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Universality of radiative corrections to gauge

couplings for strings with spontaneously broken

supersymmetry

Ioannis Florakis
CERN Theory Division, 1211 Geneva 23, Switzerland

E-mail: ioannis.florakis@cern.ch

Abstract. I review recent work on computing radiative corrections to non-abelian gauge
couplings in four-dimensional heterotic vacua with spontaneously broken supersymmetry. The
prototype models can be considered as K3 surfaces with additional Scherk-Schwarz fluxes
inducing the spontaneous N = 2 → N = 0 breaking. Remarkably, although the gauge
thresholds are no longer BPS protected and receive contributions also from the excitations
of the RNS sector, their difference is still exactly computable and universal.

1. Introduction
The last twenty years have been marked by a significant progress in String Theory and,
consequently, in String Phenomenology, with the construction of several semi-realistic vacua
incorporating the salient features of the MSSM. In particular, the low energy effective action
with N = 1 supersymmetry has been successfully reconstructed at tree level. However, an
eventual quantitative comparison with low energy data clearly necessitates the incorporation of
quantum corrections to various couplings and, therefore, the incorporation of loop corrections in
both the string length `s and the string coupling gs are at the centre of attention in the modern
string literature.

In fact, gravitational and gauge coupling corrections at the one loop level in gs have been
extensively studied in the literature, for vacua with at least one unbroken supersymmetry. Until
very recently, however, the study of quantum corrections to gauge couplings in vacua with broken
supersymmetry still constituted an unexplored terrain. One of the main difficulties one faces
whenever supersymmetry is broken in string theory is the appearance of tachyonic excitations,
that destabilise the classical vacuum and invalidate the perturbative treatment. This is possible
in a theory with an infinite and exponentially growing number of states such as String Theory
and, in the case of spontaneously broken supersymmetry, it is closely related with the Hagedorn
problem of String Thermodynamics [1]. Several proposals for stabilising the winding tachyon
have appeared in the literature [2, 3, 4], involving setups with specialised fluxes, orbifolds and
orientifolds, but they will not be discussed here. Rather, I will assume that one is working in a
region of moduli space where supersymmetry is spontaneously broken but the classical vacuum
is stable. In this case, it is meaningful and important to study one-loop1 radiative corrections
to couplings in the low energy effective action.

1 The problem of incorporating higher-loop corrections is more involved, due to the necessity of incorporating
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In this note, I will review the first calculation [5] of one-loop corrections to non-abelian
gauge couplings in four dimensional heterotic vacua with spontaneously broken supersymmetry
and discuss a remarkable and highly non-trivial universality property of differences of such
thresholds. The prototype model that I will consider is the four-dimensional heterotic vacuum
with N = 2 supersymmetry obtained by compactifying the ten-dimensional E8 × E8 heterotic
string on K3×T 2. In the following, I will assume a trivial Wilson line background so that the non-
abelian gauge group be enhanced to E8×E7. The N = 2 supersymmetry is then spontaneously
broken to N = 0 by turning on a Scherk-Schwarz flux [6], in a way that admits an exactly
tractable worldsheet CFT description in terms of a freely-acting Z2 orbifold [7, 8, 9, 10]. The
resulting model is a four-dimensional heterotic vacuum with SO(16)×SO(12) non-abelian gauge
group factor and spontaneously broken supersymmetry N = 2→ N = 0.

The reason for studying this particular prototype model may be appreciated if one realises
that, even in more realistic vacua with spontaneously broken N = 1 supersymmetry, the only
dependence of threshold corrections on the compactification moduli is contained in N = 2 →
N = 0 subsectors2. Consequently, the resulting expression for the gauge thresholds obtained
using this model is immediately applicable to more realistic setups, since their N = 2 subsectors
are precisely of the above prototype form. In particular, they should apply to the models of [16],
recently proposed in the context of addressing the decompactification problem. It is hoped that
the recent activity in the analysis of non-supersymmetric string vacua [17, 18], an integral part
of which necessarily involves the study of quantum corrections to gauge couplings, may lead to
a better understanding of string theoretical implications for low energy phenomenology.

2. The prototype model
One may construct a four-dimensional N = 2 heterotic vacuum on K3 × T 2 by working in the
singular limit of K3, realised as a T 4/ZN orbifold with N = 2, 3, 4, 6. Denoting Z1, Z2 the
complexified coordinates of T 4, the crystallographic rotation of the orbifold action reads

Z1 → e2πi/N Z1 ,

Z2 → e−2πi/N Z2 .
(1)

The N = 2 supersymmetry is then spontaneously broken by turning on a Scherk-Schwarz flux,
realised as a freely-acting Z′2 orbifold with element

v′ = (−1)Fs.t.+F1+F2 δ , (2)

where Fs.t. is the spacetime fermion number, F1, F2 are the ‘fermion numbers’ associated to the
two original E8’s, and δ is an order-two shift along a cycle of the untwisted T 2. The restriction
to a trivial Wilson line background ensures that the classical vacuum is stable, even though
supersymmetry is spontaneously broken, and the theory enjoys a non-abelian SO(16)× SO(12)
gauge symmetry.

