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Models with Dirac gauginos are appealing scenarios for physics beyond the Standard Model. They have
smaller radiative corrections to scalar soft masses, a suppression of certain supersymmetry (SUSY)
production processes at the LHC, and ameliorated flavor constraints. Unfortunately, they are generically
plagued by tachyons charged under the Standard Model, and attempts to eliminate such states typically
spoil the positive features. The recently proposed “Goldstone gaugino” mechanism provides a simple
realization of Dirac gauginos that is automatically free of dangerous tachyonic states. We provide details on
this mechanism and explore models for its origin. In particular, we find SUSY QCDmodels that realize this
idea simply and discuss scenarios for unification.
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I. INTRODUCTION

The turn-on of the LHC has challenged a number of
basic ideas about naturalness. While parameter regions for
supersymmetry and other solutions to the hierarchy prob-
lem remain, large swaths of “natural” parameter space have
been eliminated, causing us to rethink whether the weak
scale is, itself, natural [1–6].
A great challenge for a number of these scenarios comes

from the renormalization group flow. In the minimal super-
symmetric standard model (MSSM), for instance, large stop
masses feed into theHiggs soft masses quickly, meaning that
the stopmasses should be ideally generated at a low scale. At
the same time, existing searches for gluinos have been
pushing their masses up, which, in turn, exacerbate their
corrections to the stops and Higgs soft masses.
A simple resolution of this could lie in a departure

from the framework of the MSSM. One simple deviation
is to break supersymmetry with Dirac gauginos [7–14],
rather than Majorana. A remarkable effect of the presence
of the Dirac gaugino mass is that it is “supersoft” [14]
and contributes only a finite threshold to the soft scalar
masses. As a consequence, there is no sizable running
contributing to the Higgs mass, and even very heavy
squarks (stops) would introduce only mild ∼1%–10%
tuning [14].

Moreover, this supersoftness can result in dramatic
phenomenological effects. The leading effect is to have
gauginos which are naturally 5–10 times heavier than the
scalar sector, which is at odds with conventional expect-
ations from the MSSM. By allowing this, a number of other
possibilities arise. First, because the gauginos are both
heavy and Dirac, the production cross section for colored
scalars is suppressed, weakening limits on them [15].
Heavy Dirac gauginos also weaken flavor and CP con-
straints considerably [16], alleviating the supersymmetry
(SUSY) flavor and CP problems. These setups can natu-
rally arise from a number of UV scenarios [7–59].
From this, it would seem that Dirac gauginos are a

promising approach to solving the naturalness issues of
supersymmetry. There are, however, a few problems [14]:
the existence of the supersoft operator naturally is accom-
panied by a Bμ-type term, which induces a tachyon for
either the scalar or pseudoscalar in the adjoint; RG running
tends to spread the gauginos widely, leading to very heavy
gluinos; and finally, theD-term quartic for the Higgs boson
is naturally suppressed.1 A singlet coupling to HuHd in the
superpotential can ameliorate the lack of D-term quartics,
and modifying assumptions about gaugino universality can
compensate for the running, which pulls up the gluino. The
Bμ term, however, is quite robust, appearing ubiquitously
in models that generate the Dirac gaugino mass.
Consequently, any scenario that truly allows natural models
of Dirac gauginos must first address this Bμ problem.
Addressing this would eliminate the last vestiges of
objections to the Dirac gaugino scenario.
In [60] a solution to the Bμ problem of Dirac gauginos

was proposed, coined the Goldstone gaugino (GoGa)
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mechanism. There, the right-handed gaugino originates
from a (pseudo-)Goldstone superfield of a spontaneously
broken anomalous global symmetry. In the GoGa scenario,
the dangerous operators are naturally absent, while theDirac
gaugino mass is still present and originates from a Wess-
Zumino-Witten (WZW) term. In this paper, we outline the
generic features of the Goldstone gaugino mechanism
(Sec. II), and present natural UV completions to the
GoGa scenario, one strongly coupled in the context of
supersymmetric QCD (SQCD) with F ¼ N flavors
(Sec. III), and another one perturbative (Sec. IV). Finally,
we discuss their implications for naturalness (Sec. V B),
gauge coupling unification (Sec. V C), and collider phe-
nomenology (Sec. V D). We conclude in Sec. VI.

II. GOLDSTONE GAUGINOS

The Goldstone gaugino mechanism is a realization of
Dirac gauginos and has been described in [60]. Here we
review the basics of Dirac gauginos as well as the GoGa
mechanism, outlining its essential ingredients and how it
addresses the Bμ problem.
The Dirac gaugino mass operator, to which we will refer

as the classic supersoft (CS) operator, marries the fermion
in the gauge vector supermultiplet to the fermion in an
adjoint chiral superfield A,

ΔW ¼
ffiffiffi
2

p

MC
W0αWi

αAi; ð2:1Þ

where W0
α is a spurion superfield for a U(1) that acquires a

D-term expectation value hW0
αi ¼ θαD. This operator

generates a Dirac mass mD ¼ D=MC for the fermions,
and a mass for the real scalarmaR ¼ 2mD, while leaving the
pseudoscalar massless. Note that this operator respects a
shift symmetry under which the pseudoscalar shifts by a
constant, aI → aI þ χ.
The dangerous Bμ-like term arises from

ΔW ¼ 1

2M2
LT

W0αW0
αAiAi; ð2:2Þ

to which we will refer as the “lemon-twist” supersoft (LTS)
operator [30]. It generates a mass squared with opposite
sign for aR and aI , i.e. δm2

aR ¼ −δm2
aI ¼ D2=M2

LT. In
principle, the theory as written need not be problematic.
If the LTS operator gives a negative mass squared to aR,
then in combination with the classic operator it may yield
no tachyons.
As a matter of practical course, however, this is not the

case. If both (2.1) and (2.2) arise at the same loop order, then
we naturally expect maI ∼ 4πmD, and the classic supersoft
operator cannot cancel the tachyon from the lemon-twist
operator. This is aggravated by the fact that the classic
operator comes with a gi for the gauge group indexed by i,

which further suppresses it relative to lemon twist. A solution
involving large additional F-term scalar masses for the
adjoint breaks supersoftness, and so the standard model
(SM) superpartners obtain masses fixed by a UV-sensitive
logarithm rather than just the finite threshold, leading back to
the need for tuning as in the conventional MSSM. A
superpotential mass ΔW ¼ mAA2, as the other simple
alternative, is unappealing since its required size would
render the SM gauginos almost purely Majorana [14,61].
The essential lemon-twist issue is easily seen in the

context of the simplest toy model that gives rise to Dirac
gaugino masses. Consider, in addition to the chiral SM
adjoint A, messengers T, T which are fundamentals under
the SM gauge group and charged under the U(1) that carries
the D-term vacuum expectation value (VEV). With the
superpotential

W ¼ λTAT þ μTT ð2:3Þ
and the masses for the messenger scalars split by the
D-term, μ2 �D, one-loop diagrams generate both classic
and lemon-twist operators with coefficients

1

MC
¼

ffiffiffi
2

p giλ
16π2

1

μ
; ð2:4Þ

1

M2
LT

¼ −
λ2

16π2
1

μ2
; ð2:5Þ

where gi is the appropriate SM gauge coupling. The
problem seems intractable: since we may write both
W0WA and W2, no obvious symmetry is able to forbid
the lemon-twist operator, ðW0AÞ2.
Ideally, we would impose a symmetry aI → aI þ χ with

χ ¼ const, which would forbid lemon twist but allow the
classic operator. This breaks supersymmetry, however, and
while a useful symmetry to keep in mind, it is difficult to
implement.2 If we elevate the shift parameter χ to a chiral
superfield and impose a supershift symmetry A → Aþ χ,
this necessarily forbids both the classic and the lemon-
twist terms.
There is, however, a simple solution: namely, the

Goldstone gaugino mechanism [60], whose essential ingre-
dients we shall now review.
In the GoGa mechanism, a shift symmetry forbidding the

lemon-twist operator emerges from the spontaneous break-
ing of an approximate global symmetry, which is explicitly

