nternational School for Advanced Studies, Trieste, Italy

Abstract

We present the analysis of the tricritical 3-state Potts model perturbed by the energy
density field ¢ = ¢(%,%) and the S-matrices of the (conjectured) field theory. A general
scheme for solving the minimal integrable models starting from the possible bootstrap

fusions is also discussed.
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The completely integrable 2-D models obey the remarkable property of having infinite
set of commuting conserved charges P,. As a consequence their S-matrices are purely
elastic and factorizable into products of two particle S-matrices. Although the problem of
classification of all possible sets of conservation laws P, is far from the solution, the recent
observation by Zamolodchikov [1,2,3] allows to classify a subset of integrable models, those
having an action A = Acons. + 9i¢i (@i are given fields from the conformal grid), i.e.
the models which RG fixed points or certain limits (say g; — 0) are described by the
conformal minimal models. The Zamolodchikov’s conjecture is that for each conformal
minimal model there exist a few integrable perturbations ¢12, $21, #13, etc. (?) leading to
“minimal” integrable models with finite mumber of massive particles. In other words one
should find as a consistent solution of egs.(2), (3) and (5) below a finite set of meromorphic
functions S4p5(8) (in the physical strip 0 < Imé# < ) having finite number of physical poles.
The last statement is supported by the explicit solution for the thermal and magnetic
perturbations of Ising model [1,3], thermal perturbations for tricritical Ising model (4] and
3-state Potts model [2] and the analysis for the nonunitary Yang-Lee edge singularity model
[5]. In this letter we present the solution for the thermal perturbation (h,h) = (},3) of
the tricritical 3-state Potts model (¢ = £). The main result is that the corresponding
“minimal” integrable model describing off-critical behaviour of tricritical 3-state Potts

model has the following six particle mass spectrum:

Mg = Mg, mp =m8=ma(\/§+ 1)/\/51

(1)
Me = \/imaa Mg = ma(\/g‘*' 1)

The Zamlodchikov’s recipe [1,2,3] for describing and solving of the minimal integrable
models can be summarized as follows:

a) to find the spin s of the coservation laws for the perturbed model
Pyyp1 = ](T2a+2dz + 0,,dz), Py, = /(W2s+1dz + Q2,-1dZ)},
by studying the corresponding deformations of the well known conformal conservation laws
B:T{3 s = 0= B: W3

Here Tz(g 4o and Wz(:)_H are the quasiprimary descendents of the stress-energy tensor T (of
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spin 8 = 2) and of the spin s = m_14m_2 ym = 1,2 (mod 4) W currents specific for the

Virasoro minimal models*;

b) to analyse the specific residual symmetries of the perturbed model, i.e, to describe
the fundamental particles a;,b;, ¢+ = 1,2,--+, N as representations of the corresponding
“group” of symmetry. This fixes {he number of the independent components of the two
by two S-matrices .S',!‘J-' (8) and the symmetry conditions for them;

c) to satisfy the crossing symmetry,
Saa() = Sealim — 8),  S5(0) = Sa(in - 6), (2)

unitarity condition,
ST (—6)ST.(8) + SR (~8)SR (8) = 1
22(—0)S832(8) + Sya(—0)525(6) =1, S 0)Sua(8) = 1, @)
Saa(—6)S55(6) + S7a(—6)S5.(6) = 0,

and the factorization (Yang-Baxter) equations (see, for example [7]). The conditions (2)
and (3) above are purposely written only for the very specific case of particle-antiparticle
scattering in the U(1)- or Zan+1-invariant models;

d) to assume the bootstrap, i.e. that all 2-particle bound states belong to the set of
the fundamental particles of the model; to find an ansatz for the bootstrap 2-particle
fusions of some “minimal subset” of particles consistent with the conservation laws and

the symmetries of the models. For example
aa-—-+b+ta, bb—oe cc—a. (4)

In other words this means to find some of the physical poles 8 = iUSp of Sap(8), (4, B =
a,b, c) by using of the conservation laws P, and the symmetries of the model;

e) to solve the bootstrap equations (3]

Scp(&) = SBD(O e iﬁﬁc)SAD(e + iﬁfc),
U=n-U, USg+Ufhc+UE,=2n,

following from the factorization of S4pp

SaBp(01,02,03) = Sa5(612)Sap(613)SBD(f23),

* the so called extended or W, minimal models obey more than one such currents [6].
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and the bootstrap fusions discussed above. .