the backreaction of the one-loop tadpole on the classical vacuum.
2 Clearly, the contribution of pure N = 1 subsectors does not involve the Narain lattice and is, hence, moduli
independent. Its explicit value depends on the infrared renormalisation scheme and will not be discussed here. Is
is, however, important to stress that it may be computed using the recently developed techniques of [11, 12, 13].
For short reviews, see [14, 15].
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The modular covariant one-loop partition function of the theory reads

Z =1
2

1∑
H,G=0

1
N

N−1∑
h,g=0

1
2

1∑
a,b=0

(−)a+bϑ
[
a/2
b/2

]2
ϑ
[
a/2+h/N
b/2+g/N

]
ϑ
[
a/2−h/N
b/2−g/N

]
×

1
2

1∑
k,`=0

ϑ̄
[
k/2
`/2

]6
ϑ̄
[
k/2+h/N
`/2+g/N

]
ϑ̄
[
k/2−h/N
`/2−g/N

] 1
2

1∑
r,s=0

ϑ̄
[
r/2
s/2

]8


× 1

η12η̄24
(−)H(b+`+s)+G(a+k+r)+HG Γ2,2

[
H
G

]
ΛK3

[
h
g

]
,

(3)

and is expressed in terms of the genus-one Jacobi theta and Dedekind functions. A few comments
are in order, regarding the notation. The first line in (3) contains the contribution of the left-
moving RNS sector, whereas the second line is associated to the gauge bundle. Finally, the
third line involves the oscillator contributions η−12 η̄−24, the phase realising the Scherk-Schwarz
action (2) and lattice factors associated to the compactification. In particular, h,H label the
various (un)twisted sectors of the ZN and Z′2 orbifolds, respectively. Similarly, the summation
over g,G imposes the orbifold projections, in each case.
Γ2,2[HG ] is the shifted Narain lattice associated to the untwisted T 2 given by

Γ2,2[HG ] = τ2

∑
mi,ni∈Z

eiπGm1 q
1
4
|PL|2 q̄

1
4
|PR|2 , (4)

corresponding to a momentum shift along the first T 2 cycle. The left- and right- moving lattice
momenta are given by

PL =
m2 − Um1 + T̄ (n̂1 + Un̂2)√

T2 U2
, PR =

m2 − Um1 + T (n̂1 + Un̂2)√
T2 U2

, (5)

where n̂i = ni + δi1H/2, and T,U are the Kähler and complex structure moduli of T 2,
respectively. The implementation of the Scherk-Schwarz mechanism responsible for the
spontaneous supersymmetry breaking in terms of the Z′2 orbifold is achieved by the insertion
of the phase (−)H(b+`+s)+G(a+k+r)+HG together with the above momentum shift on the Γ2,2[HG ]
lattice. This can be most conveniently seen by noticing that (−)a+k+r is precisely identified with
the operator (−)Fs.t.+F1+F2 since a is the spacetime fermion number, and k, r are the ‘fermion’
numbers associated to the SO(16) spinor representations associated to the original E8’s. The
additional part (−)H(b+`+s)+HG is straightforwardly identified with its modular completion. On
the other hand, the momentum shift in Γ2,2[HG ] precisely corresponds to a left-right symmetric
shift in the first T 2 coordinate X1 → X1 + πR. Coupling the operator of fermion numbers to
the Γ2,2 lattice with a momentum shift, hence, precisely generates the Z′2 orbifold action (2).

Finally, the twisted (4, 4) lattice partition function is given by

ΛK3
[
h
g

]
=


Γ4,4 for (h, g) = (0, 0) ,

k[hg ] |η|12∣∣∣ϑ[ 1/2+h/N
1/2+g/N

]
ϑ
[
1/2−h/N
1/2−g/N

]∣∣∣2 for (h, g) 6= (0, 0) ,
(6)

with Γ4,4 being the conventional Narain lattice associated to the T 4, k
[
0
g

]
= 16 sin4(πg/N)

counting the number of ZN fixed points, and the remaining k
[
h
g

]
’s with h 6= 0 are determined

by modular invariance.
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The spectrum of the theory may be straightforwardly derived by direct inspection of the
partition function (3). In particular, the freely-acting nature of the Z′2 orbifold implies that no
state is projected out but, rather, states carrying non-trivial charge under Fs.t.+F1 +F2 acquire
non-trivial masses. In particular, the two gravitini of the N = 2 theory are degenerate and their
mass is given by

m2
3/2 =

|U |2

T2U2
. (7)

