technische universität dortmund

Bundesministerium für Bildung und Forschung

CP Violation in the $B_{(s)}$ meson system at LHCb

Julian Wishahi on behalf of the LHCb collaboration

50th Rencontres de Moriond, Electroweak Session, 20th of March 2015

excellent probe for NP contributions -1.5 -1.5 -0.5 0.0 0.5 0.0 0.5 0.0

CPV in Interference of Mixing/Decay

interference between direct decay and decay after oscillation phase difference $\phi_q = \phi_{mix} - 2 \phi_{dec}$

phases related to CKM angles

• "golden modes" (dominant $b \rightarrow c\overline{c}s$ tree decay)

$$-B_s \rightarrow J/\psi h^+ h^- (\phi_s = -2\beta_s)$$

 $-B^0 \rightarrow J/\psi \, K_{\rm S} \, (\phi_d = 2\beta)$

precise constraints from other measurements

$$-\sin\phi_d = 0.771^{+0.017}_{-0.041}$$

 $-\sin \phi_{\rm s} = -0.0365^{+0.0013}_{-0.0012}$

J. Charles et al. arXiv:1501.05013

CPV in Interference of Mixing/Decay

CPV leads to a decay-time dependent asymmetry

$$A_{CP}(t) = \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)} = \frac{S\sin(\Delta mt) - C\cos(\Delta mt)}{\cosh\left(\frac{\Delta\Gamma t}{2}\right) + A_{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma t}{2}\right)}$$

- observables
 - *CP* observables $S, C, A_{\Delta\Gamma}$
 - mixing parameters $\Delta m = m_H m_L$ and $\Delta \Gamma = \Gamma_H \Gamma_L$

Julian Wishahi (TU Dortmund) | CPV in the B(s) system at LHCb | Moriond EW | 20th March2015

Asymmetry measurement

ϕ_{s} from $B_{s} \rightarrow J/\psi K^{+}K^{-}$

- ▶ ≈96000 signal candidates in 3 fb⁻¹
- analysis
 - decay-time dependent (resolution ≈46 fs)
 - flavour tagged (tagging power ≈3.7%)
 - angular analysis in 6 bins of m_{KK}
 - describe three P-wave and an S-wave state
 - disentangle CP-even and -odd P-wave contributions

Julian Wishahi (TU Dortmund) | CPV in the B(s) system at LHCb | Moriond EW | 20th March2015

Rev. Lett

14,041801 (2015)

 $A_{\rm S}$

 $\phi_{
m mix}$

 10^{2}

 $J/\psi\phi$ + S-wave

LHCb

Phys. Rev. Lett

Phys. Lett. B736 (2014)

ϕ_s from LHCb ($B_s \rightarrow J/\psi K^+K^-/\pi^+\pi^-$)

Penguin Control for ϕ_s

- measure an effective phase $\phi_s = -2\beta_s + \phi^{NP} + \Delta\phi_s$
 - separate higher-order SM contributions (penguins)
 - SU(3) flavour symmetry: constrain $\Delta \phi_s$ in $B^0 \rightarrow J/\psi \rho$

 $\blacktriangleright B^0 \rightarrow J/\psi \ \pi^+\pi^-$

- 17500 candidates in dataset of 3 fb^{-1} (20 MeV around the B^0 mass)
- angular + mass analysis to identify resonant $\pi^+\pi^$ contributions

 $S = -0.66 \pm_{0.12}^{0.13} (\text{stat}) \pm_{0.03}^{0.09} (\text{syst})$ $C = -0.063 \pm 0.056 \,(\text{stat}) \pm_{0.014}^{0.019} \,(\text{syst})$

expected phase shift of

Combinations/ $\Delta \phi_s = (0.05 \pm 0.56)^{\circ} = [-1.05^{\circ}, +1.18^{\circ}]$ at 95% CL

• small compared to current exp. uncertainties $\phi_s^{\exp} = -0.015 \pm 0.035 = (-0.86 \pm 2.01)^{\circ}$

Julian Wishahi (TU Dortmund) | CPV in the B(s) system at LHCb | Moriond EW | 20th March2015

ombinations/ (5 MeV

7000

6000

5000

4000

2000

1000

(18.6 MeV

1200

800

200

 $m(\pi^+\pi^-)$ [GeV]

