability
that a χ2 value greater than the observed one would be drawn from the χ2 distribution with the given
number of degrees of freedom. Finally, significance means the half-width of a central region that needs
to be excluded from a normal distribution to get the same integrated probability as the p-value. The
significance is expressed in multiples of sigma, the standard deviation of the normal distribution.
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Table 4: Details of the fits in Figure 11 using parametrisation Eq. (15). The matrices give the correlation factors
between the fit parameters.

Nb dσ/dt|t=0 b1 b2 b3 χ2/ndf p-value significance
[mb/GeV2] [GeV−2] [GeV−4] [GeV−6]

1 531±22 −19.35±0.06 - - 117.5/28 = 4.20 6.2 ·10−13 7.20σ(
+1.00
−0.11

−0.11
+1.00

)
2 537±22 −19.89±0.08 2.61±0.30 - 29.3/27 = 1.09 0.35 0.94σ+1.00

+0.19
−0.34

+0.19
+1.00
−0.76

−0.34
−0.76
+1.00


3 541±22 −20.14±0.15 5.95±1.75 −12.0±6.2 25.5/26 = 0.98 0.49 0.69σ

+1.00
+0.08
−0.04
−0.02

+0.08
+1.00
−0.90
+0.85

−0.04
−0.90
+1.00
−0.99

−0.02
+0.85
−0.99
+1.00



Figure 11 shows several fits of the differential cross-section with the parametrisation in Eq. (15) and
different numbers of parameters in the exponent, Nb. The corresponding fit quality is given in Table 4,
indicating that the purely exponential fit (Nb = 1) is excluded at 7.2σ significance. The other two fits
(Nb = 2,3) are of reasonable quality and can, therefore, be used for a total cross-section estimation with
the optical theorem in the form

σ2
tot =

16π (h̄c)2

1+ρ2
dσel

dt

∣∣∣∣
t=0

, (17)

which neglects the effects due to the Coulomb interaction. Using the COMPETE [24] preferred-model
extrapolation of ρ = 0.140±0.007 yields

Nb = 2 : σtot = (101.5±2.1)mb ,

Nb = 3 : σtot = (101.9±2.1)mb ,
(18)

which are well compatible with the previous measurement using the luminosity-independent
method [12].

The incompatibility between a pure-exponential behaviour and the data with the “per-mille” binning can
be shown equally well. However, since the number of points is drastically increased, the straight-forward
χ2 test does not have sufficient sensitivity, and a different test is used. Assuming that the data can be
described by a pure exponential, the fit parameters should have compatible values for fits over different
ranges. Figure 12 shows a fit (minimisation of χ2 from Eq. (16)) with the parametrisation

dσ
dt

(t) =

{
a1 eb1|t| |t|< 0.07GeV2

a2 eb2|t| |t|> 0.07GeV2 (19)

giving a reasonable fit quality (p-value of 0.57). The compatibility of the parameters in the two |t| regions
can be verified by evaluating

χ2
p = ∆T

pV
−1
p ∆p , ∆p =

(
a1−a2
b1−b2

)
, (20)

where Vp is the covariance matrix for the difference vector ∆p. It yields χ2
p = 65.2 which with 2 degrees

of freedom corresponds to a p-value of 7 ·10−15 and a significance of 7.8σ . This, in turn, rules out the
hypothesis of a purely exponential behaviour of the data over the entire observed range.

Since parameters estimated with the least squares method are unbiased, the test in Eq. (20) is asymp-
totically binning independent. Indeed, applying it to the data in the “optimised” binning (prior to the
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Fig. 11: Differential cross-section using the “optimised” binning and plotted as relative difference from a reference
exponential (see vertical axis). The black dots represent data points with statistical uncertainty bars. The coloured
continuous curves correspond to fits with parametrisation Eq. (15) and different numbers of parameters in the
exponent. The straight (red) line lies seemingly too high with respect to the data points, which is a consequence of
the systematic degrees of freedom included in the fit: some of the effects in Figure 9 may flatten the distribution
which at the same time changes the overall normalisation. The widest error band (yellow) corresponds to the full
systematic uncertainty, the hatched (brown) one includes all systematic contributions except the normalisation.
Both bands are centred around the fit curve with Nb = 3. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

statistical uncertainty rescaling, Section 5.5) yields χ2
p = 65.9 which corresponds to a significance of

7.8σ . After the uncertainty rescaling, the exclusion significance increases to 8.9σ .

Finally, it should be emphasised that the above exclusion of purely exponential behaviour is entirely
robust against certain systematic errors, most notably normalisation and beam momentum offset. The
former can only affect the intercept dσ/dt|t=0, the latter can also scale the parameters bi. However, none
of them can bring the parameters b2 and b3 to zero or vice versa.

7 Conclusions and outlook

Thanks to a very-high statistics data set TOTEM has excluded a purely exponential differential cross-
section for elastic proton-proton scattering with significance greater than 7σ in the |t| range from 0.027
to 0.2 GeV2 at

√
s = 8TeV. The data are described satisfactorily with an exponent quadratic or cubic in

t. Using this refined parametrisation for the extrapolation to the optical point, t = 0, yields total cross-
section values compatible with the previous measurement, in all cases neglecting the effects due to the
Coulomb interaction.

In an upcoming analysis, this proof of non-exponentiality in a t-domain strongly dominated by hadronic
interactions will be combined with a measurement of elastic scattering in the Coulomb-nuclear interfer-
ence region, thus allowing to study the role of the Coulomb interaction in the non-exponential behaviour.
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