We note that points b) and d) in this recipe are not independent. If we know all
the symmetries of the perturbed model and the representations consistent with conserva-
tion laws P, then the bootstrap fusions are given by the tensor products rules for these
representations. What is know in fact are only few hints about these symmetries:

1) the relation between some of the “minimal” integrable models, the affine Toda field
theories (say A3, As, Fs, Er, Es etc.) for specific rational values of the squared coupling
constants {8,9] and the different coset realizations of the initial conformal model.

2) Although the exact S-matrices for some of the simplest models trivially satisfy the
Y-B equations, the classical and quantum group representation method [10,11] can play a
role of the symmetry principles at least for the integrable models based on WZW minimal
model.

Thelack of a general scheme (analogous to BPZ [12] for the minimal conformal models)
forces us to use “heuristic® arguments as the bootstrap minimal fusions consistent with
{P,} and the residual symmetries remaining unbroken by the perturbation (for example
53 symmetry for the 3-state Potts models). In fact one can try to derive the fusions from
the conservation laws. Here we shall present our analysis of the reversed problem: given

a finite set of massive particles a;(p;) (or states |a;(p;)} = 1,2,---,N) with the

in(out) :
2-particle fusions:

ai(pi)aj(p;) = Y Cijear(p: + pj), (6a)
k
satisfying the momenta conservation laws (Py):

mi —m? — m? = 2m;m; cos U!;-, (6b)
. . 6b

Uk + Uy, + U, = 2m.
Find an infinite set of conserved charges P, consistent with the bootstrap fusions (6), such

that

P,ai(p:) = 7, (&) 8 ai(p:),

my
P Tt = 30k (2) TLaston
i=1 =1 b J=1

For N =1 we have only the fusion: -

a(p1) a(p2) — a(p: + p2).
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In the rapidity variables p =me’, p= me—?, the consistency conditions reads (3]

2 cos % =1, s =1,5 (mod 6). (7

For N=2 we can have one reducible fusion ¢ a — a, b b — b and two new ones:

e a— b, bbb a,

or

aa—a+b, bb— a,
In the first case the cosistency conditions are
292 cos(sU%) = 42, 292 cos(sU,) = 715

and for v #£0:

_ ~ 1
cos(sU%) cos(sU%,) = e (8)
Two solutions of eq.(8) are given by
_ T . 5
Uh=5 Uu=1p | (8e)

with s = 1,4,5,7,8,11 (mod 12), i.e. the exponents of E,(;l) and

e - 27

= % U= 2=1,3,7,9 (mod 10), (8b)

In the second case we have to solve the system of equations (7) and (8) and the corre-
sponding solutions for the spins s are the common solutions of (8a, b) and (7).
For N = 3 we bave

aa— b, bb— ¢ ,C C— @, (9a)

with consistensy condition

, (99)

Qo -

cos(szy ) cos(szz) cos(sxs3) =

and solutions:

4
2y = %’”2 = %",33 = 3"-, s=1,3,5,7,11,13,15,17 (mod 18),
™ 27 3
L= 7y = B8 = s # 0 (mod 7),
m 4r 9
2y = :2-6,32 35°%8 20" s=1,3,7,9,11,13,17,19 (mod 20),
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etc. The other possibility is
aa—b+e, bb— e, cc— a+bd, (10)
obeying the system of equations

)

Q| =

cos(szy ) cos(szy ) cos(szs) =
?