2Interestingly, this symmetry would allow an operator in the
Kähler potential

R
d4θDαV 0WαðAþ A†Þ [52] (“lime twist”),which

is not supersoft and induces large two-loop contributions to the soft
masses of MSSM scalars. This operator is not gauge invariant,
however, but could plausibly still arise if V 0 is simply a spurion
field, not representing any genuine gauge symmetry. Still, if the
symmetry represented by V 0 could have been gauged (in the sense
that anomalies cancel and no other gauge noninvariant terms are
present), which is the usual case, it will not arise radiatively.
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violated by the SM gauge couplings. Moreover, the
currents associated with the broken generators of
the global symmetry have a mixed anomaly under the
SM and the U(1) that carries the D-term VEV. This mixed
anomaly turns out to be the source of the classic supersoft
operator, identified with a WZW term [62]. In this
realization, the right-handed gauginos originate from the
Goldstones of the broken symmetry. In the limit g → 0 the
anomaly vanishes and so does the classic supersoft oper-
ator, consistent with the restoration of an exact shift
symmetry.
A simple toy model illustrating this mechanism is the

following. Consider as before the messenger sector T, T,
now coupling to a bifundamental Σ of an enlarged
SUðFÞL × SUðFÞR × Uð1ÞT global symmetry,

W ¼ λTΣT: ð2:6Þ

The Standard Model is embedded in the vector subgroup
SUðFÞV , and we assume the UV dynamics induces a VEV
for Σ, hΣi ¼ f × 1, spontaneously breaking the global
symmetry to SUðFÞV × Uð1ÞT . The surviving IR degrees
of freedom are the Goldstone fields Π associated with the
broken generators, parametrized as

Σ ¼ ðf þ σÞeΠ=f: ð2:7Þ

The axial currents associated with the Goldstones Π have a
mixed SUðFÞA-SUðFÞV-Uð1ÞT anomaly, which is realized
in the IR by a (supersymmetric) WZW term,

WWZW ⊃
g

16π2f
Wα

TW
i
αΠi: ð2:8Þ

This is precisely the classic supersoft operator, with
the D-term of Wα

T identified as the SUSY breaking
spurion.
The absence of the lemon-twist operator in the low energy

theory can be demonstrated in several ways, which we do in
the Appendix. It can be shown diagrammatically, which we
do in Appendix A, by keeping track of the contributions to
the scalar couplings from up to OðΠ2Þ terms in the UV
superpotential. Alternatively, one can argue that the lemon-
twist operator cannot begenerated because theGoldstonesΠ,
when treated as background fields, do not contribute to the
messenger masses, and hence cannot correct the Uð1ÞT
holomorphic gauge coupling below themessenger threshold.
We show this explicitly in Appendix B. Finally, one can
demonstrate the absence of lemon twist in the linear
realization of Goldstone gauginos, where a tadpole-induced
shift in the VEVof the trace component of Σ cancels the Bμ
terms that lead to tachyonic scalars, which we describe in
Appendix C.

III. A STRONGLY COUPLED MODEL

A. Warm-up: Nonrenormalizable toy model

A crucial aspect of the GoGa mechanism that was not
addressed in the previous discussion is the dynamics that
induces the spontaneous breaking of the global symmetry.
This dynamics can be parametrized in the simple toy model
(3.1) by the inclusion of a nonrenormalizable operator
such as

W ¼ λTΣT þ 1

ΛF−2 SðDetΣ − vFÞ; ð3:1Þ

where S is a singlet whose F-term induces the desired VEV
for Σ.
It turns out that this symmetry breaking parametriza-

tion automatically arises in SQCD with F ¼ N flavors
via the strong dynamics. In fact, all the basic ingredients
for the Goldstone gaugino mechanism are naturally
present in this SQCD scenario: (i) the Goldstone fields
arise as composite states of the microscopic quarks, with
the composite meson M ¼ QQ playing the analogous
role of Σ in our toy model; (ii) the UV theory has the
appropriate global symmetry, namely, SUðFÞL×
SUðFÞR × Uð1ÞB, (iii) which is spontaneously broken
via the strong dynamics in the desired pattern due to
the quantum deformation of the moduli space, and (iv) a
WZW term is present in the IR to realize the mixed
anomaly that sources the classic supersoft operator. In
order to fully implement this strongly coupled model of
Goldstone gauginos, all that is left to do is to embed the
Standard Model gauge symmetries in the diagonal flavor
group and induce a SUSY breaking D-term associated
with the Uð1ÞB baryon number.
This strongly coupled model provides a coherent and

elegant realization of the GoGa mechanism. In the follow-
ing we will review some important aspects of F ¼ N
SQCD and discuss the GoGa implementation in detail.
In the last subsection we will derive the classic supersoft
operator starting from F ¼ N þ 1 SQCD and integrating
out the flavored baryons to recover the F ¼ N limit.

B. Composite Goldstones and SUSY QCD

A minimal realization of the Goldstone gaugino scenario
can arise in models of SUSY QCD that become strongly
coupled in the IR once we weakly gauge a subgroup of the
theory’s flavor symmetry and identify it with the SM. These
theories are described in the UV by an SUðNÞ gauge group
with F flavors of quarks denoted by Q and Q. The IR
degrees of freedom are weakly coupled composite mesons
M ¼ QQ, and for F ≥ N also baryons B ¼ QN and B ¼
QN [63,64]. The strong coupling scale is related to the
lowest component of the holomorphic scale, Λb, with b ¼
3N − F the one-loop beta function for the SUðNÞ gauge
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coupling. For reference, we list the symmetries and field
content of this class of theories in Table I.
The dynamics underlying the generation of a Dirac

gaugino mass is illustrated in Fig. 1. We note that the
gaugino is odd under a C-parity that exchanges Q and Q
while the mesino ψM is even, so the diagram must involve a
breaking of this symmetry. The breaking can enter through
a splitting of the squark soft masses,3 which, apart from
anomaly-mediated terms, will constitute the only source of
SUSY breaking on the UV variables in our setup.
Moreover, the strong dynamics inducing the hQQi

condensate is also responsible for Q ↔ Q exchange in
the diagram, allowing the external state on the right-hand
side to be identified with the mesino ψM.
Before proceeding, we note two main advantages we

stand to realize in this setup:
(i) The desired symmetry breaking vacuum hMi ∝ 1 in

a supersymmetric theory can be a natural conse-
quence of the strong dynamics, rather than being
enforced through dedicated model building;

(ii) The theory above the strong coupling scale can be
governed by a smaller number of degrees of free-
dom, allowing for models where SM gauge cou-
plings remain weak below the GUT scale and
recovering the possibility of perturbative unification.

C. Realization in F ¼ N SUSY QCD

The Goldstone gaugino mechanism emerges quite simply
in an SUðNÞ gauge theory with F ¼ N flavors of quarks Q,
Q, transforming as an N and N of SUðNÞ, respectively. The
theory is described by a manifold of supersymmetric vacua
parametrized bymeson (Mi

j) and baryon (B,B) moduli, with
certain combinations of these corresponding to physical
states at low energy. The moduli space is deformed at the
quantum level, according to the constraint equation

detM − BB ¼ Λ2N; ð3:2Þ

which signals the spontaneous breaking of the SUðFÞL ×
SUðFÞR × Uð1ÞB × Uð1ÞR global symmetry. Thus the
Goldstone superfield providing the right-handed gaugino
can emerge naturally as a composite state of such a theory
expanded around a vacuum Mi

j ¼ Λ2δij, BB ¼ 0
4 once the

appropriate flavor symmetries are weakly gauged.
We therefore assume a vacuum whereM ∝ 1N , in such a

way that N2 − 1 meson components (the traceless compo-
nent of M) are identified as Goldstones. We parametrize
these fields as

M ¼ ΛðΛþ σÞeΠiTi=f;

Πijθ¼θ¼0
¼ si þ iπi;

f ∼ Λ; ð3:3Þ

with Ti denoting the generators of SUðFÞV under which Πi

transforms as an adjoint.5 The constraint (3.2) then imposes
to leading order

σ ¼ 1

NΛ2N−1 BB; ð3:4Þ

removing the singlet meson superfield from the theory.
The classic supersoft operator in this theory arises as a

WZW term once we gauge the diagonal flavor group,
SUðFÞV , and identify it with the SM gauge group or one of
its simple factors. Specifically the UV theory possesses an
SUðFÞA-SUðFÞV-Uð1ÞB mixed anomaly6 which is not

TABLE I. Global symmetries and charges for the UV and IR
degrees of freedom of SUSY QCD. The diagonal flavor subgroup
SUðFÞV is gauged and identified with the SM.