$\sin 2\beta$ from $B^0 \rightarrow J/\psi K_S$

► time-dependent asymmetry ($\Delta\Gamma \approx 0$)

$$A_{J/\psi K^0_{\rm S}}(t) = \frac{\Gamma(\overline{B}{}^0(t) \to J/\psi K^0_{\rm S}) - \Gamma(B^0(t) \to J/\psi K^0_{\rm S})}{\Gamma(\overline{B}{}^0(t) \to J/\psi K^0_{\rm S}) + \Gamma(B^0(t) \to J/\psi K^0_{\rm S})}$$
$$= S_{J/\psi K^0_{\rm S}} \sin(\Delta m_d t) - C_{J/\psi K^0_{\rm S}} \cos(\Delta m_d t)$$

- "golden channel"
 - CPV in the decay negligible
 - $C_{J/\psi K^0_{\mathrm{S}}} \approx 0 \Rightarrow S_{J/\psi K^0_{\mathrm{S}}} = \sin 2\beta$
- precisely measured at B factories
 - benchmark for TD CPV
 - interesting prospects for LHCb

Julian Wishahi (TU Dortmund) | CPV in the B(s) system at LHCb | Moriond EW | 20th March2015

sin2 β from $B^0 \rightarrow J/\psi K_S$

- Run I dataset of 3 fb⁻¹
- ► $\approx 114000 B^0 \rightarrow J/\psi K_S$ decays
- decay time resolution
- Run I dataset of 3 fb⁻¹ $\approx 114000 B^0 \rightarrow J/\psi K_S$ decays decay time resolution negligible dilution (slow B^0 oscillation)
- improved flavour tagging
 - tagging power (3.02 ± 0.05)%
 - 41560 tagged decays
- analysis
 - account for production and tagging asymmetries
 - correct for K⁰ effects

$\sin 2\beta$ from $B^0 \rightarrow J/\psi K_S$ – Results

preliminary results

 $S = 0.731 \pm 0.035 \text{ (stat)} \pm 0.020 \text{ (syst)}$ $C = -0.038 \pm 0.032 \text{ (stat)} \pm 0.005 \text{ (syst)}$

β from $B^0 \rightarrow J/\psi K_S$

β from $B^0 \rightarrow J/\psi K_S$

Penguin control for $B^0 \rightarrow J/\psi K_S$

- measurement of β in $B^0 \rightarrow J/\psi K_S$
 - precision on β
 - current world avg. ≈0.8°
 - LHCb upgrade ≈0.2° (see LHCb-PUB-2012-006)
 - "penguin contributions negligible"?

 $\sin 2\beta_{B^0 \to J/\psi K^0_{\rm S}} = \frac{S}{\sqrt{1 - C^2}} = \sin(2\beta + \Delta\phi_d + \phi_d^{\rm NP})$

- controlling SM penguins mandatory
 - U-spin symmetry: $B^0 \rightarrow J/\psi K_S \leftrightarrow B_s \rightarrow J/\psi K_S$
 - same decay topologies

CPV in $B_s \rightarrow J/\psi K_s$

- analysis of 3 fb⁻¹ dataset
 - 100x fewer B_s than B⁰ decays
 - multivariate selection trained on B^0 proxy
 - \approx 900 selected B_s decays (\approx 80k B^0)
- tagging
 - different treatment of B⁰ and B_s comp.
 - tagging power in B_s 3.8% (2.6% in B^0)
- likelihood fit for B_s , B^0 , comb. bkg.

Pull

$CPV \text{ in } B_s \to J/\psi \, K_S$

preliminary results

$$\begin{array}{l} \text{ment}\\ A_{\Delta\Gamma} & \left(B_s^0 \to J/\psi \, K_s^0\right) = & 0.49 \pm \frac{0.77}{0.65} \,\,(\text{stat.}) \pm 0.06 \,\,(\text{syst.}) \\ C & \left(B_s^0 \to J/\psi \, K_s^0\right) = -0.28 \pm 0.41 \,\,(\text{stat.}) \pm 0.08 \,\,(\text{syst.}) \\ S & \left(B_s^0 \to J/\psi \, K_s^0\right) = +0.08 \pm 0.40 \,\,(\text{stat.}) \pm 0.08 \,\,(\text{syst.}) \end{array}$$

theory prediction (see <u>arXiv:1412.6834</u>)

$$A_{\Delta\Gamma} \left(B_s^0 \to J/\psi \, K_s^0 \right) = 0.957 \pm 0.061$$
$$C \left(B_s^0 \to J/\psi \, K_s^0 \right) = 0.003 \pm 0.021$$
$$S \left(B_s^0 \to J/\psi \, K_s^0 \right) = -0.29 \pm 0.20$$

successful proof of concept

First measure

Julian Wishahi (TU Dortmund) | CPV in the B(s) system at LHCb | Moriond EW | 20th March2015

Summary

- time-dependent, tagged CP analyses with Run I
 - precise measurements of CPV observables
 - unique access to the B_s meson system
 - starting to reach the precision of the *B* factories
- good agreement with the Standard Model, so far...
 - still large room for improvement in experimental sensitivity
 - further precision with more data and improved measurements
 - control of penguin contributions will become mandatory
- a lot of interesting prospects for Run II & the upgrade!

