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Abstract

An angular analysis of the decay B0
s → K∗0K∗0 is performed using pp collisions corre-

sponding to an integrated luminosity of 1.0 fb−1 collected by the LHCb experiment at
a centre-of-mass energy

√
s = 7 TeV. A combined angular and mass analysis separates

six helicity amplitudes and allows the measurement of the longitudinal polarisation
fraction fL = 0.201± 0.057 (stat.)± 0.040 (syst.) for the B0

s → K∗(892)0K∗(892)0

decay. A large scalar contribution from the K∗0(1430) and K∗0(800) resonances is
found, allowing the determination of additional CP asymmetries. Triple product and
direct CP asymmetries are determined to be compatible with the Standard Model
expectations. The branching fraction B(B0

s → K∗(892)0K∗(892)0) is measured to
be (10.8± 2.1 (stat.)± 1.4 (syst.)± 0.6 (fd/fs))× 10−6.
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1 Introduction

The B0
s → K∗0K∗0 decay is mediated by a b → sdd̄ flavour-changing neutral current

(FCNC) transition, which in the Standard Model (SM) proceeds through loop diagrams
at leading order. This decay has been discussed in the literature as a possible field for
precision tests of the SM predictions, when it is considered in association with its U-spin
symmetric channel B0 → K∗0K∗0 [1–3]. In the SM, the expected CP violation in the
former is very small, O(λ2), with approximate cancellation between the mixing and the
decay CKM phases [4]. When a scalar meson background is allowed, in addition to the
vector-vector meson states, six independent helicities contribute [4].

In this paper, a search for non-SM electroweak amplitudes is reported in the decay
B0
s → K+π−K−π+, with Kπ mass close to the K∗(892)0 mass, through the measurement

of all CP -violating observables accessible when the flavour of the bottom-strange meson
is not identified. These observables include triple products (TPs) and other CP -odd
quantities [5], many of which are, as yet, experimentally unconstrained. Triple products
are T -odd observables having the generic structure v1 · (v2 × v3) where vi is the spin or
momentum of a final-state particle. In vector-vector final states of B mesons they take
the form q · (ε1 × ε2) where q is the momentum of one of the final vector mesons and ε1
and ε2 are their respective polarisations. Triple products are also meaningful when one of
the final particles is a scalar meson.

Theoretical predictions based on perturbative QCD for the decay of B mesons into
scalar-vector final states K∗0(1430)K∗(892)0 have been recently investigated, yielding
branching fractions comparable to those of vector-vector final states [6], which have been
previously available [7]. The B0

s → K∗0K∗0 decay was first observed with 35 pb−1 of LHCb
data [8] reporting the measurement of the branching fraction and an angular analysis.
A remarkably low longitudinal polarisation fraction was observed, compatible with that
found for the similar decay B0

s → φφ [9], and at variance with that observed in the mirror
channel B0 → K∗0K∗0 [10] and with some predictions from QCD factorisation [7, 11].

An updated analysis of the B0
s → K+π−K−π+ final state is reported in this publication,

in the mass window of ±150 MeV/c2 around the K∗(892)0 (hereafter referred to as K∗0)
mass for K+π− and K−π+ pairs. A description of the CP observables is provided in Section
2, the LHCb apparatus is summarised in Section 3, and the data sample described in Section
4. Triple products and direct CP asymmetries are determined in Section 5. A measurement
of the various amplitudes contributing to B0

s → K+π−K−π+ is performed in Section 6,
under the assumption of CP conservation. These include the polarisation fractions for
the vector-vector mode B0

s → K∗0K∗0. In light of these results, the measurement of the
branching fraction B(B0

s → K∗0K∗0) is updated in Section 7. Conclusions are summarised
in Section 8. These studies are performed using 1.0 fb−1 of pp collision data from the LHC
at a centre-of-mass energy of

√
s = 7 TeV and recorded with the LHCb detector.
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2 Analysis strategy

Considering only the S–wave (J1,2 = 0) and P–wave (J1,2 = 1) production of the Kπ
pairs, with J1,2 the angular momentum of the respective Kπ combination, the decay
B0
s → (K+π−)J1(K

−π+)J2 can be described in terms of six helicity decay amplitudes. A
two-dimensional fit to the K+π− and K−π+ mass spectra, for masses up to the K∗J(1430)0

resonances, finds a small contribution (< 1%) of tensor amplitudes when projected onto
the Kπ mass interval used in this analysis, and thus these amplitudes are not considered.
Three of the above amplitudes describe the decay into two vector mesons, commonly
referred to as P–wave amplitudes, B0

s → V1V2 with V1 = K∗0 and V2 = K∗0, with the
subsequent two-body strong-interaction decay of each of the vector mesons into a Kπ pair.
Each amplitude corresponds to a different helicity (Lz = 0,+1,−1) of the vector mesons
in the final state with respect to their relative momentum direction, H0, H+ and H−. It is
useful to write the decay rate in terms of the amplitudes in the transversity basis,

A0 = H0, A‖ =
1√
2

(H+ +H−) and A⊥ =
1√
2

(H+ −H−) , (1)

since, unlike the helicity amplitudes, they correspond to states with definite CP eigenvalues
(η‖ = η0 = 1 and η⊥ = −1). The P–wave amplitudes are assumed to have a relativistic
Breit-Wigner dependence on the Kπ invariant mass.

In addition, contributions arising from decays into scalar resonances or non-resonant
Kπ pairs need to be taken into account within the mass window indicated above. The
amplitudes describing this S–wave configuration are AVS, ASV and ASS, corresponding to
the following decays1

AVS : B0
s→ K∗0(K−π+)0,

ASV : B0
s→ (K+π−)0K

∗0 and

ASS : B0
s→ (K+π−)0(K−π+)0,

(2)

where the subscript denotes the relative orbital angular momentum, J , of the pair. The
scalar combinations (Kπ)0 are described by a superposition of a broad low-mass structure
related to the K∗0 (800) resonance [12] and a component describing the K∗0 (1430) resonance.