SUðNÞ SUðFÞL SUðFÞR Uð1ÞB Uð1ÞA SUðFÞV Uð1ÞR
Q □ □ 1 1 1 □ F−N

F

Q □ 1 □ −1 1 □
F−N
F

M 1 □ □ 0 2 1þ Adj. 2 · F−NF
B 1 ðFNÞ 1 N N ðFNÞ N · F−NF
B 1 1 ðFNÞ −N N ðFNÞ N · F−NF
Λb 1 1 1 0 2F 1 0

FIG. 1. Schematic constituent diagram of gaugino-mesino
coupling generating the Dirac gaugino state in the IR theory.
The D-term insertion reflects C-breaking soft masses for the
microscopic squarks ( ~m2

Q ≠ ~m2
Q
), and the blob indicates the

strong dynamics underlying the hQQi condensate. An analogous
diagram with Q ↔ Q also contributes to the Dirac gaugino mass.

3We can express UV soft masses as projections onto Uð1ÞA and
Uð1ÞB directions, such that the mass insertion in Fig. 1 corre-
sponds to a baryon current. We expand on this below.

4As we shall see, it is natural for one of the baryons to acquire a
VEV of OðΛÞ, but since the other baryon will have a large soft
mass, it is energetically favorable to satisfy the constraint (3.2)
with a meson VEV.

5Because of the incalculability of theKähler potential away from
the origin of the moduli space, it is not possible to determine the
numerical ratio between f and Λ. A canonical Kähler potential of
the formΔK ¼ TrðM†MÞ=Λ2 would imply f ¼ Λ and a canonical
normalization of σ such that σ → σ=

ffiffiffiffi
N

p
in Eq. (3.3).

6We use this to denote the combination of SUðFÞ2L;R − Uð1ÞB
anomalies containing the current to which the Goldstones couple.
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realized by the IR fermionic degrees of freedom. Instead the
anomaly is realized by the Goldstones via a supersym-
metric WZW term

WWZW ⊃
gN

16π2f
Wα

BW
i
αΠi ð3:5Þ

with field strengthsWα
B for Uð1ÞB andWα for SUðFÞV. This

form of the WZW term will be derived in the following
subsection starting from SQCD with F ¼ N þ 1 flavors,
where all anomalies are saturated by loops of the IR
fermions. We will then generate the WZW term and recover
the F ¼ N limit by integrating out the flavored baryons of
the theory.
Equation (3.5) implies that the D-term encoding SUSY

breaking in the IR spectrum can be traced to a splitting of the
microscopic squark soft masses. To understand the SUSY-
breaking spurion in the IR, we recall that Kähler termsΔK ¼
ZQ†Q admit a background U(1) gauge symmetry

Q → e−ΩQ; Z → eΩþΩ†
Z; ð3:6Þ

with Ω a chiral superfield and lnZ transforming as the U(1)
gauge field,

lnZ → lnZ þ Ωþ Ω†: ð3:7Þ

This allows the construction of an invariant “field strength”
for thevector superfield lnZ; cf. [65] for details. Allowing for
~m2
Q ≠ ~m2

Q
via distinctwave function factors for the fields, we

thus have

Wα
B ¼ −

1

4
D2Dα ln

�
ZQ

ZQ

�
⊃ 2 ~m2

Vθ
α; ð3:8Þ

where we use the notation

~m2
A ≡ ~m2

Q þ ~m2

Q

2
; ~m2

V ≡ ~m2
Q − ~m2

Q

2
ð3:9Þ

for soft masses projected along the axial and vector U(1)
directions, respectively. We thereby recover the Dirac gau-
ginomass generated by the classic supersoft operator (3.5) as

mD ¼ gN
16π2

~m2
V

f
: ð3:10Þ

Soft masses for the microscopic SQCD squarks are
expected also to feed into the real scalar components of
the Goldstone superfields. Assuming a lowest order Kähler
term for the mesons of the form

ΔK ∝
ZQZQ

Λ2
I

TrðM†MÞ ð3:11Þ

with normalization related to the invariant scale Λ2
I ¼

Λ†ZF=b
Q ZF=b

Q
Λ of [66], and then expanding in powers of

θ reveals soft mass terms for the scalars, s,

~m2
s ∝ ~m2

A: ð3:12Þ

The pseudoscalars, on the other hand, are left
massless by (3.11); this is exactly as required by simple
symmetry arguments, since the SQCD squark soft
masses do not break the global symmetry, meaning that
the masses of the π fields remain protected by
Goldstone’s theorem.
One potential issue that needs to be addressed is the

generation of a tachynic soft mass for one of the baryons
in the presence of a Uð1ÞB D-term. The easiest way to see
this is to introduce a Uð1ÞB Fayet-Iliopoulos term, and to
gauge Uð1ÞB so that the auxiliary field D couples to the
scalar baryons in the Kähler potential in the usual way.7

After integrating out the auxiliary field D, a tachyonic
mass is induced for one of the baryons. This need not be a
problem, however, since the SQCD baryons do not carry
SM charges. In this case, we expect a Kähler potential
(neglecting interactions with other fields) containing a
general polynomial in B and B�, with the leading term
being − ~m2

VBB
� and with higher terms suppressed by the

scale Λ. For this scenario to be viable, this baryonic
direction cannot be a runaway, but instead the polynomial
must have the (very reasonable) property that it has a
minimum somewhere with characteristic value Λ.
Alternatively, these baryons could acquire mass from a
higher dimension operator μ4Q3Q3=M3�, with M� > Λ.
For this to work, however, both M� and Λ should be very
high scales to allow the mass μ4=M3� to be larger than ~mV
and compensate for the tachyonic soft mass. Regardless,
this tachyonic direction is a far less serious concern in that
it does not apply to any of the fields which must be present
in the low energy theory, and a baryon VEV does not
cause any fundamental problems as long as it does not
run away.
Last, we comment on the matching of additional

anomalies between the UV and IR theories. In ordinary
SQCD with ungauged flavored symmetries, there is, for
example, a Uð1ÞRSUðFÞ2 anomaly matched in the IR by
the mesino ψM. One might naively worry that this anomaly
is not matched in the deep IR once the mesino marries the
SM gaugino and is integrated out. That is not the case,
however. Different from SQCD with ungauged flavor
symmetries, in our scenario the gauging of some flavor
symmetries introduces extra fermionic degrees of freedom
to the theory, namely the SM gauginos. These extra
fermions contribute so as to cancel the Uð1ÞRSUðFÞ2
anomaly, hence preserving the t’Hooft anomaly matching
conditions. The same reasoning applies to all the other
anomalies realized by the composite fermions in our
scenario with gauged flavor symmetries.

7Additionally the baryon mass matrix receives an off-diagonal
component due to a linear term generated for the singlet (trace)
component of the meson.
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D. Connecting with F ≠ N

The structure of the low energy theory with F ¼ N can
be illuminated by starting in a theory with F ¼ N þ 1
flavors—whose details we briefly recap—and adding a
supersymmetric mass for one flavor.
In SQCD with F ¼ N þ 1, the origin remains on the

quantummoduli space (that is, the theory s-confines), and all
of the mesons and baryons correspond to light physical
states. We will denote these as M and B;B, respectively.
Deforming the theory such that M moves away from the
origin, the baryons decouple via the theory’s superpotential
W ¼ BMB and any anomalies matched by these baryons
must translate into WZW terms in the surviving F ¼ N
theory. This nondecoupling effect of the baryons is clearly
seen by performing a standard perturbative loop calculation
and mirrors the role of “constituent quarks” in ordinary
QCD [67].
In the F ¼ N þ 1 theory the meson directions develop

VEVs proportional to supersymmetric QQ mass terms.
With ΛNþ1 indicating the strong coupling scale in this
theory, the vacuum is described by

hðM−1Þij detMi ¼ mi
jΛ

2N−1
Nþ1 ; ð3:13Þ

indicating that fluctuations of the composites do not lie on
the moduli constraint surface. Classical relationships
between the composites therefore arise as equations of
motion, which can be appropriately arranged with

