Electroweak Measurements with the ATLAS Detector Lake Louise Winter Institute 2015

Philip Sommer on behalf of the ATLAS Collaboration

Albert-Ludwigs-Universität Freiburg

16. - 21.02.2015

Introduction

- ▶ test of the electroweak (EW) sector of the Standard Model at the TeV scale
- probe triple and quartic gauge boson self-interactions
- probe QCD calculations

- measurement of electroweak parameters
- diboson production
- EW production of single vector bosons
- triboson production
- EW diboson production
- needed for a consistent EW theory
- no explicit Higgs measurements in this talk

search for anomalous triple and quartic gauge couplings

Outline

Standa	rd Model Production Cross Sec	tion Measurement	Status: July 2014	∫£ dt [fb ⁻¹]	Reference
pp total		¢	0	8×10 ⁻⁸	ATLAS-CONF-2014-040
Jets R=0.4	ATLAS Preliminary	0.1 < ρ _T < 2 TeV	0	4.5	ATLAS-STDM-2013-11
Dijets R=0.4		.3 < m _{ji} < 5 TeV		4.5	JHEP 05, 059 (2014)
W	Bun 1 $\sqrt{s} = 7.8 \text{ TeV}$	¢.	d	0.035	PRD 85, 072004 (2012)
Z			d 1	0.035	PRD 85, 072004 (2012)
tŦ	0	1	Þ	4.6	arXiv:1408.5375 [hep-ex]
total	4		4	20.3	arXiv:1406.5375 [hep-ex]
t _{t-chan}	0			4.6	arXiv:1405.7844 [hep-ex]
Inter	Δ			20.3	ATLAS-CONF-2014-007
total	P			4.7	ATLAS-CONF-2012-157
ww	0			4.6	PRD 87, 112001 (2013)
τοταί γγ				20.3	ATLAS-CONF-2014-003
fiducia/	Y Y		M 1	4.9	SHEP 01, 066 (2013)
Wt	0			2.0	PLB 716, 142-159 (2012)
10539		HC pp v/c = 7 TeV		20.3	EB IC 72 2172 (2012)
VV Z.	Ă Ă		🏹	13.0	ATLAS-CONF-2013-021
77	0	Theory	i io	4.6	JHEP 03, 128 (2013)
total	Δ	Data	4	20.3	ATLAS-CONF-2013-020
ttγ Iducial	•	stat stat+syst		1.0	ATLAS-CONF-2011-153
Wγ Viduaial, njet=0	0	olarioyot		4.6	PRD 87, 112003 (2013)
Zγ fiducial, niet=0	\$	LHC pp $\sqrt{s} = 8 \text{ TeV}$	0	4.6	PRD 87, 112003 (2013)
tīW		Theory		20.3	ATLAS-CONF-2014-008
tī7	95% CL upper limit	Data		4.7	ATLAS-CONF-2012-126
total		stat		20.3	ATLAS-CONF-2014-038
Zjj EWK	a	stat+syst		20.3	JHEP 04, 031 (2014)
H→γγ (ducia)				20.3	Preliminary
/*W*jj EWK				20.3	arXiv:1405.6241 (hep-ex)
t _{s-chan}	95% CL upper limit			0.7	ATLAS-CONF-2011-118
1	10^{-3} 10^{-2} 10^{-1} 1 10^{1} 10^{2} 10^{3}	$10^4 \ 10^5 \ 10^6 \ 10^1$	1 0.5 1 1.5 2		
		[en la]	al a t a /tla a a		
		σ (DD)	uala/theory		

Resonant $Z \rightarrow 4\ell$ cross-section

- SM test of a rare decay process
- resonant $Z \rightarrow 4\ell$ used to calibrate $h \rightarrow 4\ell$ measurements

• determined cross-section and $BR(Z \rightarrow 4\ell)$

$$rac{{\sf BR}(Z
ightarrow 4\ell)}{{\sf BR}(Z
ightarrow 2\mu)} = rac{\sigma_{4\ell}^{{
m meas.}}}{\sigma_{4\mu}^{{
m meas.}}}\left(1-f_t
ight)$$

with correction factor f_t for t-channel contributions

	\sqrt{s}	measured value	theory prediction
	7 TeV	$2.67 \pm 0.62(stat.) \pm 0.14(syst.) \times 10^{-6}$	
BR	8 TeV	$3.33 \pm 0.27(stat.) \pm 0.11(syst.) \times 10^{-6}$	$3.33 \pm 0.01 imes 10^{-6}$
	combined	$3.20 \pm 0.25(\text{stat.}) \pm 0.12(\text{syst.}) \times 10^{-6}$	
afid. [fb]	7 TeV	$76 \pm 18(stat.) \pm 4(syst.) \pm 1.4(lumi)$	90.0 ± 2.1
0 [ID]	8 TeV	$107 \pm 9(\text{stat.}) \pm 4(\text{syst.}) \pm 3(\text{lumi})$	104.8 ± 2.5

- measurement dominated by statistical uncertainty
- good agreement with theory prediction

$W^+W^- ightarrow \ell u \ell u$ cross-section

ATLAS-CONF-2014-033

- very hard selection-criteria on E^{miss} and a jet-veto to suppress tt background
- dominant uncertainty due to jet-veto