Unlike the K∗0K∗0 final state, the S–wave configurations SV and VS defined in
Eq. (2) do not correspond to CP eigenstates. However, one may consider the following
superpositions

|s+〉 =
1√
2

(
|K∗0(K−π+)0〉+ |(K+π−)0K

∗0〉
)

and

|s−〉 =
1√
2

(
|K∗0(K−π+)0〉 − |(K+π−)0K

∗0〉
)
, (3)

which are indeed CP eigenstates with opposite CP parities (ηs+ = −1 and ηs− = +1).
Therefore, it is possible to write the full decay amplitude in terms of CP -odd and CP -even

1Note that both B0
s and B0

s can decay into these final states.
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amplitudes (the SS final configuration is a CP eigenstate with ηSS = 1) by defining

A+
s =

1√
2

(AVS + ASV ) and A−s =
1√
2

(AVS − ASV ) . (4)

2.1 Angular distribution

The angles describing the decay, Ω ≡ {θ1, θ2, ϕ}, are shown in Fig. 1, where θ1(2) is the
angle between the direction of K+(−) meson and the direction opposite to the B-meson
momentum in the rest frame of V1(2) and ϕ is the angle between the decay planes of the
two vector mesons in the B-meson rest frame. In this angular basis, the differential decay
rate describing this process is expressed as [13]

d6Γ

dΩ dm1 dm2 dt
= N

∣∣∣ (A0(t) cos θ1 cos θ2 +
A‖(t)√

2
sin θ1 sin θ2 cosϕ

+i
A⊥(t)√

2
sin θ1 sin θ2 sinϕ

)
M1(m1)M1(m2)

−A
+
s (t)√

6

(
cos θ1M1(m1)M0(m2)− cos θ2M0(m1)M1(m2)

)
−A

−
s (t)√

6

(
cos θ1M1(m1)M0(m2) + cos θ2M0(m1)M1(m2)

)
−Ass

3
M0(m1)M0(m2)

∣∣∣2, (5)

where the different dependences of P–wave and S–wave amplitudes on the two-body masses
m1 ≡ M(K+π−) and m2 ≡ M(K−π+) have been made explicit in terms of the mass
propagators M1,0(m) and N is an overall normalisation constant. The time evolution
induced by B0

s–B
0
s mixing is encoded in the time-dependence of the amplitudes Ak(t)

(k = 0, ‖,⊥, s+, s−, ss)

Ak(t) = g+(t)Ak +

(
q

p

)
g−(t)Āk, (6)

where Ak ≡ Ak(t = 0) and the time-dependent functions g±(t) are given by

g±(t) =
1

2

(
e−imH t−

1
2

ΓH t ± e−imLt−
1
2

ΓLt
)

(7)

with ΓL,H (mL,H) being the width (mass) of the B0
s light (L) and heavy (H) mass

eigenstates.
The decay rate of the CP -conjugated process, B0

s → (K−π+)(K+π−), can be obtained
by exchanging each amplitude Ak by ηkĀk, where ηk is the CP eigenvalue of the final state
described by Ak [4]. In this paper, due to the limited size of the available data sample,
no attempt is made to identify the flavour of the initial B0

s meson at production, thus
suppressing the sensitivity to direct and mixing-induced CP asymmetries. Nevertheless,
CP violation can still be studied through the measurement of triple product asymmetries
and S–wave-induced direct CP asymmetries.
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Figure 1: Definition of the angles involved in the analysis of B0
s → K∗0K∗0 decays.

2.2 Triple product asymmetries

Two TPs can be defined in B meson decays into pairs of vector particles [4, 5, 14],

T1 = (n̂V1 × n̂V2) · p̂V1 = sinϕ and (8)

T2 = 2(n̂V1 · n̂V2)(n̂V1 × n̂V2) · p̂V1 = sin 2ϕ, (9)

where n̂Vi (i = 1, 2) is a unit vector perpendicular to the Vi decay plane and p̂V1 is a unit
vector in the direction of V1 in the B0

s rest frame. The observable asymmetries associated
with these TPs can be calculated from integrations of the differential decay rate as [14]

a1
T (t) ≡ Γ(cos θ1 cos θ2 sinϕ > 0, t)− Γ(cos θ1 cos θ2 sinϕ < 0, t)

Γ(cos θ1 cos θ2 sinϕ > 0, t) + Γ(cos θ1 cos θ2 sinϕ < 0, t)
and (10)

a2
T (t) ≡ Γ(sin 2ϕ > 0, t)− Γ(sin 2ϕ < 0, t)

Γ(sin 2ϕ > 0, t) + Γ(sin 2ϕ < 0, t)
. (11)

Nonzero TP asymmetries appear either due to a T -violating phase or a T -conserving phase
in conjunction with final-state interactions.

When these asymmetries are measured in a sample where the production flavour is not
identified, they become “true” CP -violating asymmetries, assuming that CPT is conserved.
This is manifest when a1

T and a2
T are written in terms of the amplitudes defining the decay

rate in Eq. (5),

a1
T =

2
√

2

π

1

D
Im(A⊥A∗0) and (12)

a2
T = − 4

π

1

D
Im(A⊥A∗‖), (13)

with D = |A0|2 + |A‖|2 + |A⊥|2 + |A+
s |2 + |A−s |2 + |Ass|2. Taking into account these

expressions and that the decay rate contribution associated with the CP -odd amplitude
A⊥ changes sign under the CP transformation, the asymmetries measured in the untagged
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sample, AiT , are proportional to the CP -violating interference terms Im(A⊥A∗0,‖−Ā⊥Ā∗0,‖).
Using Eq. (6), these terms can be written as