W ¼ 1

Λ2N−1
Nþ1

ðBMB − detMÞ: ð3:14Þ

Baryons thus become massive as hMi ≠ 0.
To recover the F ¼ N case, we introduce a mass for the

Fth flavor,

ΔW ¼ mQFQF ¼ mMF
F; ð3:15Þ

and decompose the composite fields as

M¼
�
M X

X MF
F

�
; B¼

�
Y

B

�T

; B¼
�
Y

B

�
; ð3:16Þ

where M, X, X, Y, and Y transform under the □ ×□,
1 ×□, □ × 1, □ × 1, and 1 ×□ representations of
SUðF − 1ÞL × SUðF − 1ÞR, respectively, and MF

F, B,
and B are singlets. The vacuum condition (3.13) becomes

detM − BB ¼ mΛ2N−1
Nþ1 ¼ Λ2N

N ; ð3:17Þ

where the usual scale matching between the F ¼ N þ 1

and F ¼ N theories provides the second equality. The Y, Y
and X, X fields become massive and can be integrated out.
We shall now discuss the effects of integrating out Y, Y.
The Y, Y baryons mediate mixed SUðFÞ2Uð1ÞB anoma-

lies, and once integrated out (taking m → ∞), the F ¼ N
limit is recovered and WZW terms must arise to realize
those anomalies. Indeed we will check appropriate dia-
grams explicitly. Using the parametrization Eq. (3.3) forM,
the pertinent superpotential couplings are

ΔW ¼ mYeΠ=fY; ð3:18Þ

where Y, Y have been normalized to have canonical
dimension, i.e. Y=ΛN−1

N → Y and Y=ΛN−1
N → Y in

Eq. (3.14). At linear order we obtain the following
interactions for the scalar components of Π:

ΔL ¼ −m
�
1þ sa þ iπa

f
Ta

�
ψψc þ H:c:; ð3:19Þ

where ψ ;ψc are the (left-handed Weyl) fermion compo-
nents of Y and Y. We can now proceed with familiar
component calculations to recover the various pieces of the
F ¼ N theory’s WZW term, Eq. (3.5).
Consider the pseudoscalar π for example. From a three-

point diagram involving π and two gauge bosons we extract
the Oðp2Þ piece, which is the only term that survives as
m → ∞; one fermion propagator therefore contributes pro-
portional to its mass rather than momentum. Hence the
nondecoupling effect ofY,Y on the SUðFÞA-SUðFÞV-Uð1ÞB
anomaly gives

ð3:20Þ

Here the cross indicates the mass insertionm; pð1;2Þ are the momenta entering the gauge vertices, and the factor of N comes
from the Uð1ÞB charge of the fermions.8 This result implies a WZW term [68,69] in the low-energy Lagrangian,

8We have taken the baryon number to be gauged in this component calculation. We may ultimately turn its gauge coupling off since
the Uð1ÞB field strength needs to act only through its OðθÞ SUSY breaking spurion.
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ΔL ¼ −
gN

16π2f
πiFi

μν
~Bμν: ð3:21Þ

This particular derivation parallels that of the π0 → γγ
computation with constituent quarks in QCD [67].
The WZW term (3.21) can be written as part of a

superpotential, and we can confirm with similar manipu-
lations to those above that terms related to it by SUSY are
consistently reproduced by taking

ΔW ¼ gN
16π2f

Wα
BW

i
αΠi; ð3:22Þ

and hence we have recovered the classic supersoft
operator (3.5).

IV. A PERTURBATIVE MODEL

Even though strongly-coupled models offer a natural UV
completion for Goldstone gauginos, perturbative and
renormalizable UV completions are also possible. In this
section we discuss one such possibility. The basic ingre-
dients discussed in Sec. II are easily incorporated, such as a
messenger sector coupling to bifundamentals of an
approximate chiral symmetry containing the SM as a
subgroup. To ensure the generation of the classic supersoft
operator, the spontaneous breaking of the global symmetry
must be arranged such that the currents associated with the
Goldstone fields are anomalous with respect to the SM and
the U(1) carrying the SUSY breaking D-term.
In the model we will discuss, a larger messenger sector

will be necessary to avoid destabilizing the symmetry
breaking vacuum. The model will consist simply of two
replicas of the toy model discussed in Sec. II,

Wmess ¼ λT1Σ1T1 þ λT2Σ2T2; ð4:1Þ

where the equality of couplings is enforced by an exchange
symmetry 1 ↔ 2. We will discuss the symmetry breaking
sector shortly. This messenger sector by itself is invariant
under an enlarged global symmetry, SUðFÞL1 × SUðFÞR1×
Uð1ÞT1 × Uð1ÞA1 and SUðFÞL2 × SUðFÞR2 × Uð1ÞT2 ×
Uð1ÞA2, acting independently on each of the two replicas.
The A subscript denotes an axial symmetry. Supposing for
the moment that both Σ1 and Σ2 would obtain diagonal
VEVs, hΣ1i ¼ hΣ2i ¼ f × 1, the global symmetry would
be broken to the diagonal subgroups, SUðFÞV1 × Uð1ÞT1
and SUðFÞV2 × Uð1ÞT2, and the low energy theory would
have 2F2 Goldstones, Π1 and Π2, such that

Σ1;2 ¼ ðf þ σ1;2ÞeΠ1;2=f;

Π1;2jθ;θ¼0 ¼ s1;2 þ iπ1;2: ð4:2Þ

Moreover, there would be two independent mixed anoma-
lies as displayed below.

The symmetry breaking sector, however, will not respect
the full chiral symmetry of the messenger sector, but only
the chiral subgroup SUðFÞL × SUðFÞR × Uð1ÞA where
L ¼ L1 þ L2 and R ¼ R1 þ R2, under which Σ1 and Σ2

transform as ð□;□; 1Þ and ð□;□;−1Þ, respectively. In
reality, therefore, there will only be F2 Goldstone bosons
resulting from the spontaneous breaking SUðFÞL ×
SUðFÞR×Uð1ÞA→SUðFÞV×Uð1ÞA, with F2 − 1 of them
given by the linear combination π ¼ π1 − π2. The mixed
anomaly sourcing the classic supersoft operator will be
SUðFÞA-SUðFÞV-Uð1ÞT ,9 schematically displayed below
(where T ¼ T1 − T2 denotes the messenger number).

This mixed anomaly is manifested in the IR by a WZW
term,

WWZW ⊃
g

16π2f
Wα

TW
i
αΠi; ð4:3Þ

where Πi ¼ Πi
1 − Πi

2. As before, we recognize this as the
classic supersoft operator, realizing the Goldstone gaugino
mechanism once it is arranged for hWα

Ti ¼ Dθα.
We can now finally introduce the spontaneous symmetry

breaking sector,

WSSB ¼ κ1SðTr½Σ1Σ2� − v2Þ þ κ2Tr½Σ1ΩΣ2�; ð4:4Þ

where, as before, Σ1 and Σ2 are in the ð□;□; 1Þ and
ð□;□;−1Þ representations of SUðFÞL × SUðFÞR × Uð1ÞA,
respectively, and we have introduced two new chiral
superfields S and Ω transforming as ð1; 1; 0Þ and
ð1;Ad; 0Þ, respectively.
The first term in (4.4) induces a VEV to the trace

components of Σ1, Σ2, such that hΣ1i ¼ αv=
ffiffiffiffi
F

p
× 1 and

9Because of the doubling of messengers there are in principle
two different Uð1ÞT symmetries. We allow a nonzero D-term for
the combination under which the charge of T1 is opposite to the
charge of T2.
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hΣ2i ¼ α−1v=
ffiffiffiffi
F

p
× 1. The ratio of these VEVs, parame-

trized by α, need not be one; it represents a flat direction of
the potential that in principle will be lifted by SUSY
breaking. If α ≠ 1, the low energy Goldstones would be
given by a different admixture of Π1, Π2, but otherwise our
previous discussion of the low energy theory remains
unchanged.
Finally, the second term in the superpotential (4.4) is