- measured cross-section at 8 TeV is 2.1σ higher than NLO calculation
- enhancement of total cross-section by $\sim 10\%$ from NNLO arXiv:1408.5243
- enhancement of fid. cross-section by taking into account resummation effects arXiv:1407.4537,arXiv:1407.4481,arXiv:1407.4745

-				
\sqrt{s}	$\int \mathcal{L} dt \ [fb^{-1}]$	Measured total cross-section [pb]	Theory [pb]	
7 TeV	4.6	$51.9\pm2.0(ext{stat.})\pm3.9(ext{syst.})\pm2.0(ext{lumi})$	$44.7^{2.1}_{-1.9}$	
8 TeV	20.3	$71.4 \pm 1.2 ({ m stat.})^{5.0}_{-4.4} ({ m syst.})^{2.2}_{2.1} ({ m lumi})$	$58.7^{3.0}_{-2.7}$	incl. Higgs

WZ and ZZ cross-sections

$WZ \rightarrow \ell \nu \ell \ell$ ATLAS-CONF-2013-021

 measurement at 7 and 8 TeV in fully leptonic final state

$ZZ \rightarrow 4\ell \& ZZ \rightarrow \ell\ell\nu\nu$ (7TeV) ATLAS-CONF-2013-020

- measurement at 7 and 8 TeV in fully leptonic final state and in 2l2v for 7 TeV
- ► contributions from h → ZZ → 4ℓ suppressed due to kinematic selection

- both measurements in agreement with theory prediction
- WZ and $ZZ \rightarrow 4\ell$ analyses do *not* rely on a jet veto

$WW/WZ ightarrow \ell u jj$ cross-section

JHEP01(2015)049

- new, final 7 TeV result
- measurement of combined WW/WZ cross-section in semi-leptonic final state
- 89% background from W+jets

- signal yield extracted from a fit to m_{jj} distribution
- ▶ large m_{ii} range allows to constrain the W+jets rate in signal free regions
- the observed significance is 3.4σ
- $\sigma_{\rm tot} = 68 \pm 7 ({
 m stat.}) \pm 19 ({
 m syst.})$ pb, compared to $\sigma_{
 m tot}^{
 m theo.} = 61.1 \pm 2.2$ pb
- ▶ with large uncertainties from W+jets modelling and jet uncertainties

JHEP01(2014)031

Electroweak Zjj production (VBF)

- strong production dominates by far
- enhance EW production by exploring VBF topology with two high m_{jj} jets with rapditiy gap
- (strong) background template constrained by data-driven technique, electroweak production extracted in EW enriched category
- strong-production-only hypothesis rejected at $> 5\sigma$

selection	Measured fiducial cross-section [fb]	Powheg
$m_{jj} > 250 \text{ GeV}$	$54.7 \pm 4.6(\text{stat.})^{9.8}_{-10.4}(\text{syst.}) \pm 2.5(\text{lumi})$	$46.1 \pm 0.2 (ext{stat.})^{+0.3}_{-0.2} (ext{scale}) \pm 0.8 (ext{PDF}) \pm 0.5 (ext{model})$
$m_{jj} > 1 { m TeV}$	$10.7\pm1.9(stat.)\pm1.9(syst.)\pm0.3(lumi)$	$9.38 \pm 0.05({ m stat.})^{+0.15}_{-0.24}({ m scale}) \pm 0.24({ m PDF}) \pm 0.09({ m model})$

Electroweak WWjj production (VBS)

- \blacktriangleright EWSB needed to unitarise VV scattering at $Q^2 \sim 1~{
 m TeV}$
- key process to study the SM nature of EWSB, most promising at LHC is same-sign W[±]W[±] scattering

electroweak production in t-channel

additional category enhanced in VBS

by cutting on $|\Delta y_{jj}|$ in addition

prompt: prompt leptons from multilepton processes conversions: photon conversions and charge mis-ID

measurement of EW + strong production selected at high m_{ii}

Electroweak *WWjj* production (VBS)

a total of 34 candidate events in VBS region

	measurement	POWHEG+PYTHIA8 prediction	
	inclusive category		
cross-section [fb]	$2.1\pm0.5(ext{stat})\pm0.3(ext{syst})$	1.5 ± 0.11	
significance	4.5σ	3.4σ	
	VBS category		
cross-section [fb]	$1.3\pm0.4(ext{stat})\pm0.2(ext{syst})$	0.95 ± 0.06	
significance	3.6σ	2.8σ	

- measured cross-sections slightly higher but in agreement with theory prediction
- first evidence for a VVVV vertex

Anomalous Gauge Couplings

- place model independent limits on BSM physics in the EW sector
- parametrised in anomalous couplings
- ▶ limits on aTGC couplings from 7 TeV analyses, with new limits from $WW \rightarrow \ell \nu j j$
- WWZ and WW γ limits becoming comparable to LEP
- measurement of WW scattering allows for setting limits on anomalous quartic couplings
- ▶ first limits on α₄, α₅ from W[±]W[±] (for notation see e.g. Phys. Rev. D 22, 200)

- measurement of diboson processes with accuracy of a few percent
- mostly good agreement with theory predictions
- theoretical and experimental work ongoing to understand WW discrepancy
- measurement of very rare processes become available:
- rare $Z \rightarrow 4\ell$ decay process
- evidence for VV scattering processes
- observation of electroweak Z production
- placed limits on aTGC and aQGC
- many run I results at 8 TeV about to come out before start of run II
- diboson differential distributions, triboson processes