Im(A⊥A∗0,‖ − Ā⊥Ā∗0,‖) =
1

2
e−Γst

[
Im(A⊥A

∗
0,‖ − Ā⊥Ā∗0,‖) cosh

(
∆Γs

2
t

)
+ Im[(Ā⊥A

∗
0,‖ + A∗⊥Ā0,‖)e

−iφmix ] sinh

(
∆Γs

2
t

)]
,

(14)

where ∆Γs ≡ ΓL − ΓH , Γs ≡ (ΓL + ΓH)/2 and φmix is the phase in B0
s–B

0
s mixing. The

coefficients Im(A⊥A
∗
0,‖ − Ā⊥Ā∗0,‖) and Im[(Ā⊥A

∗
0,‖ + A∗⊥Ā0,‖)e

−iφmix ] are TP and mixing-

induced TP asymmetries, respectively, and are CP -violating quantities [4]. In the analysis
presented in this paper, only the time-integrated asymmetries

A1
T =

2
√

2

π

1

D

∫
Im(A⊥A∗0) dt and (15)

A2
T = − 4

π

1

D

∫
Im(A⊥A∗‖) dt, (16)

are measured (D =
∫
D dt), with no identification of initial B0

s flavour. Thus CP -violating
linear combinations of the above observables are accessible.

When the S–wave contribution is taken into account, two additional CP -even amplitudes,
A−s and Ass, interfere with A⊥, and give rise to two additional CP -violating terms. Further
asymmetric integrations of the decay rate, analogous to those in [14], lead to the following
observables

A3
T ≡

Γ((cos θ1 + cos θ2) sinϕ > 0)− Γ((cos θ1 + cos θ2) sinϕ < 0)

Γ((cos θ1 + cos θ2) sinϕ > 0) + Γ((cos θ1 + cos θ2) sinϕ < 0)

=
32

5π
√

3

1

D

∫
Im

((
A⊥A−∗s − Ā⊥Ā−∗s

)
M1(m)M∗

0(m)
)

dm (17)

and

A4
T ≡

Γ(sinϕ > 0)− Γ(sinϕ < 0)

Γ(sinϕ > 0) + Γ(sinϕ < 0)

=
3π

4
√

2

1

D

∫
Im

((
A⊥A∗ss − Ā⊥Ā∗ss

)
M1(m)M∗

0(m)
)

dm, (18)

where the mass integration extends over the chosen Kπ mass window. It is performed
over the product of mass propagators of different resonances, times specific CP -violating
observables involving A⊥.

Since A+
s is also CP -odd, its interference terms with the CP -even amplitudes change

sign under B0
s to B0

s interchange. Consequently, four new CP -violating asymmetries are
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accessible from B0
s → K+π−K−π+ decays,

A1
D ≡

Γ(cos θ1 cos θ2(cos θ1 − cos θ2) > 0)− Γ(cos θ1 cos θ2(cos θ1 − cos θ2) < 0)

Γ(cos θ1 cos θ2(cos θ1 − cos θ2) > 0) + Γ(cos θ1 cos θ2(cos θ1 − cos θ2) < 0)

=

√
2

5
√

3

1

D

[
9

∫
Re
(
(A+

s A∗0 − Ā+
s Ā∗0)M0(m)M∗

1(m)
)

dm

+5

∫
Re
(
(A+

s A∗ss − Ā+
s Ā∗ss)M1(m)M∗

0(m)
)

dm

]
, (19)

A2
D ≡

Γ((cos θ1 − cos θ2) cosϕ > 0)− Γ((cos θ1 − cos θ2) cosϕ < 0)

Γ((cos θ1 − cos θ2) cosϕ > 0) + Γ((cos θ1 − cos θ2) cosϕ < 0)

= − 32

5π
√

3

1

D

∫
Re
(
(A+

s A∗‖ − Ā+
s Ā∗‖)M0(m)M∗

1(m)
)

dm, (20)

A3
D ≡

Γ((cos θ1 − cos θ2) > 0)− Γ((cos θ1 − cos θ2) < 0)

Γ((cos θ1 − cos θ2) > 0) + Γ((cos θ1 − cos θ2) < 0)

=
2
√

2

5
√

3

1

D

[
3

∫
Re
(
(A+

s A∗0 − Ā+
s Ā∗0)M0(m)M∗

1(m)
)

dm

+5

∫
Re
(
(A+

s A∗ss − Ā+
s Ā∗ss)M1(m)M∗

0(m)
)

dm

]
(21)

and

A4
D ≡

Γ((cos2 θ1 − cos2 θ2) > 0)− Γ((cos2 θ1 − cos2 θ2) < 0)

Γ((cos2 θ1 − cos2 θ2) > 0) + Γ((cos2 θ1 − cos2 θ2) < 0)

=
1

D
Re
(
A+
s A−∗s − Ā+

s Ā−∗s
)
. (22)

Some of these terms have the form Re(A+
s A∗k − Ā+

s Ā∗k), with k = 0, ‖, s−, ss, which is
characteristic of direct CP asymmetries.

As shown above, TP and several direct CP asymmetries are accessible from untagged
B0
s → K∗0K∗0 decays, provided that a scalar Kπ background component is present. These

CP -violating observables are sensitive to the contributions of FCNC processes induced
by neutral scalars, which are present, for example, in models with an extended Higgs
sector. Constraints on possible FCNC couplings of Higgs scalars have been recently
examined [15,16]. Non-zero values of AiT or AiD would allow the characterisation of those
operators contributing to the effective Hamiltonian. In particular an enhanced contribution
from A1,2,3

D with respect to the other observables, would reveal stronger (V −A)× (V +A)
(LR) and (V + A)× (V − A) (RL) components with respect to RR and LL operators in
the above models [4].
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2.3 Angular analysis

Assuming that no CP violation arises in this decay, an angular analysis of the decay products
determines the polarisation fractions of the B0

s → K∗0K∗0 decay and the contribution of
the various S–wave amplitudes. The time-integrated decay rate can be expressed as

d5Γ

dΩ dm1 dm2

= N̂
21∑
n=1

Kn(m1,m2)Fn(Ω), (23)

where the functions Kn contain the dependence on the amplitudes entering the decay,
with their corresponding mass propagators, and N̂ is an overall normalisation constant.
The Kn functions are given in Table 1 together with the decay angle functions Fn. All
terms proportional to the TP and S–wave-induced CP asymmetries (n = 5, 6, 21 and the
symmetric A+

s ↔ A−s terms in n = 8− 11, 13− 16) cancel under the assumption of CP
conservation.