present to give masses to the remaining degrees of freedom
upon spontaneous breaking of the global symmetry. The
components of Ω pair up with the combination of Π1 and
Π2 orthogonal to the Goldstone Π, and the trace compo-
nents of Σ1 and Σ2 orthogonal to the axial Goldstone pair
up with the singlet S to obtain a Dirac mass. Thus there are
ðF2 − 1ÞGoldstones in the adjoint of the unbroken SUðFÞV
symmetry, which may be identified with a SM gauge group,
and a singlet Goldstone associated with the spontaneous
breaking of the Uð1ÞA axial symmetry. Coupling of either
Σ1 or Σ2 to a pair of messenger fields leads to a tadpole term
for this singlet which picks a vacuum α ≠ 1; however, equal
coupling of each field to its own pair of messengers in
Eq. (4.1) avoids this issue as each tadpole term cancels and
the calculation is consistent with remaining at the minimum
of the scalar potential.
We have shown with this example that it is possible to

construct simple renormalizable and perturbative models
of Goldstone gauginos. In general, all the arguments we
have presented carry forward when we parametrize the
Goldstone fields as exponentials. At the same time, we
should be able to see the absence of the lemon twist by
studying the linearized model and including all of the heavy
fields as well. In Appendix C, we revisit the nonrenorma-
lizable toy model in (3.1) in the linear representation of the
Goldstone fields; we demonstrate that lemon twist is not
generated due to a cancellation of scalar soft masses by a
tadpole-induced shift in the trace component of Σ.

V. IMPLICATIONS AND DISCUSSION

A. Global symmetry breaking operators

The Goldstone gaugino mechanism depends crucially on
the approximate global symmetry of the UV theory to
protect it from dangerous tachyonic masses. However, there
are explicit breaking sources of the global chiral symmetry
SUðFÞL × SUðFÞR, such as the SM gauging of the vector
subgroup SUðFÞV , or (potentially) nonperturbative gravi-
tational effects. Those could induce chiral symmetry
breaking operators in the Kähler potential or superpotential,
which may source large Majorana masses for the right-
handed gaugino and/or large masses for the adjoint
(pseudo)scalars, thus spoiling the GoGa mechanism. In
the following we will discuss the effects these breaking
sources and the necessary conditions to ensure that the
GoGa mechanism is preserved. We will use the notation of
the toy model described at the end of Sec. II.

1. Gravitational breaking

The first chiral symmetry breaking operators we will
consider are those generated by nonperturbative gravita-
tional effects.10 In particular, they could be independent of
the SUSY breaking spurion Wα

T or any explicit breaking
parameters (such as SM gauge couplings). An example of
such operator in the superpotential would be

ΔW ¼ 1

Mn−3
Pl

Tr½Σn�; ð5:1Þ

which would induce a holomorphic mass to the Goldstone
chiral adjoint Π scaling as

MΠ ∝
fn−2

Mn−3
Pl

: ð5:2Þ

For n < 4 the GoGa mechanism would be spoiled; that,
however, can easily be avoided by gauging a discrete Z4

symmetry which acts on Σ and forbids unsuppressed
holomorphic adjoint masses. If the n ¼ 4 operator is
present, the induced Majorana mass for the right-handed
gaugino will be small as long as f ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDMPl

p
.

Additionally, gravity could also induce chiral symmetry
breaking operators in the Kähler potential, such as

ΔK ¼ 1

M2p−2
Pl

Tr½Σ†p�Tr½Σp�; ð5:3Þ

which cannot not be forbidden by discrete symmetries.
The operator with p ¼ 1 in particular is unsuppressed;
however, being in the Kähler potential, it does not generate
supersymmetric masses for the adjoint fields. Its effect will
be to renormalize holomorphic masses such as (5.2) and, in
the presence of SUSY breaking, induce masses for the
pseudoscalar adjoints at one-loop scaling as

δm2
π ∝

m4
D

f2
: ð5:4Þ

Assuming, however, a mild hierarchy between f and mD is
sufficient to guarantee that (5.4) is small and that the GoGa
mechanism is preserved.
It is worth noting that the strongly coupled model is

further protected from the effects discussed above. For
instance, operators of the type (5.1) would stem from

ΔW ¼ 1

M2n−3
Pl

ðQQÞn → Λn

M2n−3
Pl

Tr½Mn�; ð5:5Þ

and the corresponding holomorphic adjoint mass would
instead scale as

10For the ease of notation, we will omit the coefficients of
gravity-induced operators, which we will implicitly assume are
Oð1Þ.
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MΠ ∝
Λ2n−2

M2n−3
Pl

; ð5:6Þ

which is safe as long as n > 1 andΛ ≪ ðmDM2n−3
Pl Þ1=ð2n−2Þ.

Moreover, (5.3) would stem from

ΔK ¼ 1

M4p−2
Pl

ðQ†Q†ÞpðQQÞp →
Λ2p

M4p−2
Pl

Tr½M†p�Tr½Mp�;

ð5:7Þ
which is safe even for p ¼ 1 since it contributes to the
pseudoscalar adjoint mass as

δm2
π ∝

m4
D

M2
Pl

: ð5:8Þ

Finally, we consider operators that depend on the SUSY
breaking spurion, namelyWα

T ≡Dθα or VT ≡Dθ2θ2. If the
Uð1ÞT symmetry associated with such spurion is a global
symmetry, then gravity could generate operators in the
Kähler potential such as

ΔK ¼ VTTr½Σ†�Tr½Σ�: ð5:9Þ
Depending on the sign of (5.9), either the scalar or the
pseudoscalar adjoint will get a large tachyonic mass scaling
as δm2 ∝ −fmD [in the strongly coupled scenario there is
an additional Planck suppression δm2 ∝ −ðΛ=MPlÞ2ΛmD].
If instead Uð1ÞT were an actual gauge symmetry, (5.9)
could still be generated, but with a suppression of
ðvT=MPlÞ2 [where vT is the VEV that spontaneously breaks
Uð1ÞT]. Assuming vT ≪ MPl is sufficient to protect the
GoGa mechanism from this effect.
Further operators are either sufficiently suppressed by

the Planck scale or forbidden by Uð1ÞT or discrete gauge
symmetries.

2. SUSY breaking (independent of SM gauge couplings)

As we have previously discussed, LTS-type operators
such as

ΔWLT ¼ 1

Λn
LT

Wα
TWTαTr½Σn� ð5:10Þ

violate the chiral and discrete gauge symmetries, and so
cannot be dynamically generated.
On the other hand, higher-dimensional operators that

respect those symmetries are not in principle forbidden,
e.g.,

ΔK ¼ � v2T
Λ2
T
VTTr½Σ†Σ�: ð5:11Þ

Above the dependence on the SM gauge fields does not
play a role and is therefore omitted. Once SUSY is broken

with hVTi ¼ Dθ2θ2, (5.11) will induce a large and possibly
tachyonic mass for the scalar adjoint,

δm2
s ¼ � v2T

Λ2
T

f
mD

m2
D; ð5:12Þ

which will dominate over the contribution from the CS
operator if vT > 2ΛT

ffiffiffiffiffiffiffiffiffiffiffiffi
mD=f

p
. In particular, in the strongly

coupled model the strong dynamics might generate

ΔK ¼ cB
Λ2

B†e−VBBTr½M†M�: ð5:13Þ

In principle one cannot discard the possibility that cB is
positive and Oð1Þ, and hBi ∼OðΛÞ, in which case the
tachyon problem would reemerge. Presently, however, it is
not known how to determine the Kähler potential in such
theories, so we assume that operators such as (5.11) and
(5.13) are sufficiently suppressed and the GoGa mechanism
remains viable.

3. SM gauging of diagonal flavor symmetry

Next, we consider the SM gauging of the diagonal flavor
symmetry, encoded in the kinetic term for Σ,

K ⊃ Tr½Σ†e−VSMΣeVSM �: ð5:14Þ

In spite of this being an explicit breaking of the chiral
symmetry, it alone is not sufficient to break the shift
symmetry of the pseudoscalar adjoint. That is because
the adjoint masses are also protected by SUSY. More
generally, as long as SUSY is preserved, any arbitrary
violation of the chiral symmetry in the Kähler potential will
not generate masses for the adjoint fields.
After SUSY breaking, however, adjoint masses get

generated at one-loop due to (5.14). Explicit computation
gives

δm2
π ¼

αSMC2ðAdÞ
π

m2
D log

�
m2

s

m2
D

�
ð5:15Þ

for the pseudoscalar adjoint, where αSM ≡ g2SM=ð4πÞ and
C2ðAdÞ ¼ N is the quadratic Casimir for the adjoint
representation. A correction of the same order will be
generated for the scalar adjoint, which is subdominant
relative to the tree-level contribution m2

s ¼ 4m2
D.