A very important difference to the supersymmetric case, particular to the spontaneous
breaking of supersymmetry, and originating from the modification of the GSO projection by
the Scherk-Schwarz boost, is the presence of charged BPS states that may become massless at
special loci in the bulk of the Narain moduli space. Indeed, consider first the general formula
for the left- and right- moving masses of string states

m2
L = |PL|2 + 4Nosc − 2 ,

m2
R = |PR|2 + 4N̄osc − 4 ,

(8)

where Nosc, N̄osc are the left- and right- moving oscillator excitations and the constants −2,
−4 are associated to the worldsheet vacuum energies of the RNS and bosonic (right-moving)
sectors, respectively. In the supersymmetric case, the mass of BPS states is dictated by the
N = 2 central charge, m2

BPS = |PL|2, and correspond to the tower of Kaluza-Klein momentum
and winding excitations of the RNS ground state Nosc = 1/2. Together with level-matching,
this implies that states charged under the E8 × E7 gauge group may only become massless if
N̄osc = 1, implying that they lie in the BPS subsector min

i = 0. The latter constraint may be
solved explicitly and it is straightforward to show that extra charged massless states can only
occur in the boundary of the T,U moduli space.

On the other hand, when supersymmetry is spontaneously broken by the Scherk-Schwarz
mechanism, the mass of BPS states is no longer given by |PL|2 and the modification of the GSO
projection allows for the presence of charged states with Nosc = 0, N̄osc = 1, charged in the bi-
fundamental of SO(16)× SO(12). The string mass formulæ (8) then imply that the BPS mass
is modified to m2

BPS = |PR|2 and, together with level matching, show that these states lie in the
BPS subsector min̂

i = −1/2. Hence, these charged BPS states carry non-trivial momentum and
winding charges around the cycle of T 2 where the momentum shift acts, m1 = −2n̂1 = ±1 and
m2 = n2 = 0, and become massless at loci in the bulk of the Narain moduli space lying in the
T-duality orbit generated by T = 2U . Such BPS states indeed exist in the perturbative string
spectrum of the model and may be seen to arise from the a = h = 0, H = 1 sector. Their origin
in the partition function (3) is most clearly expressed in terms of SO(2n) characters

O4O4V̄12Ō4V̄16 × 1
2

(
Γ2,2[10] + Γ2,2[11]

)
, (9)

and their mass is explicitly given by

m2
BPS =

|T/2− U |2

T2U2
= |PR|2 . (10)

The fact that the mass of these charged states is no longer dictated by the N = 2 central charge
PL is a result of the mass deformation induced by the Scherk-Schwarz flux.

3. N = 2 Gauged supergravity
In this section, I will discuss the Scherk-Schwarz mechanism inducing the spontaneous breaking
of supersymmetry in the prototype model of the previous section from the low energy
supergravity perspective.
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In Field Theory, the Scherk-Schwarz mechanism constitutes a deformation of the fields
of the theory by a symmetry operator Q, such that fields Φ(X5) depending on a compact
coordinate X5 of radius R acquire a non-trivial monodromy as one encircles the compact
direction Φ(X5 + 2πR) = e2πiQ Φ(X5). Consequently, this non-periodicity induces a shift in the
Fourier frequencies and the Kaluza-Klein spectrum of charged states is modified m → m + Q.
In particular, for a charged massless scalar Φ, the ground state in the Kaluza-Klein spectrum is
now shifted to mKK = |Q|/R.

In String Theory, the Scherk-Schwarz mechanism acts in a very similar way, as a deformation
of the vertex operators by the symmetry operator Q. It can be interpreted as a constant
field strength background FIJ for the circle U(1) taking values in the internal manifold and
corresponds to a deformation of the worldsheet action by

δS2d =

∫
d2z FIJ(ψI ψJ −XI

↔
∂XJ) ∂̄X5 . (11)

It is clear that the operator ψIψJ −XI
↔
∂XJ is simply the rotation operator in the internal I-J

plane, whereas ∂̄X5 is the translation operator along the compact X5 direction. Their coupling
precisely induces the Scherk-Schwarz boost on the lorentzian charge lattice. Although the
above deformation of the worldsheet Lagrangian is not quadratic in the fields, it is nevertheless
integrable for special quantised values of FIJ . Indeed, the Lagrangian deformation explicitly
involves the bosonic field XI without its derivative, which is not a well-defined conformal

field. This reflects the fact that the operator XI
↔
∂XJ does not have a well-defined action

on the compact toroidal internal space for a generic continuous rotation angles FIJ . However,
the deformation does become integrable for special quantised values of FIJ , corresponding to
crystallographic symmetries of the torus. This is precisely the worldsheet manifestation of flux
quantisation. In fact, for these quantised values of the flux, the deformation (11) may be shown
to be absorbed into the free kinetic terms of the worldsheet action, by an appropriate redefinition
of the boundary conditions of the worldsheet fields (for a recent discussion, see [19, 20]).