The dependence of each amplitude on the invariant mass of the K+π− and K−π+ pairs
is given by the propagators MJ(m) ∝ RJ(m)×m/q, where q is the momentum of each
meson in the rest frame of the Kπ pair

q =

√
(m2 − (Mπ +MK)2)(m2 − (Mπ −MK)2)

2m
. (24)

The P–wave propagator, J = 1, is parameterised using a spin-1 relativistic Breit-Wigner
resonance function

R1(m) =
M1Γ1(m)

(M2
1 −m2)− iM1Γ1(m)

. (25)

The mass-dependent width is given by

Γ1(m) = Γ1
M1

m

1 + r2q2
1

1 + r2q2

(
q

q1

)3

, (26)

where M1 and Γ1 are the K∗0(892) resonance mass and width, r is the interaction radius
and q1 corresponds to Eq. (24) evaluated at the resonance position (M1).

To describe the S–wave propagator, M0(m), the LASS parameterisation [17] is used,
which is an effective-range elastic scattering amplitude, interfering with the K∗0(1430)
resonance,

R0(m) ∝ 1

cot δβ − i
+ e2iδβ

M0Γ0(m)

M2
0 −m2 − iM0Γ0(m)

, (27)

where

Γ0(m) = Γ0
M0

m

(
q

q0

)
, (28)

and the non-resonant component is described as

cot δβ =
1

aq
+

1

2
bq. (29)

7



Table 1: Untagged time-integrated terms used in the analysis, under the assumption of no CP
violation.

n Kn Fn

1 1
ΓL
|A0|2|M1(m1)|2|M1(m2)|2 cos2 θ1 cos2 θ2

2 1
ΓL
|A‖|2|M1(m1)|2|M1(m2)|2 1

2 sin2 θ1 sin2 θ2 cos2 ϕ

3 1
ΓH
|A⊥|2|M1(m1)|2|M1(m2)|2 1

2 sin2 θ1 sin2 θ2 sin2 ϕ

4 1
ΓL
|A‖||A0| cos δ‖|M1(m1)|2|M1(m2)|2 1

2
√

2
sin 2θ1 sin 2θ2 cosϕ

5 0 − 1
2
√

2
sin 2θ1 sin 2θ2 sinϕ

6 0 −1
2 sin2 θ1 sin2 θ2 sin 2ϕ

7 1
2( |A

+
s |

2

ΓH
+ |A−s |

2

ΓL
)|M1(m1)|2|M0(m2)|2 1

3 cos2 θ1

8 1√
2

1
ΓL
|A−s ||A0|Re(eiδ

−
sM∗1(m2)M0(m2))|M1(m1)|2 − 2√

3
cos2 θ1 cos θ2

9 1√
2

1
ΓL
|A−s ||A‖|Re(ei(δ

−
s −δ‖)M∗1(m2)M0(m2))|M1(m1)|2 − 1√

6
sin 2θ1 sin θ2 cosϕ

10 1√
2

1
ΓH
|A+

s ||A⊥|Im(ei(δ⊥−δ
+
s )M∗0(m2)M0(m2))|M1(m1)|2 1√

6
sin 2θ1 sin θ2 sinϕ

11 1√
2

1
ΓL
|A−s ||Ass|Re(ei(δ

−
s −δss)M∗0(m1)M1(m1))|M0(m2)|2 2

3
√

3
cos θ1

12 1
2( |A

+
s |

2

ΓH
+ |A−s |

2

ΓL
)|M0(m1)|2|M1(m2)|2 1

3 cos2 θ2

13 − 1√
2

1
ΓL
|A−s ||A0|Re(eiδ

−
sM∗1(m1)M0(m1))|M1(m2)|2 2√

3
cos θ1 cos2 θ2

14 − 1√
2

1
ΓL
|A−s ||A‖|Re(ei(δ

−
s −δ‖)M∗1(m1)M0(m1))|M1(m2)|2 1√

6
sin θ1 sin 2θ2 cosϕ

15 1√
2

1
ΓH
|A+

s ||A⊥|Im(ei(δ⊥−δ
+
s )M∗0(m1)M0(m1))|M1(m2)|2 − 1√

6
sin θ1 sin 2θ2 sinϕ

16 − 1√
2

1
ΓL
|A−s ||Ass|Re(ei(δ

−
s −δss)M∗0(m2)M1(m2))|M0(m1)|2 − 2

3
√

3
cos θ2

17 ( |A
+
s |

2

ΓH
− |A

−
s |

2

ΓL
)Re(M∗1(m1)M∗0(m2)M0(m1)M1(m2)) −1

3 cos θ1 cos θ2

18 1
ΓL
|Ass|2|M0(m1)|2|M0(m2)|2 1

9

19 1
ΓL
|Ass||A0|Re(eiδssM∗1(m1)M∗1(m2)M0(m1)M0(m2)) −2

3 cos θ1 cos θ2

20 1
ΓL
|Ass||A‖|Re(ei(δss−δ‖)M∗1(m1)M∗1(m2)M0(m1)M0(m2)) −

√
2

3 sin θ1 sin θ2 cosϕ

21 0
√

2
3 sin θ1 sin θ2 sinϕ

8



Table 2: Parameters of the mass propagators used in the fit.