The leading OðαSMm2
DÞ contribution to the adjoint

mass squared (5.15) shares the same origin as the
supersoft masses of the Standard Model sfermions, and
cannot be encoded as a local, SUSY covariant operator
[14]. This contribution is universal to all Dirac gaugino
scenarios (not only GoGa’s), and since it is parametri-
cally smaller than the Dirac gaugino mass, it does not
spoil the GoGa mechanism.
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B. Fine-tuning and naturalness

With the tachyon problem removed, we are able to ask the
question of the naturalness of the theory. While elaborate
studies of fine-tuning of the electroweak scale are beyond
our scope, a brief discussion of naturalness in terms of
radiative corrections to the Higgs mass is warranted.
In these theories, heavy stops are insufficient to explain

the Higgs mass due to the dramatic reduction in theD-term
quartics [14], and so something along the lines of the next-
to-minimal supersymmetric standard model (NMSSM)
must be invoked. On the other hand, the presence of
additional matter allows for larger values of the
NMSSM quartic that remain perturbative in the UV
[70,71], so there is a natural synergy within the setup.
Even absent D-term quartics, we estimate that for an
NMSSM strongly coupled at the grand unified theory
(GUT) scale, we can have a Higgs at 125 GeV for 1.5≲
tan β ≲ 2 with sub-TeV stops.
The Higgs receives radiative corrections from the winos

and binos at one-loop, and from the gluinos at two loops
(via the usual stop coupling). These are [14]

δ ~m2
hj1-loop ¼

2α2 lnð4Þ
3π

m2
D2; ð5:16Þ

δ ~m2
hj2-loop ¼

3

8π2
y2t m2

~t lnðmD3= ~m~tÞ;

¼ α3y2t lnð4Þ
2π3

lnð3π=4α3 lnð4ÞÞm2
D3; ð5:17Þ

~m2
~t ≃ ~m2

~q ¼
4α3 lnð4Þ

3π
m2

D3: ð5:18Þ

Here mD2 and mD3 are the masses of the wino and gluino,
respectively, and we neglect the contribution from the bino.
We can make a rough assessment of the tuning of the

theory by evaluating the ratio of these extra soft mass
contributions to the Higgs potential relative with the
observed value m2

h ¼ ð125 GeVÞ2. That is, we define the
tuning to be δ ~m2

h=ðm2
h=2Þ, and we display tuning contours

in Fig. 2 as a function of gaugino and scalar masses.
We see that for a gluino mass in the 2–3 TeV range, the

tuning from the gluino contribution is 30%–15%, with
squarks in the 450–700 GeV range.11 This marks a
significant improvement over the MSSM with a compa-
rable gluino mass.

C. UV physics and unification

Perturbative unification remains a challenge for Dirac
gaugino models. A full 24 of SU(5) contains enough matter
that the gauge couplings hit a Landau pole before the GUT

scale [73,74]. In the context of composite models of
Goldstone gauginos, we have interesting possibilities,
however. It is possible that the low energy theory contains
SM adjoints built out of confining fundamentals. For
instance, one can consider a gauge group SUð3Þa ×
SUð3Þb × SUð3ÞSM × SUð2ÞSM ×Uð1ÞSM, with an a ↔ b
symmetry of couplings imposed at the GUT scale. With
fields da ¼ ð3; 1; 3; 1; 1=3Þ and lb ¼ ð1; 3; 1; 2; 1=2Þ (and
vectorlike partners), the SM β functions are shifted by the
equivalent of three flavors. Such a model could arise out of
an orbifold GUT, for instance.
When SUð3Þa and SUð3Þb confine, the theory produces

composite adjoints of the SM gauge group, and in addition
two sets of baryons with hypercharges �1, and doublets
with hypercharge �1=2. Together, this maintains a unified
shift to the SM β-functions. Indeed, this is quite analogous
to the (charged) matter present in the adjoint in trinification
[75,76], but the high energy theory is arising from a set of
split SU(5) multiplets. It is difficult to employ this model,
however, as the tachyonic baryons would have hyper-
charge. This could be solved with explicit masses for the
microscopic quarks of the strongly coupled sector, but then
supersoftness would be retained only if Λ ∼mSUSY.
As a first alternative, we can look to models where the

fields da carry no hypercharge; these models do not
generically unify, so we will discuss a unifying case
subsequently. Considering the SUð3Þb gauge group to be
associated with its own SUð3ÞbL × SUð3ÞbR chiral sym-
metry, the idea is to identify hypercharge with the diagonal
subgroup’s Abelian generator λ8 ∝ diagð1; 1;−2Þ; trace-
lessness then ensures that all baryons will be completely
neutral under the SM gauge group. Specifically, let us take

FIG. 2. Contours of electroweak scale tuning (shown as
percentages), determined by the ratio of the largest radiative
correction of the Higgs mass to its observed value of ð125 GeVÞ2.
Radiative contributions to squark and slepton masses from the
associated gaugino mass are also shown.

11Note that in the MSSM such masses would be at strong
tension with existing searches. However, with heavy Dirac
gauginos,“doubly invisible” decay topologies for squarks can
be naturally realized [72], under which these masses are viable.
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Y ¼
ffiffiffi
3

p
cλ8 ¼ diagðc=2; c=2;−cÞ: ð5:19Þ

Relative to the wino, the bino’s mass is thus scaled by an
amount

TrðYλ8Þ=T□ ¼
ffiffiffi
3

p
c; ð5:20Þ

where the index T□ appears due to our normalization
TrðλiλjÞ ¼ δij=2. The confining group, SUð3Þb, produces
an octet of Goldstone bosons, four of which are accounted
for by bachelor doublets of hypercharge yD ¼ 3c=2, and
from which we identify the interesting cases c ¼ 1 and
c ¼ 1=3 which result in doubly and singly charged bach-
elors, respectively. Assuming an a ↔ b symmetry as
above, such that the SUSY breaking D-terms of each
sector are equal, we conclude the following ratios for SM
gaugino masses for cases indicated by the EM charge of
their bachelor doublets:

bino∶wino∶gluinojQD¼�1 ¼ 1∶3.2∶5.2;

bino∶wino∶gluinojQD¼�2 ¼ 1∶1.05∶1.75: ð5:21Þ

In the interest of maintaining perturbative unification, we
consider also the case of trinification, where the SM is
embedded into SUð3Þ3. Here we would require three copies
of the gauge × global structure SUð3Þi × SUð3Þi;L ×
SUð3Þi;R, and identify hypercharge as

Y ¼ −
1ffiffiffi
3

p ðλ82V þ λ83VÞ − λ33V ð5:22Þ

with subscripts ði; VÞ denoting generators of the diagonal
subgroup of SUð3Þi;L × SUð3Þi;R. In this case there are
three singlet mesons (originating from the λ82V;3V and λ33V
adjoint directions) that couple to the bino. Taking the
pertinent traces as in Eq. (5.20), we find a mass matrix with
two degenerate eigenvalues indicating the two components
of the Dirac bino, along with two zero eigenvalues
corresponding to singlet bachelors. Specifically we find
eigenvalues with coefficient

ffiffiffiffiffiffiffiffi
5=3

p
, indicating a universal

gaugino spectrum up to differences in gauge couplings.
With this, the predicted mass ratios become

bino∶wino∶gluino ¼ 1∶1.5∶2.4: ð5:23Þ

We see that there is sizable variability for the bino mass
relative to the other SM gauginos. The connection between
anomalies and the Dirac mass can be quite enlightening
here. While the gluino and wino masses must—at some
level—arise from a breaking of a flavor symmetry where
the diagonal component is identified with the SM gauge
group, the same does not hold for the bino. Indeed, any
global symmetry Uð1ÞX that is spontaneously broken and
contains a B-Y-X anomaly will yield a Dirac mass mixing