The Scherk-Schwarz deformation of the theory corresponds to a flat gauging of N = 2
supergravity and the effective action up to the two-derivative level is completely fixed by
the couplings among vector- and hyper- multiplets. For simplicity, I will consider the T 4/Z2

realisation of the K3 surface so that the scalar manifold may be obtained by a simple Z2

truncation of the N = 4 supergravity one, and has the form(
SU(1, 1)

U(1)

)
S

×
(

SO(2, 2)

SO(2)× SO(2)

)
T,U

×
(

SO(4, 4 + n)

SO(4)× SO(4 + n)

)
. (12)

where the first coset corresponds to the axio-dilaton scalar S, the second coset is parametrised
by the T,U moduli of the T 2, and the last coset is a quaternionic manifold of hypermultiplets
containing the K3 moduli together with the infinite number (n = ∞) of BPS multiplets of the
theory.

In order to analyse the effective action of the non-supersymmetric, non-tachyonic model (3)
and the effect of extra massless states at special points in the classical T,U moduli space one
retains only the low lying charged BPS states that may become massless. For simplicity, the
K3 moduli will be frozen at their minima and an additional Z2 truncation will be performed in
order to express the theory in N = 1 language3. The scalar manifold then becomes(

SU(1, 1)

U(1)

)
S

×
(

SO(2, 2)

SO(2)× SO(2)

)
T,U

×
(

SO(2, n+)

SO(2)× SO(n+)

)
ZA
+

×
(

SO(2, n−)

SO(2)× SO(n−)

)
ZA
−

. (13)

3 This is consistent since the two gravitini of the gauged N = 2 theory are degenerate in mass and the extra
charged massless states arise in the untwisted N = 1 subsector, hence, surviving the truncation.
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Let us now identify the charged BPS states of interest, at the level of the string spectrum. From
the point of view of the truncated N = 1 theory, they arise from the sector

O2O2O2O2 V̄10 Ō2 Ō2 Ō2 V̄16 × 1
2

(
Γ2,2[10] + Γ2,2[11]

)
. (14)

The relevant BPS states may then be denoted as ZA± , where A = (a, â) is an index in the bi-
fundamental (10,16) of the SO(10) × SO(16) gauge group. The subscript ± splits the states
according to their momentum and winding charges

ZA+ : m1 = 2n1 = +1 , m2 = n2 = 0 ,

ZA− : m1 = 2n1 = −1 , m2 = n2 = 0 .
(15)

The structure constants fABC of the gauging may be straightforwardly computed at the N = 2
string level by simple three-point correlation functions, fABC = 〈VAVBVC〉. The SU(1, 1)/U(1)
and SO(2, n)/SO(2)× SO(n) coset conditions may be explicitly solved and, upon matching the
N = 1 gravitino mass term m3/2 given in terms of the structure constants of the N = 2 gauging

with eK/2W , it is straightforward to identify the Kähler potential

K = − logS2 T2 U2

[
1− 2|~Z+|2 + (~Z2

+)(~Z∗+)2
] [

1− 2|~Z−|2 + (~Z2
−)(~Z∗−)2

]
, (16)

and superpotential of the N = 1 truncation

W =
√

2
[
−2(T + 2U) ~Z+ · ~Z− + 2U(1 + ~Z2

+)(1 + ~Z2
−)
]
, (17)

in terms of the physical scalar fields S, T, U, ZA± . The scalar potential is then obtained from

V = eK
[
(K−1)ī(Wi +KiW )(W̄̄ +K̄W̄ )− 3|W |2

]
. (18)

The point ZA± = 0 is an extremum of the potential, with V |ZA
±=0 = 0. The gravitino mass

around this point is found to be

m2
3/2 = eK |W |2 =

|U |2

S2T2U2
, (19)

which correctly reproduces the perturbative string spectrum formula. On the other hand, the
masses of the ZA± fields can be determined after appropriate diagonalisation and one finds

χA1 : M2
1 =

1

S2

|T/2− U |2

T2U2
= |PR|2 = |PL|2 − 2 , m1 = 2n1 = ±1 ,

χA2 : M2
2 =

1

S2

[
|T/2− U |2

T2U2
+ 4

]
= |PR|2 + 4 = |PL|2 + 2 , m1 = 2n1 = ±1 ,

χA3 : M2
3 =

1

S2

[
|T/2 + Ū |2

T2U2
+ 2

]
= |PR|2 = |PL|2 + 2 , m1 = −2n1 = ±1 ,

χA4 : M2
4 =

1

S2

[
|T/2− 3U |2

T2U2
+ 4

]
= |PR|2 + 4 = |PL|2 − 2 , m1 = 6n1 = ±3 ,

(20)

where

χA1 = 1
2 Im(ZA+ − ZA−) , χA2 = 1

2 Im(ZA+ + ZA−) ,

χA3 = 1
2 Re(ZA+ − ZA−) , χA4 = 1

2 Re(ZA+ + ZA−) .
(21)
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By inspection of the above mass spectrum, it is clear that only the states χA1 can become
massless. We therefore retain only their contribution (χ1 6= 0) and freeze all other fields to their
minima χA2 = χA3 = χA4 = 0, impling the identification ZA+ = iχA, ZA− = −iχA. The scalar
potential is then found to be