(Kπ)∗00 K∗(892)0

J = 0 [17,18] J = 1 [19]
MJ ( MeV/c2) 1435± 5± 5 895.81± 0.19
ΓJ ( MeV/c2) 279± 6± 21 47.4 ± 0.6
r ( GeV−1) - 3.0 ± 0.5
a ( GeV−1) 1.95± 0.09± 0.06 -
b ( GeV−1) 1.76± 0.36± 0.67 -

The values of the mass propagator parameters, including the resonance masses and widths,
MJ and ΓJ , and the the scattering length (a) and effective range (b), are summarized in
Table 2. Other shapes modelling the S–wave propagator, including an explicit Breit-Wigner
contribution for the K∗0(800) resonance, are considered in the systematic uncertainties.

The normalisation of the mass propagators∫
|M0|2dm =

∫
|M1|2dm = 1 (30)

in the mass range considered, together with the normalisation condition

|A0|2 + |A‖|2 + |A⊥|2 + |A+
s |2 + |A−s |2 + |Ass|2 = 1, (31)

guarantees the definition of the squared amplitudes as fractions of different partial waves.
The polarisation fractions for the vector mode, B0

s → K∗0K∗0, are defined as

fL,‖,⊥ =
|A0,‖,⊥|2

|A0|2 + |A‖|2 + |A⊥|2
. (32)

The overall phase of the propagators is defined such that

arg[M0(M1)] = arg[M1(M1)] = 0 (33)

and the convention δ0 ≡ arg(A0) = 0 is adopted. Therefore δ‖, δ⊥, δ−s , δ+
s and δss are

defined as the phase difference between the corresponding amplitude and A0 at the K∗0

mass pole. As a consequence of the lack of initial B0
s or B0

s flavour information, the phases
δ⊥ and δ+

s can not be measured independently, and only their difference is accessible to
this analysis.

3 The LHCb detector

The LHCb detector [20,21] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The
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detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The
tracking system provides a measurement of momentum, p, of charged particles with a
relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The
minimum distance of a track to a primary vertex, the impact parameter (IP), is measured
with a resolution of (15 + 29/pT)µm, where pT is the component of the momentum
transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished
using information from two ring-imaging Cherenkov detectors. Photons, electrons and
hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified
by a system composed of alternating layers of iron and multiwire proportional chambers.
The online event selection is performed by a trigger, which consists of a hardware stage,
based on information from the calorimeter and muon systems, followed by a software stage,
which applies a full event reconstruction.

In the analysis presented here, all hardware triggers are used. The software trigger
requires a multi-track secondary vertex with a significant displacement from the primary
pp interaction vertices (PVs). At least one charged particle must have a transverse
momentum pT > 1.7 GeV/c and be inconsistent with originating from a PV. A multivariate
algorithm [22] identifies secondary vertices consistent with the decay of a b hadron.

Simulated B0
s → K∗0K∗0 events are used to characterise the detector response to signal

events. In the simulation, pp collisions are generated using Pythia [23] with a specific
LHCb configuration [24]. Decays of hadronic particles are described by EvtGen [25],
in which final-state radiation is generated using Photos [26]. The interaction of the
generated particles with the detector and its response are implemented using the Geant4
toolkit [27] as described in Ref. [28].

4 Event selection and signal yield

The event selection is similar to that used in the previous analysis [8]. K∗0 candidates
are formed from two high-quality oppositely charged tracks identified as a kaon and pion,
respectively. They are selected to have pT > 500 MeV/c and to be displaced from any PV.
The K+π− and K−π+ pairs are required to have invariant mass within ±150 MeV/c2 of the
known K∗0 mass, which corresponds to 74% of the total phase-space for B0

s → K∗0K∗0,
and pT > 900 MeV/c. Each B0

s candidate is constructed by combining a K∗0 and K∗0,
requiring the four tracks to form a good vertex well-separated from any PV. The B0

s

candidate invariant mass is restricted to be within the interval [5100, 5866] MeV/c2 and its
momentum vector is required to point towards one PV.

In order to further discriminate the B0
s → K∗0K∗0 signal from the combinatorial

background, different properties of the decay are combined into a multivariate discrimina-
tor [29]. The variables combined in the discriminator are the B0

s candidate IP with respect

10



to the associated PV, its lifetime and pT, the minimum χ2
IP of the four daughter tracks

(defined as the difference between the χ2 of a PV formed with and without the particle in
question) with respect to the same PV and the distance of closest approach between the
two K∗0 candidates. The discriminator is trained using simulated B0

s → K∗0K∗0 events
for signal and a small data sample excluded from the rest of the analysis as background.
The optimal discriminator requirement is determined by maximising the figure of merit
NS/
√
NS +NB in a test sample containing signal (S) and background (B) events of the

same nature as those used in the training sample.
Differences in the log-likelihood for various particle identification hypotheses (∆ lnLa−b)

are used to minimise the contamination from specific B decays. Contributions from
B0 → ρK∗0 and B0 → φK∗0 modes are reduced by the ∆ lnLK−π requirements of kaons
and pions. A small contamination from Λ0

b → pπ−K−π+ decays is observed and suppressed
with ∆ lnLp−K requirements.

An extended unbinned maximum likelihood fit to the mass spectrum of the selected
B0
s → K+π−K−π+ candidates is performed. The signal is modelled by a sum of two

Crystal Ball distributions [30] that share common mean and width. The same distribution
is used to describe the B0 decay into the same final state. Components for B0 → φK∗0

and Λ0
b → pπ−K−π+ decays are included in the fit with shapes extracted from simulated

events. The contribution from B0 → ρK∗0 decays is estimated to be negligible from
simulation studies. Finally, partially reconstructed B decays are parameterised using
an ARGUS distribution [31] and the remaining combinatorial background is modelled
using an exponential function. The fit result is shown in Fig. 2. A total of 697 ± 31
B0
s → K+π−K−π+ decays is obtained.