cos(3z4) cos(sza) =

cos(szy) cos(sxs) =

W =] =

The corresponding solutions are given by the common solutions of (8a,b) and (9). The

next fusions

aa-—+b+te, bb—e, cc¢— a,

lead to the following system

1
cos(sz; ) cos(sz2) cos(szs) = g’

1
cos(szy ) cos(szs) = 7

which solutions are obvious combinations of the previous ones. We give here two more

nontrivial fusions

aa—b+e, bb—c+a, cc—a+thb,
cos(s21) cos(szz) cos(szs) = <, cos(sz,) cos(szs) = %,
1 1
cos(sz4 ) cos(sxs ) cos(szg) = 3’ cos(sx3) cos(szg) = 7
1
cos(szs ) cos(szs) = 7
and
aa—b+ec, bb—a, cc—a,
cos(szy ) cos(szs) = %, cos(az;) cos(sz4) = i—

Continuing in this way one can exhaust all possible fusions of 3-particles . But we didn’t

have a proof of exhausting all possible solutions of the corresponding consistency condi-

tions.



For N = 4 it is still possible to exhaust all the fusions. One of the simplest fusions is:
aa—b bb-wec, cc—od, dd-oa,

cos(sz; ) cos(sz3) cos(szs ) cos(szy) =

E’
with solutions: _
T 2r 4 T
31-»%,32—%,33—?134—?51 3‘7&0(m0d 15),
T 3r Tn Or
= 56-,3;2 = 2—0-,33 =‘%,z4 = 35" 8=1,3,4,7,8,9,11,12,13,16,17,19 (mod 20),
™ T 11w 13n

T .2 5'6,22 = 5'6,23 = —36",-’34 = %—,
s§= 1,2,4,6,7,8,10,11,12,13, 14,16,17,18, 19,20,22,23,24,26,28,29 (mod 30),

etc. This type of fusions can be analysed for general N:

@; @ = Qi4y, aN ay — a1,

N

Hcos(az,-) = 2N,

i=1

Some of the solutions of this equations can be found using the formula

ﬂﬁl (2sin g) = { Fitm =. Pt
j=1,(jim)=1 1 otherwise.
The case when v} = 0 only for some i and some s requires more detailed analysis.

Let us assume that the initial finite set of particles contains also antiparticles and
neutral particles. One can take U(1), Zy or SU(N) etc. charged particles. We choose Ss
for our discussions. The case of one charged doublet (a, d) with symmetry operations as

follows: s

Qa = egg_‘a, la =e”7 g,
Ca = g, C*=1=08
was considered in detail in ref. [2]. It describes minimal integrable model with one massive
doublet m, = ma which can be identified as thermal perturbation of the conformal Potts

model (¢ = 4/5). The exphcxt constructlon of the lowest conservatlon laws shows the even

_ spm Py, (s =1, 2) cha.rges are C’ odd:
2s
CP2J = —Pzac, i.e. Pz,a, = —%Ya, (%) (_1,
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and the odd spin P,,,; are C-even. The same phenomena also occured in the case of
the thermal perturbation of tricritical 3-state Potts model by the energy density field
€= ¢ 3,3)- In fact at the critical point there exists another chain of conservation laws
3;W(2,+1,0) = 0 generated by the descendents of spin-5 current W(s,0) which is C-odd.

Repeating the analysis of spins and dimensions of ref. [2] for our case
6 6
W0y =AB1 + -+, [A] = (?, “f.)’

one can conclude that B, = szt;S(;‘}' 3y which is the only C-odd (spin 3) field we can

construct. Therefore the lowest odd conservation laws is

0 W(s0) = MoB:d(3,3),

ie,
P4 = / (W(5’0)dz -+ /\p¢(351'%)d2) .

To prove that the next odd conserved charge is P;, we shall apply later the Zamolod-
chikov’s counting argument [3) comparing the number of quasiprimary descendents of W
with the number of descendents of ¢ 2z at level s which are not in the form L_l(qbg}),_l .

To continue the general discussion of the conservation laws corresponding to given
fusion procedure for Sy charged particles, we conjecture that the even spin P, are C-odd.