V =
1

S2

~χ2

(1− ~χ2)4

[
|T − 2Ū |2

T2U2

(
1 + (~χ2)2

)
+ 2
|T + 2U |2

T2U2
~χ2

]
. (22)

This expression may be further simplified by performing the analytic field redefinition

ΦA =
χA

1− χBχB
, (23)

upon which the scalar potential is cast into the form

V =
1

S2

[
|T − 2Ū |2

T2U2

~Φ2 + 2

(
|T − 2Ū |2 + |T/2 + U |2

T2U2

)
(~Φ2)2

]
. (24)

From the structure of the scalar potential (24), it is straightforward to see that the theory
possesses a stable minimum at ΦA = 0, where the potential vanishes. This reflects the ‘no-
scale’ structure of the Scherk-Schwarz gauging, which implies that S, T, U remain moduli at tree
level and may be stabilised eventually through higher loop corrections. Notice that the no-scale
structure of the potential is consistent with the fact that the worldsheet CFT is exactly solvable
at the minimum, with the T,U moduli corresponding to marginal deformations of the current-
current type entering the shifted Narain lattice Γ2,2. The presence of extra charged massless
states naturally introduces logarithmic infrared singularities in the structure of gauge threshold
corrections, as will be discussed in the next section.

4. Gauge threshold corrections and universality
Having discussed the prototype model and the supergravity description of extra charged massless
states, I will briefly review the universality arising in differences of gauge couplings in the case
of unbroken supersymmetry and then focus on the appearance of a remarkable and unexpected
universality in the case where supersymmetry is spontaneously broken by the Scherk-Schwarz
flux (2).

The running of the gauge coupling associated to a gauge factor G at one loop takes the form

16π2

g2
G(µ)

=
16π2

g2
s

+ βG log
M2
s

µ2
+ ∆G , (25)

where the second term in the r.h.s. is proportional to the beta function coefficient βG and
corresponds to the field theory result. The third term ∆G is the correction due to the infinite
tower of massive string states running in the loop and is known as the threshold correction.

The one loop correction to the gauge coupling is computed in string theory by considering
the two point CFT correlator of the vertex operators of gauge bosons

Va(z, z̄) = Aaµ(∂Xµ + ip · ψψµ) J̃a(z̄) eip·X , (26)

with J̃a(z̄) being the Kac-Moody currents realising the loop algebra

J̃a(z̄) J̃b(0) = k
δab

z̄2
+ ifabc

J̃c(0)

z̄
+ reg , (27)
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where fabc are the structure constants of the Lie algebra of G. After integrating the position
(z, z̄) over the worldsheet torus, one is left to perform the modular integral over the moduli
space of gauge inequivalent metrics, parametrised by the complex structure parameter τ , over
a fundamental domain F

16π2

g2
G

= RN

∫
F

d2τ

τ2
2

∫
torus

d2z 〈Va(z, z̄)Va(0)〉CFT , (28)

and RN stands for a renormalisation prescription for treating the infrared divergences due to the
presence of massless states. We shall henceforth suppress the explicit display of the ‘RN’ symbol
in subsequent integrals, assuming the appropriate renormalisation prescription of [11, 12, 13].
Schematically, the threshold takes the form

16π2

g2
G

=

∫
F

d2τ

τ2
2

∑
states

Str

(
1

12
− s2

)(
Q2
G −

1

4πτ2

)
q

1
4
|PL|2+Nosc− 1

2 q̄
1
4
|PR|2+N̄osc−1 , (29)

where s is the helicity operator, QG is a Cartan charge in the gauge group G and q = e2πiτ is
the nome.

A few comments are in order about the structure of the above expression. The exponents
of q and q̄ are simply the left- and right- moving conformal weights of the states running
in the loop, respectively. In the rectangular region τ2 > 1 of the fundamental domain, the
τ1 ∈ (−1

2 ,
1
2) integration simply imposes level matching whereas τ2 plays the role of the field-

theoretic Schwinger parameter. In the non-rectangular region τ2 < 1 of F , the integral receives
contribution also from non-level matched states, as demanded by modular invariance and
unitarity. The supertrace operator Str( 1

12 − s
2)Q2

G is identified in the massless sector with the
field-theoretic beta function coefficient βG and is associated to the contribution of the charged
states running in the loop. The charge-independent term proportional to 1/τ2, on the other
hand, is associated to a non-1PI diagram due to the universal coupling of the dilaton, and arises
as a result of a modular regularisation of short-distance divergences on the string worldsheet.

4.1. Supersymmetric universality
In the case when supersymmetry is unbroken, the F 2 term is BPS saturated and only BPS states
contribute to the threshold. Using the fact that in this subsector Nosc = 1/2, it is straightforward
to see from (29) that the left moving oscillators cancel out and one obtains a simple expression
of the form

∆G =

∫
F

d2τ

τ2
2

Γ2,2(T,U)Φ(τ̄) , (30)

where the Narain lattice Γ2,2 encodes the lattice sum over the left- and right- moving momenta
and the remaining right-moving oscillator contributions, weighted with appropriate super- and
group- trace coefficients, are encoded in the weakly almost holomorphic modular function Φ.
The term ‘weakly holomorphic’ refers to a simple pole in q̄ arising from the bosonic vacuum
N̄osc = 0 of the heterotic string. On the other hand, the term ‘almost holomorphic’ refers to the
breaking of holomorphy due to the explicit appearance of the 1/τ2 term.