πX and the bino. For instance, one could supplement the
perturbative models we have described with additional
messengers, with a spontaneously generated mass which is
flavor diagonal from the outset. The axion of that sponta-
neous breaking would then marry the bino. Ultimately,
there is one linear combination of fields that will marry the
bino, and the important point is that its mass might be quite
different from that expected from naive ideas of unification.
For instance, if one considers a high scale model, with a
large number of Goldstone fields, one could end up with a
surprisingly massive bino, while still maintaining an
expected GUT relation between the gluino and wino.
Of course, this all assumes we insist on maintaining

some embedding within a simple group. We can also
consider situations where near the Planck scale we have
the classic supersoft operators generated for gluino, bino,
and wino, but with no bachelor fields and only adjoints.
Alternatively, it may be that only the gluino has an adjoint
partner, such as in [11,13], with slightly smaller Majorana
masses for the gauginos, and soft masses for the scalars as
in the MSSM. Such a possibility could arise with the Dirac
gluino mass generated either from high scale physics or
from an intermediate SUð3Þ SUSY QCD theory as we have
described. In these cases, the unification of couplings in the
MSSM would be an accident. Any of these possibilities
[trinification, embedding in SU(3), gluino only, bachelor-
free] are reasonable boundary conditions to consider for
Goldstone gaugino models, as are no doubt many others.
Finally, we note that at least some GUT scenarios predict

the existence of extra doublets with hypercharge �1=2 as
part of complete GUT multiplets [either bachelors in
SUð3Þ3 or the 3 − 3 − 3 − 2 − 1 model we have described
above]. If present, this allows the possibility of a “sister
Higgs” NMSSM [77],12 which produces a Type-I two
Higgs doublet model (2HDM) model at low energies,
which is far less constrained than the Type-II 2HDM at
low tan β.

D. Basic phenomenology

Many beyond the standard model (BSM) searches are
sensitive to models with Dirac gauginos, but the potential
suppression of the gaugino signal and the presence of new
scalar states can change the focus of these searches. In
particular, colored sgluons sc, πc are likely to be a major
discovery channel at hadron colliders. In all of the models
discussed the classic supersoft operator (2.1) is generated at
one-loop. This leads to the desired Dirac gaugino masses
(mD) and also soft masses for the scalar sgluons sc, msc ¼
2mD [14]. But since the lemon-twist operator (2.2) is not
generated, the pseudoscalar Goldstone sgluons (or
psgluons) πc remain massless at that order. The usual

12Similar fields, called “auxiliary Higgses” in the setup of
induced electroweak symmetry breaking [78], may also play a
role in this area of model building.
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supersoft mechanism which generates squark masses
similarly leads to psgluon squared masses m2

πc ¼
3α3m2

D lnð4Þ=π [14]. This leads to the generic expectation
that the psgluon masses are comparable to the squark
masses (mπc ¼ 1.5 ×m ~q) and are a factor ∼3 suppressed
relative to the Dirac gauginos.
The collider phenomenology of sgluons at the LHC has

been considered extensively [22,24,27,79–96]. We will
focus on the lightest colored sparticles, which are the
psgluons and the squarks. The psgluons are neutral under
any R-symmetry and couple to gluons at tree-level through
standard QCD interactions and pairs of squarks at one-loop.
They also couple at one-loop to quark-antiquark pairs with
coupling proportional to the quark masses.
At hadron colliders the psgluons may be pair produced

at tree level from gluon initiated processes, gg → πcπc
(dominant), or singly produced at one-loop from gluon and
quark initial states, gg; qq → πc (subdominant). The pair
production mode is the most promising for collider
searches [22]. If the masses for psgluons and squarks
are dominated by the radiative contributions we have
discussed, the psgluons are kinematically forbidden from
decaying to squarks (recalling that mπc ¼ 1.5 ×m ~q). They
dominantly decay directly to qq pairs. A number of
searches for dijet decays of scalar octets have been
performed at the LHC [88] and the (model-dependent)
limit on sgluon masses could be as high as ∼750 GeV with
20 fb−1 of data at

ffiffiffi
s

p ¼ 8 TeV for decays to a pair of top
quarks [96]. Taking this value for the psgluon mass as a
proxy would then imply mD3 ≳ 2 TeV, for which the
tuning of the electroweak scale is still quite mild.
Searches at LHC14 will extend the reach substantially.
Unlike sgluons, psgluons have no trilinear coupling to

squarks, and instead decay to a pair of quarks through
gluino loops. The widths are proportional to the masses of
the final state quarks, and thus psgluon pair production
would likely result in top-rich final states. Interestingly, a
recent excess in four-top final states has been reported by
the ATLAS Collaboration [97]. This excess can be inter-
preted in terms of a scalar octet with mass ≈830 GeV,
decaying with a 100% branching ratio to tt. The resulting
scales are naturally accommodated in the minimal GoGa
setup and suggest that the (Dirac) gluino mass should be
mD3 ≈ 2.5 TeV and that stops should be present below a
TeV, providing a straightforward prediction of the minimal
model if such an excess persists in future data.
If there are modifications to the radiative mass contribu-

tions discussed in this work, Goldstone psgluons can decay
to pairs of squarks. In this case the relevant final state
involves four squarks which may then decay to neutral
lightest superpartner states via R-parity preserving channels
or potentially to SM final states via small R-parity violating
interactions. Any search for these decays is heavily depen-
dent on the spectrum of electroweak states and on the
magnitude of various couplings; thus it is model dependent.

It is not the goal of this work to perform a dedicated
collider study. Nonetheless, it is clear that Goldstone
gaugino models lead to interesting collider signatures
which are discoverable at the LHC.

VI. CONCLUSIONS

The absence of any sign of low scale SUSY at the LHC
compels us to consider more tuned models or models that
qualitatively differ from the MSSM. Models with Dirac
gauginos provide an intriguing possibility of a qualitatively
different BSM scenario. In particular, the radiative correc-
tions yield different spectra and potentially improved natu-
ralness of the electroweak scale compared with the MSSM.
Unfortunately, models of Dirac gauginos generically

have tachyons, and previously considered means to remove
them have spoiled many of the appealing features of the
models. The recently proposed GoGa mechanism provides
a simple realization of Dirac gauginos that is free of
charged tachyons in the spectrum. This allows us to both
engage in producing simple models of GoGas, but also to
study implications of high scale models where the lemon-
twist operator is absent as a boundary condition.
This simple fact—that the tachyon is absent with

Goldstone gauginos, together with the simple models that
realize this—puts Dirac gaugino models on a firmer footing
and helps make them once again a viable candidate for a
natural model of the weak scale.
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APPENDIX A: ABSENCE OF LTS—A
DIAGRAMMATIC PROOF

The absence of lemon twist in the GoGa setup can be
proven in a simple diagrammaticway,whichwepresent here.
The essential point is to show that the interactions between
messengers and adjoints, which allow the construction of
pseudoscalar mass terms in the conventional Dirac gaugino
case, are precisely canceled oncewe account for higher order
terms in the Goldstone expansion of the superpotential.
The lemon-twist operator is generated when messengers

are integrated out from a combination of loops constructed
from either trilinear or quartic couplings. In particular, the
mass of aR receives corrections from loops with trilinear

ALVES, GALLOWAY, MCCULLOUGH, and WEINER PHYSICAL REVIEW D 93, 075021 (2016)

075021-12



and quartic terms while the mass of aI is generated only via
quartic interactions. The shift symmetry of the GoGa model
then must produce a cancellation of the quartic interactions
involving aI, and this is instructive to view diagrammati-
cally. Keeping the messenger auxiliary fields FT;T explicit
in the diagrams in order to illustrate differences between the
superpotentials, we have scalar interactions such as

ðA1Þ

with an analogous term involving t from taking T ↔ T.
Closing the t=t line generates a mass at order D2 for both
the real and the imaginary components of a,

δm2
aR;I ¼ þ λ2

16π2
D2

m2
T
; ðA2Þ

where mT is the supersymmetric TT mass, identified as
mT → λf in the GoGa case. The trilinear coupling of the real
component generates an additional one-loop graph giving