Backup

LHCb Detector

Prospects for Run II & Upgrade

Туре	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [138]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [214]	0.045	0.014	~ 0.01
	$a^s_{ m sl}$	$6.4 \times 10^{-3} [43]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	—	0.17	0.03	0.02
penguins	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	—	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [43]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	—	0.09	0.02	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	_	5~%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08[67]	0.025	0.008	0.02
penguins	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25%[67]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.25 [76]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25%[85]	8~%	2.5%	$\sim 10 \%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} [13]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguins	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [244, 258]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	—	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0_{ m s})$	0.8° [43]	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [43]$	0.40×10^{-3}	0.07×10^{-3}	
CP violation	$\Delta \mathcal{A}_{CP}$	$2.1 \times 10^{-3} [18]$	0.65×10^{-3}	0.12×10^{-3}	_

ϕ_{s} from $B_{s} \rightarrow J/\psi K^{+}K^{-}$

analysis

- decay-time dependent (resolution ≈46 fs)
- flavour tagged (tagging power \approx 3.7%)
- angular analysis in 6 bins of m_{KK}
 - disentangle CP-even and -odd contributions
 - describe three P-wave and an S-wave state

 $\phi_s = -0.058 \pm 0.049 \,(\text{stat}) \pm 0.006 \,(\text{syst})$

Rev. Lett

14,041801 (2015)

 $A_{\rm S}$

 $\phi_{
m mix}$

Candidates / (0.2 ps)

 10^{2}

10

 10^{-1}

Candidates / (0.274 ps)

 $J/\psi\phi$ + S-wave

LHCb

10

20

5

Julian Wishahi (TU Dortmund) | CPV in the B(s) system at LHCb | Moriond EW | 20th March2015

ϕ_{s} from $B_{s} \rightarrow J/\psi K^{+}K^{-}$

select ≈96000 signal candidates in 3 fb⁻¹

ϕ_s from $B_s \rightarrow J/\psi K^+K^-$

polarisation-independent results

Parameter	Value
Γ_{s} (ps ⁻¹)	$0.6603 \pm 0.0027 \pm 0.0015$
$\Delta \Gamma_s$ (ps ⁻¹)	$0.0805 \pm 0.0091 \pm 0.0032$
$ A_{\perp} ^2$	$0.2504 \pm 0.0049 \pm 0.0036$
$ A_0 ^2$	$0.5241 \pm 0.0034 \pm 0.0067$
δ_{\parallel} (rad)	$3.26\substack{+0.10+0.06\\-0.17-0.07}$
δ_{\perp} (rad)	$3.08^{+0.14}_{-0.15}\pm0.06$
ϕ_s (rad)	$-0.058 \pm 0.049 \pm 0.006$
$ \lambda $	$0.964 \pm 0.019 \pm 0.007$
$\Delta m_s ~(\mathrm{ps}^{-1})$	$17.711_{-0.057}^{+0.055} + 0.011$

ϕ_s from $B_s \rightarrow J/\psi K^+K^-$

syst. uncertainties (polarisation-independent)

Source	$\Gamma_s \text{ (ps}^{-1})$	$\Delta \Gamma_s \text{ (ps}^{-1}\text{)}$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel} (rad)	δ_{\perp} (rad)	ϕ_s (rad)	$ \lambda $	$\Delta m_s ~(\mathrm{ps}^{-1})$
Total statistical uncertainty	0.0027	0.0091	0.0049	0.0034	+0.10 -0.17	+0.14	0.049	0.019	+0.055 -0.057
Mass factorization		0.0007	0.0031	0.0064	0.05	0.05	0.002	0.001	0.004
Signal weights (statistical)	0.0001	0.0001		0.0001		•••	•••	• • •	
<i>b</i> -hadron background	0.0001	0.0004	0.0004	0.0002	0.02	0.02	0.002	0.003	0.001
B_c^+ feed down	0.0005					•••	•••	•••	
Angular resolution bias			0.0006	0.0001	+0.02 -0.03	0.01	•••	• • •	
Angular efficiency (reweighting)	0.0001		0.0011	0.0020	0.01	•••	0.001	0.005	0.002
Angular efficiency (statistical)	0.0001	0.0002	0.0011	0.0004	0.02	0.01	0.004	0.002	0.001
Decay-time resolution						0.01	0.002	0.001	0.005
Trigger efficiency (statistical)	0.0011	0.0009				•••	•••	•••	
Track reconstruction (simulation)	0.0007	0.0029	0.0005	0.0006	+0.01 -0.02	0.002	0.001	0.001	0.006
Track reconstruction (statistical)	0.0005	0.0002			•••	•••	•••	• • •	0.001
Length and momentum scales	0.0002						•••	• • •	0.005
S-P coupling factors					0.01	0.01	•••	0.001	0.002
Fit bias		•••	0.0005			0.01		0.001	
Quadratic sum of systematics	0.0015	0.0032	0.0036	0.0067	$+0.06 \\ -0.07$	0.06	0.006	0.007	0.011