4.1 Acceptance properties

Effects introduced in data due to the geometry of the detector and to the selection
requirements need to be taken into account in the measurement.

The study of simulated B0
s → K∗0K∗0 events shows that the detection and selection

efficiency is not uniform as a function of the decay angles θ1 and θ2, but has no dependence,
at the level of precision needed for this analysis, on ϕ and on the invariant mass of the
two Kπ pairs, m1 and m2. The acceptance decreases as cos θi approaches 1. This feature
is mainly induced by the requirement on the minimum pT of the daughter pions. This
effect is modelled by a two-dimensional function in cos θ1 and cos θ2, which is extracted
from simulation.

Since the trigger system uses the pT of the charged particles, the acceptance effect
is different for events where signal tracks were involved in the trigger decision (called
trigger-on-signal or TOS throughout) and those where the trigger decision was made using
information from the rest of the event (non-TOS). The data set is split according to these
two categories and a different acceptance correction is applied to each subset.
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Figure 2: Invariant mass distribution for selected K+π−K−π+ candidates. The (blue) solid
line is the result of the fit explained in the text. The B0

s and B0 signal peaks are shown as
as dashed-dotted lines (pink and dark green, respectively). The various peaking background
components are represented as dotted lines: (red) B0 → φK∗0, (green) Λ0

b → pπ−K−π+ and
(light blue) partially reconstructed decays. The (grey) dotted line is the combinatorial background
component. The normalised residual (pull) is shown below.

5 Triple product and direct CP asymmetries

Triple products and direct CP asymmetries are calculated for B0
s → K+π−K−π+ using

Eqs. (10) and (11), after time integration, and Eqs. (17)–(22) from those candidates with
a four-body invariant mass within ±30 MeV/c2 of the known B0

s mass. The background
in this interval, which is purely combinatorial, is subtracted according to the fraction
calculated from the result of the invariant mass fit, fbkg = (3.44± 0.34)%. The angular
distributions of the background are extracted from the upper mass sideband, defined by
M(K+π−K−π+) > 5550 MeV/c2. Acceptance effects are then corrected in the signal
angular distributions. The measured asymmetries are listed in Table 3. From the definitions
given in Sect. 2.2, correlations of the order of 5% are expected among these asymmetries,
with the exception of A1

D and A3
D where the correlation is calculated to be close to 90%.

The main systematic uncertainty in these measurements is associated to the angular
acceptance correction. Discrepancies in the pT spectra and the particle identification
efficiencies between data and simulation are used to modify the acceptance function
obtained from simulation. Systematic uncertainties are determined from the variation in
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Table 3: Triple product and direct CP asymmetries measured in this analysis. The first
uncertainties are statistical and the second systematic.

Asymmetry Value
A1
T 0.003 ± 0.041 ± 0.009

A2
T 0.009 ± 0.041 ± 0.009

A3
T 0.019 ± 0.041 ± 0.008

A4
T −0.040 ± 0.041 ± 0.008

A1
D −0.061 ± 0.041 ± 0.012

A2
D 0.081 ± 0.041 ± 0.008

A3
D −0.079 ± 0.041 ± 0.023

A4
D −0.081 ± 0.041 ± 0.010

the measured asymmetries when this modified acceptance is used. Systematic effects are
found to be larger in case of the four direct CP asymmetries, in particular for A3

D, which
has a strong dependence on cos θ1,2. In addition, the lifetime-biasing selection criteria
have a slightly different effect on the various amplitudes, which correspond to decays with
different effective lifetimes, due to the width difference between B0

s mass eigenstates [32,33].
This could induce a bias in the measured TP and direct CP asymmetries. A set of
simulated experiments is performed to estimate the impact of the lifetime acceptance in
the eight quantities. The observed deviations are small and are used to assign a systematic
uncertainty. Finally, the effect of the uncertainty in the background contribution is
estimated by changing the background fraction and the parameters in the background
model within their statistical uncertainty and recalculating the asymmetries.

6 Angular analysis

The magnitudes and phases of the various amplitudes contributing to the B0
s →

K+π−K−π+ decay are determined using a five-dimensional fit to the three helicity angles
(Ω) and to the invariant mass of the two Kπ pairs (m1,m2) of all candidates with a
four-body invariant mass |M(K+, π−, K−, π+)−mB0

s
| < 30 MeV/c2.

The model used to describe the distribution in these five variables is given by

F(Ω,m1,m2) = (1− fbkg)F (Ω,m1,m2)× ε(Ω) + fbkgFbkg(Ω,m1,m2), (34)

where F (Ω,m1,m2) is the probability density function in Eq. (5), ε(Ω) is the acceptance
function modelling the effects introduced by reconstruction, selection and trigger reported
in Sect. 4.1, and Fbkg(Ω,m1,m2) describes the distribution of the background extracted
from the upper mass sideband. The background fraction, fbkg, is obtained from the result
of the fit to the invariant mass of the B0

s candidates.
Using this model, an unbinned maximun likelihood fit is performed simultaneously for

TOS and non-TOS B0
s → K+π−K−π+ candidates, where only the acceptance function and

the background fraction are different between the two samples. The results of the fit are
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Table 4: Results of the simultaneous fit to B0
s → K+π−K−π+ TOS and non-TOS candidates

with |M(K+, π−,K−, π+) − mB0
s
| < 30 MeV/c2 (phases are measured in radians). The first

uncertainties are statistical and the second systematic.