The first nontrivial case is of two doublets (a, @), (b,5):
aa—a+bd bboa, (12a)

with consistency condition

72 cos(sz) = 92, 72 cos(szs) = £17,

12b
2 cos(ﬂ) = +1, (126)
3
where the + sign is for s-odd and — sign for s-even. The solution of this system is
T 5
%a = o Zp= 1oy 8= 1,4,5,7,8,11 {mod 12). (12¢)

With this sign modification one can easily repeat previous analysis for chargeless parti-

cles for the case of S5 particles also. At the end of this general discussion the natural

8



question arises: can we find S-matrices satisfying eqs.(2), (3) and the corresponding mod-
ified bootstrap equations for any given bootstrap fusions and the corresponding infinite
set of conservation laws? If yes, which are the conformal models generating these minimal
integrable models? We have a definite answer only for the case given by egs.(12).

We shall first prove the existence of some nontrivial conservation laws with spin s =
1,4,5,7,8,11 in the tricritical 3-state Potts model perturbed by the field ¢(z,2) = ¢(%-*17)'
Since the field ¢>( 3.4 have zero Z; charges this perturbation does not destroy the Ss
symmetry of the model, Let T, be the space of quasiprimary descendent fields of identity
field I at level s+1: T,,7 = T,41/8,T,, and ¢MP be the space of quasiprimary descendent
fields of the field ¢"'r‘ at level s. If dim('i‘..H) > dim(&f"‘), it means that the mapping
8 : T.y1 — AM* should have a nonvanishing kernel. Therefore there exist fields
T,+1(2,2) € T,41 and ¢f’_hl(z,2‘) € gbf'_r'l such that

05 Tusa(2,2) = M0,80% (2, 2).. - (13)

Analogous arguments were already discussed for the case of descendents of spin-5 current
and spin-3 field ¢ 1 1y,
The generating function for the dimensions of the spaces are given in terms of the

characters [13]:

i (2m(m+l.)n+(m+t)r—mn)’-1 (2m(m+1)n+(m+l)r+mc)’—l
) E q imim+1) -q tm(m+1) ’

1
Xheo =
H:a=1(1 - q")

n=—0eo

(14)
for the highest weight field ¢, , in the minimal model with central charge ¢ = 1— me-m

The tricritical 3-state Potts model have ¢ = % or m = 6. We have then (in an obvious

notation):
o0

Y ¢*dim(T,) = (1 - g)xo(q) + 4,

=0
oo

3 ¢ Haim(P) = (1 - gx1(9),
=0
o0

Zq‘+5dim(wa+5) = (1 - g)xs(q),

=0

Y ¢t R dim($ TP = (1 - g)xa(a),

(15)



where xo(9) = Xxa,,(9;m = 6), and x3(g) = xha(@:m = 6), x5(¢) = Xnar(g,m = 6),
X 32(2) = Xhy,s(gym = 6). The results of the calculation for s < 17 are shown in Table 1
and Table 2 below. | '

Table 1: Dimensions of the spaces f‘,+1 and J&E*'*‘)

s | 1] 2|34 5l6|7]|8]9]w0]|t1]12]3 |14 |15]|16]17

dmfen{ 110 1] 00 2{0{3]|1)4]l2]7]3l10]7 1411 |2

a@L O 10| 1[0 [ 1] 212]3[4]5] 6|9 1001317 21 |25

S 2134516789 (10)n]12{1314]15[16 (17

dim(W 5,0 Ly Of 1) 1621103 3 5{5(8(8 (1314

dim( ¢4 ¥-P] T{O|1{ 1] 2]1]4]3]| 6/ 6/ 9|10/16{16 |2

From these two tables one dicscovers the C-even conservation laws with spin s = 1,5,7,11
and C-odd ones with spins s = 4,8. We conjecture that there exist an infinite number
of conservation laws with spin s = 1,4,5,7,8,11 (mod 12). These spins are exactly the
Coxeter exponents of Eg which was expected because of the existing of an alternative con-
struction of the conformal tricritical Potts model as the first model of the W Eg-extended
algebra.