$\phi_s \operatorname{from} B_s \rightarrow J/\psi K^+K^-$

polarisation-dependent results

Parameter	Value
$ \lambda^0 $	$1.012 \pm 0.058 \pm 0.013$
$ \lambda^{\parallel}/\lambda^{0} $	$1.02 \pm 0.12 \pm 0.05$
$ \lambda^{\perp}/\lambda^{0} $	$0.97 \pm 0.16 \pm 0.01$
$ \lambda^{\rm S}/\lambda^{\rm O} $	$0.86 \pm 0.12 \pm 0.04$
ϕ_s^0 (rad)	$-0.045 \pm 0.053 \pm 0.007$
$\phi_s^{\parallel} - \phi_s^{0}$ (rad)	$-0.018 \pm 0.043 \pm 0.009$
$\phi_s^{\perp} - \phi_s^{0}$ (rad)	$-0.014 \pm 0.035 \pm 0.006$
$\phi_s^{\rm S} - \phi_s^{\rm 0} \ (\rm rad)$	$0.015 \pm 0.061 \pm 0.021$

ϕ_s from $B_s \rightarrow J/\psi K^+K^-$

. Rev. I

ett

114,041801 (2015)

syst. uncertainties (polarisation-dependent)

TABLE IV. Statistical and systematic uncertainties for the polarization-dependent result.

Source	$ \lambda^0 $	$ \lambda^{ }/\lambda^{0} $	$ \lambda^{\perp}/\lambda^{0} $	$ \lambda^{\rm S}/\lambda^{\rm 0} $	ϕ_s^0 (rad)	$\phi_s^{ } - \phi_s^0$ (rad)	$\phi_s^{\perp} - \phi_s^0$ (rad)	$\phi_s^{\rm S} - \phi_s^{\rm 0}$ (rad)
Total statistical uncertainty	0.058	0.12	0.16	0.12	0.053	0.043	0.035	0.061
Mass factorization	0.010	0.04	0.01	0.03	0.003	0.005	0.003	0.016
<i>b</i> -hadron background	0.002	0.01	•••	0.01	0.003	0.001	0.001	0.009
Angular efficiency (reweighting)	•••	• • •	•••	0.02	0.001	0.002	0.001	0.007
Angular efficiency (statistical)	0.004	0.02	0.01	0.01	0.004	0.007	0.005	0.004
Decay-time resolution	0.006	0.01	•••	0.01	0.003	0.002	0.001	0.002
S-P coupling factors	•••	•••	•••	•••	• • •			0.006
Quadratic sum of systematics	0.013	0.05	0.01	0.04	0.007	0.009	0.006	0.021

25

 $B^0 \rightarrow J/\psi \ \pi^+ \ \pi^-$

- 17500 candidates in dataset of 3 fb⁻¹ (20 MeV around the B⁰ mass)
- angular + Dalitz analysis to identify resonant contributions

Component	Fit fraction (%)
$\rho(770)$	65.6 ± 1.9
$f_0(500)$	20.1 ± 0.7
$f_2(1270)$	7.8 ± 0.6
$\omega(782)$	$0.64^{+0.19}_{-0.13}$
$\rho(1450)$	9.0 ± 1.8
$\rho(1700)$	3.1 ± 0.7