I will not discuss here the explicit evaluation of this modular integral, nor the explicit form
of Φ which is dependent on the choice of gauge group factor G. Rather, I will consider the
difference of gauge thresholds associated to two different gauge group factors G1 and G2. Since
the universal dilaton diagram is independent of the choice of gauge group, the 1/τ2 terms cancel
in the difference, and one arrives at

∆G1 −∆G2 =

∫
F

d2τ

τ2
2

Γ2,2(T,U)C(τ̄) , (31)

4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014) IOP Publishing
Journal of Physics: Conference Series 631 (2015) 012079 doi:10.1088/1742-6596/631/1/012079

8



where C(τ̄) is now a weakly holomorphic modular function. Its generic Fourier expansion reads

C(τ̄) =
c−1

q̄
+ c0 + c1 q̄ + . . . (32)

Invoking a well-known theorem from Number Theory, stating that any weakly holomorphic
modular form of non-positive weight is uniquely determined by the principal part of its q-
expansion, we are immediately lead to write

C(τ̄) = c−1j̄(τ̄) + c0 , (33)

where j(τ) is the Hauptmodul of the modular group SL(2;Z) known as the Klein j-invariant4.
It is now possible to fix both c−1 and c0 by a simple inspection of (29). Notice first, that c−1

corresponds to the bosonic right-moving ground-state of the heterotic string N̄osc = 0 which is
always uncharged. Since the dilaton diagram cancelled out in the difference, only the difference
of charges contributes in the difference of thresholds and, hence, c−1 = 0. The constant, on
the other hand is the contribution of the massless states N̄osc = 1 and is, hence, given by the
difference of beta function coefficients for the two gauge groups, C(τ̄) = βG1−βG2 . The resulting
integral for the difference of thresholds then involves the Narain lattice alone and was computed
in the seminal paper [21], yielding

∆G1 −∆G2 = −(βG1 − βG2) log
(
T2U2 |η(T ) η(U)|4

)
+ const. (34)

This result is universal5 and, modulo the model dependent beta function prefactor, it is
independent of the details of the string vacuum.

It should be stressed that the universality structure crucially relied on the presence of
unbroken supersymmetry which, for the moduli dependent contributions under consideration
arising from the BPS subsector, the left-moving oscillators cancelled out and the integrand
function Φ was constrained to be almost holomorphic.

4.2. Non-supersymmetric universality
Now we consider the case when the Scherk-Schwarz flux is turned on and supersymmetry is
spontaneously broken. In this case, the F 2 term receives contributions from all string states,
notably including the non-BPS ones, and the previous simple expression (30) is no longer true.
Rather, one encounters a sum of contributions ranging over the Z′2 orbifold sectors of the form

∆G = 1
2

∫
F

d2τ

τ2
2

1∑
H,G=0

Γ2,2[HG ]ΦG [HG ](τ, τ̄) , (35)

where each orbifold sector (H,G) is accompanied by a manifestly non-holomorphic, gauge factor-
dependent function ΦG [HG ](τ, τ̄) which is only modular with respect to the Hecke congruence
subgroup Γ0(2) of the modular group.

4 The theorem guarantees that j(τ) is the unique modular invariant function with a simple pole in q and I
will conventionally define it with vanishing constant term in its Fourier expansion, i.e. j(τ) = 1

q
+ 196884 q +

21493760 q2 + . . .. Note that the coefficients of all positive powers in q are uniquely determined by modularity
and from the knowledge of the coefficient of the simple pole.
5 Although certain exceptions do arise, for instance, when one deals with compactifications on non-factorisable
tori, see [22, 23].
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To illustrate this point, one may display explicitly the modular integral of the threshold for
the SO(16) gauge group factor, with K3 realised as a T 4/Z2 orbifold. Explicitly, one finds [5]

∆SO(16) =

∫
F

d2τ

τ2
2

{
− 1

48 Γ2,2[00]
ˆ̄E2 Ē4 Ē6 − Ē2

6

η̄24

+ Γ2,2[01]

[
− 1

1152

ΛK3[00]

η12η̄24
(ϑ8

3 − ϑ8
4) ϑ̄4

3 ϑ̄
4
4

(
( ˆ̄E2 − ϑ̄4

3) ϑ̄4
3 ϑ̄

4
4 + 8η̄12

)]

+ Γ2,2[01]

[
− 1

96

ϑ̄4
3 ϑ̄

4
4 (ϑ̄4

3 + ϑ̄4
4)
[
( ˆ̄E2 − ϑ̄4

3) ϑ̄4
3 ϑ̄

4
4 + 8η̄12

]
η̄24

− 1
144

ϑ4
2(ϑ8

3 − ϑ8
4)

η12

( ˆ̄E2 − ϑ̄4
3) ϑ̄4

3 ϑ̄
4
4 + 8η̄12

η̄12

]
+ (S · τ) + (ST · τ)

}
.