Parameter Value
fL 0.201± 0.057± 0.040
f‖ 0.215± 0.046± 0.015
|A+

s |2 0.114± 0.037± 0.023
|A−s |2 0.485± 0.051± 0.019
|Ass|2 0.066± 0.022± 0.007
δ‖ 5.31± 0.24± 0.14

δ⊥ − δ+
s 1.95± 0.21± 0.04

δ−s 1.79± 0.19± 0.19
δss 1.06± 0.27± 0.23

summarised in Table 4. Figures 3 and 4 show the angular and Kπ mass projections of the
multi-dimensional distributions. To quantitatively demonstrate the interference between
the different partial waves, a forward-backward asymmetry is defined for K∗0 meson as
AFB = (NF −NB)/(NF +NB), where NF (NB) is the number of K+ mesons emitted with
positive (negative) cos θ1, and analogously for the K∗0 meson. Their evolution with the Kπ
invariant mass is shown in Fig. 4, as an additonal projection of the fit result. According to
Eq. (5) these asymmetries are proportional to the interference term between A−s and A0.

Figure 5 shows the likelihood for the longitudinal polarisation fraction fL, where all the
other parameters are minimised at each point of the curve, depicting parabolic behaviour
around the minimum. Additionally, confidence regions in the |A−s |2–fL plane are shown.

The most important systematic uncertainties in the measurement of the different
amplitudes, phases and polarisation fractions are summarised in Table 5. They arise mainly
from uncertainties in the modelling of the Kπ mass distributions and from the assumption
that the five-dimensional acceptance factorises into a product of two-dimensional functions.
To better exploit the statistical power of the simulated sample in the less populated regions
of the phase space, e.g. the tails of the mass distribution, the angular and mass acceptances
are assumed to factorise. An alternative model is tested that allows for correlation between
the angular distribution and the Kπ invariant mass, using a two-dimensional function in
(cos θi,mi), universal for K∗0 and K∗0 decays. The fit is repeated with this acceptance
model and a systematic uncertainty, σacc , is determined from the variation with respect
to the nominal fit result. An additional uncertainty accounts for the limited size of the
simulated samples, σsim.

To test the accuracy of the simulation, kinematic distributions, such as those of the
pT of final-state particles, are compared between data and simulation. Since the input
amplitudes used in the generators are different from those measured in data, an iterative
method is defined to disentangle the discrepancies associated with a different physical
distribution. This procedure supports the quality of the simulation, and allows for the
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s → K+π−K−π+ candidates (blue solid line) in the

three helicity angles. The dots represent the data after background subtraction and acceptance
correction. The red dashed line is the P–wave component, the green dashed line is the S–wave
component and the light-blue dashed line represents the A+

s A0 interference term.
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Table 5: Systematic uncertainties in the measurement of the magnitude and phase of the different
amplitudes contributing to the B0

s → K+π−K−π+ decay.

Parameter σacc σsim σrw σmass σres Total
fL 0.031 0.010 0.010 0.021 0.006 0.040
f‖ 0.008 0.008 0.004 0.005 0.007 0.015
|A+

s |2 0.019 0.005 0.002 0.011 0.003 0.023
|A−s |2 0.007 0.007 0.010 0.003 0.012 0.019
|Ass|2 0.003 0.001 0.000 0.005 0.003 0.007
δ‖ 0.130 0.037 0.042 0.005 0.025 0.144
δ⊥ − δ+

s 0.016 0.019 0.000 0.017 0.027 0.040
δ−s 0.160 0.036 0.075 0.033 0.030 0.186
δss 0.096 0.076 0.188 0.018 0.044 0.229
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determination of the associated systematic uncertainty, σrw.

Several alternative models for the parameterisation of invariant mass propagators are
used and a systematic uncertainty, σmass, for the fit parameters is estimated from the
variation of the fit results. The main contribution to this uncertainty comes from the
S–wave mass propagator, which is modelled by the LASS parameterisation [17] in the
nominal fit. A combination of two spin-0 relativistic Breit-Wigner distributions with the
mean and width of the K∗0 (800) and K∗0 (1430), respectively [19], and a single contribution
from K∗0(1430) are also used.

Additional small uncertainties are considered to account for the effect of the invariant
mass resolution, the lifetime acceptance and possible biases induced by the fitting method
(σres).

7 Measurement of B(B0
s → K∗0K∗0)

The branching fraction of the vector mode B0
s → K∗0K∗0 is updated with respect to the

previous result [8]. This measurement is normalised using the B0 → φK∗0 decay, with
φ → K+K− and K∗0 → K+π−, which has a topology similar to the signal decay and a
well-known branching fraction.

The selection of B0 → φK∗0 decays is performed such that it closely resembles the
selection of B0

s → K∗0K∗0 decays, except for particle identification criteria. In particular,
the requirements related to the B0

s vertex definition and the kinematic properties of the
charged particles are identical. Figure 6 shows the invariant mass of the final-state particles
for the selected candidates.

The ratio of branching fractions for signal and reference decay channels is given by

B(B0
s → K∗0K∗0)

B(B0 → φK∗0)
=

εsel
B0→φK∗0

εsel
B0
s→K∗0K∗0

×
εtrig
B0→φK∗0

εtrig

B0
s→K∗0K∗0

× λfL(B0 → φK∗0)

λfL(B0
s → K∗0K∗0)

×
NB0

s
× fB0

s→K∗0K∗0

NB0 × fB0→φK∗0
× fd
fs
× B(φ→ K+K−)

B(K∗0 → K+π−)
, (35)

where fd/fs is the ratio of probabilities for a b quark to form a B0 or a B0
s meson [34, 35].