Julian Wishahi (TU Dortmund) | CPV in the B(s) system at LHCb | Moriond EW | 20th March2015

$$B^0 \rightarrow J/\psi \; \pi^+ \; \pi^-$$

CP observables

$$S = -0.66 \pm_{0.12}^{0.13} (\text{stat}) \pm_{0.03}^{0.09} (\text{syst})$$

$$C = -0.063 \pm 0.056 (\text{stat}) \pm_{0.014}^{0.019} (\text{syst})$$

CP phase

$$\phi_d^{\text{eff}}(B^0 \to J/\psi \rho^0) = (41.7 \pm 9.6 \,(\text{stat})^{+2.8}_{-6.3} \,(\text{syst}))^\circ$$

constraint on penguin shift

$$\Delta \phi_s = (0.05 \pm 0.56)^{\circ} = [-1.05^{\circ}, +1.18^{\circ}]$$
 at 95% CL

small compared with exp. uncertainy on world average $\phi_s^{
m exp} = -0.015 \pm 0.035 = (-0.86 \pm 2.01)^{\circ}$

tu *LHCb*

systematic uncertainties

 $B^0 \rightarrow J/\psi \ \pi^+ \ \pi^-$

Systematic uncertainties on *CP*-violating phases $2\beta_i^{\text{eff}}$ (°). Statistical uncertainties are also shown.

Fit	Fit 1			Fit 2		
Sources	ρ	other – ρ	ρ_0	$\overline{ ho_{\parallel}- ho_{0}}$	$ ho_{\perp} - ho_0$	other – ρ_0
Resonance model	+1.85 -5.94	+0.51 -0.33	+1.99 -6.56	$+1.35 \\ -0.05$	$+1.50 \\ -0.59$	$+0.68 \\ -0.52$
Resonance parameters	±1.21	±0.43	±1.35	± 0.68	± 0.57	± 0.60
Mass and angular acceptance	±0.27	± 0.05	± 0.28	±0.21	±0.16	± 0.05
Angular acc. correlation	±0.22	±0.03	±0.22	±0.21	± 0.08	± 0.03
Decay time acceptance	± 0.05	± 0.02	± 0.06	± 0.04	± 0.04	± 0.03
Bkg. mass and angular PDF	±0.43	± 0.09	± 0.47	± 0.22	± 0.26	±0.11
Bkg. decay time PDF	±0.14	± 0.05	±0.12	± 0.06	± 0.08	± 0.07
Bkg. model	± 0.49	±0.23	±0.15	± 0.97	±0.38	±0.13
Flavor Tagging	±1.46	±0.03	±1.66	± 0.44	± 0.86	± 0.01
Production asymmetry	±0.17	± 0.50	±0.28	± 0.09	± 0.49	± 0.42
Total systematic uncertainty	+2.8 -6.3	$^{+0.9}_{-0.8}$	+3.0 -6.9	+1.9 -1.3	+2.0 -1.4	$^{+1.0}_{-0.9}$
Statistical uncertainty	±9.6	±3.6	±10.2	± 6.5	±7.2	± 3.9

sin2 β from $B^0 \rightarrow J/\psi K_S$

systematic uncertainties

Origin	σ_S	σ_C
Background tagging asymmetry	0.0179~(2.5%)	0.0015~(4.5%)
Tagging calibration	0.0062~(0.9%)	0.0024~(7.2%)
$\Delta\Gamma$	0.0047~(0.6%)	
Fraction of wrong PV component	0.0021~(0.3%)	0.0011~(3.3%)
z-scale	0.0012~(0.2%)	0.0023~(7.0%)
Δm		0.0034~(10.3%)
Upper decay time acceptance		0.0012~(3.6%)
Correlation between mass and decay time		
Decay time resolution calibration		
Decay time resolution offset		
Low decay time acceptance		
Production asymmetry		
Sum	0.020~(2.7%)	0.005~(15.2%)

$CPV \text{ in } B_s \to J/\psi K_S$

LHCb FHCp

LHCb-PAPER-2015-005, in preparation

systematic uncertainties

Source	$\mathcal{A}_{\Delta\Gamma}$	$C_{ m dir}$	$S_{\rm mix}$	$\begin{array}{c} \text{Long} \\ R \times 10^5 \end{array}$	$\begin{array}{c} \text{Downstream} \\ R \times 10^5 \end{array}$
Mass modelling	0.045	0.009	0.009	15.5	17.2
Decay-time resolution	0.038	0.066	0.070	0.6	0.3
Decay-time acceptance	0.022	0.004	0.004	0.6	0.5
Tagging calibration	0.002	0.021	0.023	0.1	0.2
Mass resolution	0.010	0.005	0.006	12.6	8.0
Mass–time correlation	0.003	0.037	0.036	0.2	0.1
Total	0.064	0.079	0.083	20.0	19.0