(36)

The expression in the first line is separately invariant under SL(2;Z) and corresponds to the BPS
subsector, which effectively ‘feels’ the unbroken N = 2 supersymmetry. The second line, on the
other hand, is manifestly non-holomorphic and contains the dependence on the hypermultiplet
moduli of K3. The third line is again a BPS contribution arising in the T 4/Z2 realisation of K3,
and is due to an ‘overlap’ between the Z2 and Z′2 orbifolds rendering this subsector effectively
supersymmetric. The last line represents a gauge factor-dependent, manifestly non-holomorphic
contribution plus its images under S and ST transformations of SL(2;Z).

I will not be discussing in this note the explicit evaluation of the above modular integral,
which produces a result in the form on an asymptotic expansion valid in the large volume region
of moduli space. Instead, I will directly focus on the difference of thresholds by paralleling the
supersymmetric discussion. A priori, there is no reason to expect that the universality structure
present in the supersymmetric case will persist also here, given that the simple property of
(almost) holomorphy of Φ(τ̄) in (30) is no longer present. Moreover, the explicit dependence of
(36) on the K3 moduli is another reflection of the fact that the amplitude is no longer topological,
but depends on the details of the K3 compactification.

Nevertheless, there is a number of simplifications that occur in the difference of thresholds
for the SO(16) and SO(12) gauge factors. As in the supersymmetric case, the dilaton exchange
diagrams cancel since they are independent of the choice of gauge group, and the 1/τ2

contributions encoded in the almost holomorphic Eisenstein series ˆ̄E2 cancel. Furthermore,
the h = g = 0 sector contribution proportional to ΛK3[00] is identical for both gauge group
factors and also cancels in the difference, eliminating the dependence on the hypermultiplet
moduli. In addition, one may partially unfold [13] the fundamental domain F of SL(2;Z) to the
fundamental domain F0(2) = ∪{1, S, ST} · F of the Hecke congruence subgroup Γ0(2), at the
benefit of integrating a simpler expression - since its images under S and ST have been precisely
absorbed into enlarging the fundamental domain. Schematically, one is left with

∆SO(16) −∆SO(12) = (const.)×
∫
F

d2τ

τ2
2

Γ2,2[00]

+

∫
F0(2)

d2τ

τ2
2

Γ2,2[01]
∑
i

(holom.)i × (anti− holom.)i ,

(37)

where the first line on the r.h.s. corresponds to the BPS subsector contribution, whereas the
second line arises from the manifestly non-holomorphic contributions and is a sum of terms
involving products of holomorphic times anti-holomorphic contributions. In the case at hand,
is has the explicit form∫
F0(2)

d2τ

τ2
2

Γ2,2[01]

{
−ϑ

8
2 |ϑ4

3 + ϑ4
4|2 ϑ̄4

3ϑ̄
4
4

η12 η̄24
− ϑ4

2ϑ
4
3 |ϑ4

2 − ϑ4
4|2 ϑ̄4

3ϑ̄
4
4

η12 η̄24
+
ϑ4

2ϑ
4
3 |ϑ4

2 + ϑ4
3|2 ϑ̄4

3ϑ̄
4
4

η12 η̄24

}
. (38)
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Remarkably, this apparently non-holomorphic expression is reduced into a simple holomorphic
one as a result of non-trivial reduced MSDS identities [24] and allows the result for the integral
to be resummed into simple closed form. Indeed, by expanding this expression into SO(8)
characters, one first notices that it factorises as 12(O2

8 V8 + 3V 3
8 )(Ō2

8V̄8 − V̄ 3
8 ). The non-trivial

MSDS identity Ō2
8V̄8 − V̄ 3

8 = 8 then guarantees that the non-holomorphic contributions cancel
against each other and the expression actually reduces to a purely holomorphic one, as a
consequence of MSDS spectral flow [24, 25]. The resulting Γ0(2) integral then simply becomes
similar to the BPS-saturated ones

1

6

∫
F0(2)

d2τ

τ2
2

Γ2,2[01]

(
8− ϑ12

2

η12

)
, (39)

and was computed in closed form in [26] where the underlying generalised Borcherds product
formula for the Γ0(2) subgroup was derived. There are two important differences with the
supersymmetric case. First, aside from the shifted Narain lattice factor, the integrand is
now a holomorphic modular function of Γ0(2) rather than an anti-holomorphic one. This
curious property implies that the difference of non-supersymmetric thresholds actually receives
contributions from the bosonic (right moving) ground state and involves an infinite tower of
oscillator excitations from the RNS sector, in a sense, being the left-right ‘mirror’ of BPS
saturated amplitudes. The second difference lies in the fact that the holomorphic modular
form of Γ0(2) is no longer a constant as in the supersymmetric case, but actually contains a
q-pole at the cusp τ = 0. This is inherently related to the existence of the extra charged massless
states (9) arising from the Nosc = 0, N̄osc = 1 sector.