δm2
aR ¼ −

λ2

8π2
D2

μ2
; ðA3Þ

and thus δm2
aR < 0 in total, signaling the problematic

instability.
In the GoGa model, we must account for the new

superpotential terms that arise from expanding expðA=fÞ
beyond linear order. At quadratic order in A the crucial term
is ΔW ¼ λA2TT=2f, generating

ðA4Þ

again with analogous t terms. The combination of the terms
in (A1) and (A4) now gives a vanishing t�ta2I interaction,
guaranteeing that no soft mass for aI is generated (and
hence no lemon twist) since this is the only interaction
feeding into the pseudoscalar soft mass once the messen-
gers are integrated out.
The real scalar retains cubic and quartic interactions with

the messengers, but the latter is modified in such a way that
the two types of loop contributions to m2

aR precisely cancel.
In general the part of the radiative correction to the real
scalar’s two-point function which is independent of the SM
gauge couplings (which is all that is relevant for lemon
twist) is given by

δΣð2Þ
aR ¼ 1

8π2
ðc23 −m2

Tc4Þ
D2

m4
T

ðA5Þ

in the presence of cubic (c3) and quartic (c4) couplings to
messengers. In the conventional toy model c3 ¼ 2λmT and
c4 ¼ 2λ2. In the GoGa model the additional interaction
(A4) contributes with δc4 ¼ 2mTλ=f, which upon inserting
the messenger massmT ¼ λf gives a complete cancellation
between the two terms entering (A5) and indicates the
absence of an LTS contribution to m2

aR .
The shift symmetry prevents the generation of a pseu-

doscalar mass which is independent of the SM gauge
couplings, so the above cancellations come as no surprise.
But looking directly at the interactions and their modified
versions in the GoGa model shows where and how these
cancellations emerge in an illustrative way.
Meanwhile, there is no difference between the radiative

generation of Dirac gaugino masses in the conventional and
GoGamechanisms. Thus, while we still get the same classic
supersoft operator, the lemon-twist operator is absent.

APPENDIX B: ABSENCE OF LTS—CONNECTION
TO HOLOMORPHIC GAUGE COUPLING

Another way to explicitly check that the lemon-
twist operator is not generated in the GoGa toy model
discussed in Sec. III A is by looking at the renormalization
of the Uð1ÞT holomorphic gauge coupling. Integrating out
the messengers corrects the Uð1ÞT holomorphic gauge
coupling below the messenger threshold, and could
generate lemon-twist type operators [52]. In particular, a
Π2-lemon-twist operator

WLTS ∝
1

f2
Tr½Π2�Wα

TWTα ðB1Þ

can be generated only if the messengers’ masses are
corrected when a Π background superfield is turned on.
Recalling that the superpotential in the messenger sector is
given by

W ¼ λTΣT; ðB2Þ
and turning on a Σ background superfield, we can integrate
out T, T at mT ¼ λΣ. The one-loop holomorphic gauge
coupling is then

τ1-loop ¼
4πi
g2ðΛÞ þ

ibL
π

ln
μ

Λ
−

i
π
ln
DetðλΣÞ

ΛF ; ðB3Þ

where bL is the Uð1ÞT β-function coefficient below the mT
threshold. Analytically continuing Σ into superspace, we
infer that the following operator is generated at low
energies:

1

16π2
Tr log

λΣ
Λ
Wα

TWTα¼
F

16π2
log

λðvþσÞ
Λ

Wα
TWTα; ðB4Þ

where we have used Σ ¼ ðvþ σÞeΠaTa=f and the fact that
the generators Ta are traceless.
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The operator (B4) is independent of the Goldstone
superfields Π, so the Π2-lemon-twist operator (B1) is not
generated at one-loop. Moreover, because the one-loop
holomorphic gauge coupling is exact, Π2-lemon-twist is
not generated at any order in perturbation theory.

APPENDIX C: ABSENCE OF LTS—TADPOLE
SHIFT IN LINEAR REPRESENTATION

As we have discussed, there are a variety of means to
achieve the appropriate breaking of the UV global sym-
metry required by the GoGa mechanism, including a range
of both renormalizable and nonrenormalizable perturbative
models. If we treat the Goldstone gaugino nonlinearly, i.e.,
as pions veΠ=f, the protection against the lemon-twist
operator is manifest [60]. However, we can also work with
fields expanded linearly around the vacuum, in which case
the cancellation is not as obvious. It can be instructive to
see how this occurs in those cases.
As we described in Sec. III, a simple parametrization of

the global symmetry breaking dynamics is given by

W ¼ 1

ΛN−2 SðDetΣ − vNÞ: ðC1Þ

As noted previously, this approximates the dynamics of
SUSY QCD with an equal number of colors and flavors
(F ¼ N). In the vacuum, the symmetry breaking structure
is SUðNÞL × SUðNÞR → SUðNÞV as the F-term for S
requires a vacuum expectation value hΣi ¼ v1N . The N2 −
1 traceless components of Σ become Goldstone superfields
of the spontaneously broken symmetry.
In order to accommodate gluinos, a gauge group N ≥ 3

is required, meaning that these models are not renormaliz-
able and must be UV completed at a scale Λ. Nonetheless,
they provide a straightforward implementation of the
Goldstone gaugino scenario and are worth considering
further. We will focus on the case N ¼ 3, which is
appropriate for a model of Dirac gluinos. If we expand
out the superfield Σ into its trace component vþ X (where
X is the perturbation of the trace around the VEV) and the
traceless component a, i.e., Σ ¼ vþ X þ a, then in the
vacuum the superpotential Eq. (C1) becomes

W ¼ 1

Λ
S
�
DetðaÞ − 1

2
ðvþ XÞTr½a2� þ ðvþ XÞ3 − v3

�
:

ðC2Þ
X has paired up with S to obtain a Dirac mass MX ¼
3v2=Λ. The Goldstone superfield, a, remains massless.
If Σ is coupled to the SUSY breaking messengers as in

(3.1), then as explained in Sec. II a Bμ term for a should be

generated at one-loop. As described in Appendix B, we can
think of the generation of this lemon-twist operator as a
correction to the Uð1ÞT holomorphic gauge coupling. This
arises because the messengers have their masses corrected
in the presence of Σ background fields. This correction
enters linearly on X, but only at Oða2Þ in a (since
Tr½a� ¼ 0). Hence the lemon-twist term to leading order
is given by

W ⊃ −
1

32π2v2
W0αWα

0ð−2NfvX þ Tr½a2�Þ; ðC3Þ

where 2Nf ¼ 6 in this case under consideration. We ignore
the OðX2Þ term under the assumption that the lemon-twist
corrections to the mass of X are small, i.e.,D2=v ≪ 3v2=Λ.
This results in the Bμ term for a in the scalar potential,

V ⊃
1

2
m2

LTTr½a2� þ H:c:; ðC4Þ

where m2
LT ¼ D2=16π2v2. In addition to this, a tadpole

term for the heavy singlet scalar is also generated

V ⊃ −3vm2
LTX þ H:c: ðC5Þ

When the scalar potential is minimized, this leads to an
additional contribution to the symmetry breaking VEV,

hXi ¼ 3vm2
LT

M2
X

¼ m2
LTΛ

2

3v3
: ðC6Þ

Inserting this shifted vacuum into the F-term equation for
S, to lowest order in m2

LT we have

FS ¼ 1

Λ

�
DetðaÞ − 1

2

�
vþm2

LTΛ
2

3v3

�
Tr½a2� þm2

LTΛ
2

v

�
:

ðC7Þ

Squaring this F-term to solve for the scalar potential we
find that the dangerous Bμ term of Eq. (C4) is exactly
canceled. This is not surprising—the symmetries alone
dictate this, and in the nonlinear realization it is manifest.
Working with linear fields around the origin, however, this
is much more involved: in this formulation the absence of
Bμ terms occurs through cancellations of the explicit mass
terms generated from messenger loops against new Bμ
terms generated by a shift in the VEVof a heavy field in the
symmetry breaking sector. Such a scenario shows clearly
that such cancellations can occur in a very nontrivial
fashion when the Goldstone nature of the right-handed
gaugino is obscured.
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