The quantities NB0
s

and NB0 represent the number of observed candidates for B0
s →

K+π−K−π+ and B0 → K+K−K±π∓ decays, respectively, and are determined from the
corresponding fits to the four-body invariant mass spectra. The value of NB0

s
is reported

in Sect. 4. The yield NB0 is extracted from an extended unbinned maximum likelihood fit
to the spectrum in Fig. 6. The B0 signal is modelled by a combination of Crystal Ball
and Gaussian distributions that share a common mean. Their relative width, fraction and
parameters describing the tail of the Crystal Ball function are set to the values determined
from simulation. The signal from the recently observed decay B0

s → φK∗0 [36] is also
described using this parameterisation. The mass difference between B0 and B0

s mesons is
fixed to the world average value [19]. The partially reconstructed background is modelled
using an ARGUS distribution with parameters free to vary in the fit. The combinatorial
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Figure 6: Invariant mass of the selected K+K−K±π∓ combinations and result of the fit to the
data. The points represent the data and the (blue) solid line is the fit model. The B0

s and
B0 signal peaks are shown as as dashed-dotted lines (pink and dark green, respectively). The
contribution from partially reconstructed decays is represented as a (light blue) dashed line. The
(grey) dotted line is the combinatorial background component. The normalised residual (pull) is
shown below.

background is parameterised with a decreasing exponential function. A total of 1049± 33
signal decays for the B0 → K+K−K±π∓ decay are observed.

The yield of candidates corresponding to the resonant decays, B0
s → K∗0K∗0 and

B0 → φK∗0, is given by the purity factors fB0
s→K∗0K∗0 and fB0→φK∗0 . The ratio of

combined reconstruction and selection efficiencies, εsel, is calculated using B0
s → K∗0K∗0

and B0 → φK∗0 simulated events and validated using data. The inefficiency induced
by the particle identification requirements is then determined separately using large
calibration samples. The ratio of trigger efficiencies, εtrig, is computed through a data-
driven method [37]. Moreover, the overall efficiency for each channel depends on the
helicity angle distribution of the final state particles, and is encoded into the factors λfL .
Both the purity and λfL factors for the B0

s → K∗0K∗0 decay are calculated from the results
of the angular analysis. Those corresponding to B0 → φK∗0 decays are calculated from
Ref. [38].

With the factors summarised in Table 6, the ratio of branching fractions is determined
to be

B(B0
s → K∗0K∗0)

B(B0 → φK∗0)
= 1.11± 0.22(stat.)± 0.12(syst.)± 0.06(fd/fs). (36)
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Table 6: Summary of relevant quantities in the B(B0
s → K∗0K∗0) calculation. The factor

κ(B0
s → K∗0K∗0) is defined as λfL(B0

s → K∗0K∗0)/fB0
s→K∗0K∗0

, and equivalently for the

B0 → φK∗0 decay. The first uncertainty is statistical, the second systematic.

NB0
s

697± 31± 11
NB0 1049± 33± 7
κB0→φK∗0/κB0

s→K∗0K∗0 0.453± 0.059± 0.040

εB0→φK∗0/εB0
s→K∗0K∗0 1.30 ± 0.17 ± 0.07

Using the average B(B0 → φK∗0) = (9.73±0.72)×10−6 from the BaBar [18] and Belle [39]
measurements2, corrected to take into account different rates of B+B− and B0B̄0 pair
production from Υ(4S) using Γ(B+B−)/Γ(B0B̄0) = 1.055± 0.025 [19], the result obtained
is

B(B0
s → K∗0K∗0) = (10.8± 2.1 (stat.)± 1.4 (syst.)± 0.6 (fd/fs))× 10−6.

The main systematic uncertainties considered are related to the invariant mass fit
used to determine the signal and reference event yields, the angular correction, and the
determination of the trigger efficiency. To determine the systematic uncertainty associated
with the number of candidates, the fit is repeated using different models for the signal and
background components. The largest variation is assigned as a 1.7% systematic uncertainty.
A 5% uncertainty is attributed to the trigger efficiency, after calibration of the data-driven
method applied to both channels using fully simulated events. The systematic uncertainty
associated with the angular correction λfL is the result of the propagation of the systematic
uncertainties evaluated for the parameters measured in the angular analysis (9%).

This result supersedes the previous measurement [8], which used a less sophisticated
estimate of the S–wave contribution. If rescaled to the same S–wave fraction, both results
are compatible.

As a result of B0
s–B

0
s mixing, the time-integrated flavour-averaged branching fraction

(B) reported here cannot be directly compared with theoretical predictions formulated
in terms of the decay amplitudes at t = 0 (B0). The relation between these branching
fractions is given by [32]

B = f∆Γ B0, with f∆Γ =

(
1− ∆Γs

2Γs

(
fL + f‖ + f⊥

))
. (37)

Using the decay widths measured in Ref. [33] and the polarisation fractions reported here,
the correction factor is calculated to be f∆Γ = 1.015± 0.010.

8 Conclusions

The decay B0
s → K+π−K−π+ is studied using pp collision data recorded by LHCb during

2011 at a centre-of-mass energy
√
s = 7 TeV. This sample corresponds to an integrated

2The measurement from CLEO [40] is excluded from this average since S–wave contributions were not
subtracted in the determination of the branching fraction.
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luminosity of 1.0 fb−1.
A test of the SM is performed by measuring eight CP -violating quantities which are

predicted to be small in the SM. All of these are found to be compatible with the SM
expectation, within 2σ uncertainty. In addition, assuming no CP violation, the angular
distribution of the decay products is analysed as a function of the Kπ pair invariant mass
to measure the polarisation fractions of the decay B0

s → K∗0K∗0 as well as the magnitude
and phase of the various S–wave amplitudes. The low polarisation of the vector-vector
decay is confirmed by the measurement fL = 0.201± 0.057 (stat.)± 0.040 (syst.), and a
large S–wave contribution is found.

Finally, an update of the B0
s → K∗0K∗0 branching fraction, using the B0 → φK∗0

decay as normalisation channel, yields B(B0
s → K∗0K∗0) = (10.8±2.1 (stat.)±1.4 (syst.)±

0.6 (fd/fs))× 10−6, in agreement with the theoretical prediction [7]. This result takes into
account the S–wave component measured for the first time through the angular analysis
of B0

s → K+π−K−π+ decays and supersedes the measurement in Ref. [8].
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