As we have shown eqs.(12) give the bootstrap fusions consistent with the conservation
laws and with the Sy symmetry of the perturbed model. According to the analysis of
ref.[14] when the anti-particle appears as bound state of the 2-particle a a scattering the
corresponding reflection amplitude vanishes, i.e. S& = 0. Then the Y-B equations are
trivially satisfied by S and ST and we can start solving the bootstrap equations by using
of the knowledge (12) of the three poles of the S-matrices:



The simplest equations are related with the fusion a @ — a:

ST(8) = Saa(0 = i)Seald +33),
Saal8) = ST(0 - i3)SH(6 +i3),
or equivalently
Sea(8)Saa(6 ~ i%’i)s.,..(a + i-231) =1 (16)
The minimal solution of eq.(16) which satisfies the unitarity condition has the form:

sh(§ +3)eh(8 +iF5)oh(8 +i)
Sh(§ —5)eh(§ — i eh(§ — i)

Saa(a) = = f% (0)f‘—‘1—(0)f% (9),

where f;(8) = -’-&%ﬂ% Obviously S,.(8) has two simple poles with positive residues

sh(z—izw
2n

at §; = i%" and §; = i which correspond to the physical particles @ and b with masses
ma = m, and mgy = m,)%i according to eq.(6b). The simple pole § = i3 has negative
residue and represents a particle in the cross-channel. In fact by using of the crossing

symmetry we get

ST,(0) = Suslim — 8) = —F(O)F1(6)f 4, (6),
which has only one simple pole with positive residue at # = i§. This pole corresponds to
the neutral physical particle ¢, arising as an a @ bound state:

ad-—ec,

with mass m. = v2m,.

The scattering amplitude S35(f) can be obtained from the bootstrap equation:
LT T
Sab(e) = Saa(a ant t‘i—é)Saa(e -+ ti—é),

“and the result is:

Su0) = /3O O)f 4 O 16 (F10)

The pole structure of Sap leads to the following fusions:

ab— c+d,
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with mg = m4(v/341). Proceeding in this way we obtain the following full solution of the

boofstrap equations with only six particles:

Saa = f3 f1fy, Saz=—f3f1f s,

Sab = Sap = f1(f £ ) 1 F3fu, Sey=Sap = fa f1fa(f1)fs,

Sac = Sac = fy fufafy, Saa = Saa = f 3 (£1)*(£1)* (1) F

o = (fg P (f) (11 () f g ST = —fx(FP () (£ (), (17)
She = Sp, = f;,(fg)z_,‘(f})z(fg)zfﬁ, Soa = Spa = Fa(f1) (F ) (F ) (F3) s

Sece = —faf3(f1) ' fyf g, C Saa=—(f V() (£ (F1)(F e,

Sea = Fa (£ (£ (F 2 )0 (F3) Fua-
The full fusion structure of tricritical 3-state Potts model away from criticality is given as

follows: _
aa— a-+b, ad— e,

ab—a+d, ab—oc+d,

ac—a+d  ad-—b,

bb-—s a, b5 — no bound states, (18)
bec—a, bd— a,

cc—c+d, 'd d = no bound states,

cd— e

As one can see from (17) the scattering S-matrices we have obtained have a rich multipole
structure. The apperance of double poles was observed [15] and explained [16] in the case
of scattering amplitudes of Sine-Gordon model. This mechanism was recently generalized
by Christe and Mussardo in ref. [4] to multipoles. They also argue that in the case of
higher odd poles (of order 3, 5, etc) one can have new bound states if the residue of the
corresponding simple pole apperaring in the Laurent expansion of S(#) has appropriate
value. The direct check for the higher odd poles in (17) shows that no new particles
appeared. The only change is in the five of our fusions (18), namely:

bb—a+(8),  bb—(d),

bd— a+(b), cd—c+(d), (20)

dd—(c)+(d),
where parenthesis denotes the bound states coming through the odd multipoles.
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