Using the explicit results for the modular integrals discovered in [13, 26], we find the following
universal result [5]

∆SO(16) −∆SO(12) = α log
[
T2U2 |η(T ) η(U)|4

]
+ β log

[
T2U2 |ϑ4(T )ϑ2(U)|4

]
+γ log

∣∣ĵ2(T/2)− ĵ2(U)
∣∣4 ∣∣j2(U)− 24

∣∣4 , (40)

where j2(τ) is the Hauptmodul of Γ0(2) and ĵ2(τ) is its Atkin-Lehner transform. They can both
be expressed in terms of the genus-one Jacobi theta and Dedekind eta functions via

j2(τ) =

(
η(τ)

η(2τ)

)24

+ 24 , ĵ2(τ) = j2(− 1
2τ ) =

(
ϑ2(τ)

η(τ)

)12

+ 24 . (41)

Notice that the dependence on the details of the vacuum is only encoded in the coefficients α, β, γ.
It is a remarkable and highly non-trivial result, that the difference of thresholds can be cast into
this simple closed-form universal expression involving known elliptic functions, irrespectively of
the orbifold realisation of the K3 ∼ T 4/ZN surface. In particular one finds [5] that the triplet
of coefficients (α, β, γ) is equal to (36,−4

3 ,
1
3) for N = 2, 3, equal to 5

8(36,−4
3 ,

8
15) for N = 4 and

equal to 35
144(36,−4

3 ,
1
3) for N = 6.

One then arrives at a manifestation of a universality structure for the difference of gauge
thresholds in heterotic vacua where supersymmetry is spontaneously broken via Scherk-Schwarz
flux. Contrary to the supersymmetric case, this universality emerges only in differences of gauge
thresholds is a remnant of the topological K3 universality present in the supersymmetric case
and crucially relies on the spontaneous nature of the breaking.

The effect of the Scherk-Schwarz mechanism is to deform the mass spectrum, breaking the
perturbative SO(2, 2) T-duality group down to a Γ 0(2)T × Γ0(2)U subgroup. Indeed, the first
two terms on the r.h.s. of (40) precisely reflect the latter breaking of the T-duality group and
are to be considered as freely-acting deformations of (34). Similar terms appear in cases of
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partial spontaneous supersymmetry breaking N = 4 → N = 2. The third term, however, is
particular to the spontaneous supersymmetry breaking down to N = 0 and can be identified to
the presence of the extra charged massless states (9). Indeed, it develops logarithmic singularities
at precisely the loci T = 2U and its Γ0(2) images, where the latter charged BPS states become
massless. This observation has an important consequence in providing a physical interpretation
of the coefficients α, β, γ. Namely, whereas α and β are again interpreted as differences in beta
function coefficients, γ is proportional to the jump in the those beta function coefficients, due
to the presence of additional massless states at T = 2U .

5. The one-loop effective potential at large volume
Before ending the discussion, it is instructive to make a comment on the form of the vacuum
energy of the prototype model, namely, the one-loop contribution to the effective potential.
Indeed, the breaking of supersymmetry implies that the modular integral of the partition
function is no longer vanishing. On the other hand, the spontaneous nature of the breaking
drastically restricts its volume dependence. The integrand is manifestly non-holomorphic, and
one may at best obtain a large volume expansion of the result. Unfolding the fundamental
domain F0(2) against the Narain lattice proceeds in a straightforward fashion after decomposing
the shifted Narain lattice into F0(2) orbits. In particular, the vanishing orbit corresponding to
H = G = 0 vanishes identically as N = 2 supersymmetry is effectively recovered and this
eliminates a dependence of the potential on positive powers of the volume of T 2. Dropping
exponentially suppressed terms, it is straightforward to see that the result arises entirely from
the degenerate orbit projected down to its zero modes and has the form

Veff = − 1

T2

[
2NQ=1E

?(3;U) + 23
(

1
2 NQ=0 −NQ=1

)
E?(3; 2U)

]
+O(e−|δ|

√
T2) , (42)

where NQ counts the number of massless bosons minus the number of massless fermions with
charge Q = (Fs.t. + F1 + F2) mod 2, and

E?(s;U) =
Γ (s)

2πs

∑
(m,n)6=(0,0)

U s2
|m+ Un|2s

, (43)

is a properly normalised non-holomorphic Eisenstein series of weight 0. The spontaneous nature
of the supersymmetry breaking, hence, implies that the effective potential is cast in the form

Veff = −β(U)m4
3/2 +O(e−|ξ|m3/2) , (44)

in terms of the supersymmetry breaking scale m3/2. This structure is compatible with the

absence of M2
sm

2
3/2 terms from the effective potential, required for the determination via

radiative corrections of the no-scale modulus to lie around the TeV scale [27].
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