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ABSTRACT: Scintillation crystals have a wide range of applications in detectors for high energy
and medical physics. They are recquired to have not only good energy resolution, but also excel-
lent time resolution. In medical applications, L(Y)SO crystals are commonly used for time of flight
positron emission tomography (TOF-PET). This study aims at determining the experimental and
theoretical limits of timing using L(Y)SO based scintillators coupled to silicon photomultipliers
(SiPMs). Measurements are based on the time-over-threshold method in a coincidence setup uti-
lizing the ultra-fast amplifier-discriminator NINO and a fast oscilloscope. Using a 2× 2× 3 mm3

LSO:Ce codoped 0.4% Ca crystal coupled to a commercially available SiPM (Hamamatsu S10931-
050P MPPC), we achieve a coincidence time resolution (CTR) of 108±5ps FWHM measured at
E=511keV. We determine the influence of the data acquisition system to 27±2ps FWHM and thus
negligible as compared to the CTR. This shows that L(Y)SO scintillators coupled to SiPM pho-
todetectors are capable of achieving very good time resolution close to the desired 100ps FWHM
for TOF-PET systems. To fully understand the measured values, we developed a simulation tool in
MATLAB that incorporates the timing properties of the photodetector, the scintillation properties
of the crystal and the light transfer within the crystal simulated by SLITRANI. The simulations
are compared with measured data in order to determine their predictive power. Finally we use this
model to discuss the influence of several important parameters on the time resolution like scintil-
lation rise- and fall time and light yield, as well as single photon time resolution (SPTR) and the
detection efficiency of the SiPM. In addition we find the influence of photon travel time spread in
the crystal not negligible on the CTR, even for the used 2×2×3 mm3 geometry.

KEYWORDS: Scintillators, scintillation and light emission processes (solid, gas and liquid scintil-
lators); Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs,
G-APDs, CCDs, EBCCDs, EMCCDs etc); Photoemission; Analysis and statistical methods

∗Corresponding author.

c© CERN 2013, published under the terms of the Creative Commons Attribution 3.0
License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this

work must maintain attribution to the author(s) and the published article’s title, journal citation and DOI.
doi:10.1088/1748-0221/8/07/P07014

mailto:stefan.gundacker@cern.ch
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1088/1748-0221/8/07/P07014


2
0
1
3
 
J
I
N
S
T
 
8
 
P
0
7
0
1
4

Contents

1 Introduction 1

2 Experimental methods and results 2
2.1 Electronics for SiPM readout 4
2.2 NINO threshold calibration 5
2.3 Measured CTR with LSO:Ce codoped 0.4% Ca and 511 keV gammas 7

3 Simulation of the system time resolution 8
3.1 Model description 8

3.1.1 Scintillation mechanism and photon statistics 9
3.1.2 SLITRANI for light ray tracing 10
3.1.3 Organisation of the Monte Carlo simulation tool 10

3.2 Model parameters 13
3.2.1 Single cell signal 13
3.2.2 Electronic noise and gain fluctuation 14
3.2.3 Dark count and crosstalk 15
3.2.4 Photon detection efficiency 16
3.2.5 Single photon time resolution 17
3.2.6 Scintillation rise and fall time 18
3.2.7 Light yield measurements for the adaptation of SLITRANI crystal model

parameters 18

4 Model validation 20
4.1 Special case: timing of the SiPM using a femtosecond laser 21
4.2 CTR as a function of SiPM Bias and NINO threshold 21

5 Discussion 23

6 Conclusion 26

1 Introduction

Time-of-Flight (TOF) techniques are widely used in positron emission tomography (PET) to im-
prove the quality of the reconstructed image [1]. They refine the initial information about the exact
localization of the positron emission point and thus contribute to the rejection of background events
outside the region of interest, reducing the noise in the reconstructed image. Commercial full-body
PET currently achieves a coincidence time resolution (CTR) of around 500ps FWHM [2–4]. More
advanced research solutions aim at a CTR around 200ps FWHM [5], corresponding to a zone of
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∼3cm around the point of emission, sufficient to remove coincidence events outside the organ of
interest. An improvement of the CTR towards ∼100ps would provide even more precise deter-
mination of the point of emission. It is thus interesting to study how an improvement of the full
detector chain comprising the scintillating crystal, the photodetector and the electronics contributes
to achieving this goal. Silicon photomultipliers (SiPMs) or multipixel photon counters (MPPCs)
are promising candidates towards achieving excellent time resolution [6, 7]. With 10mm long crys-
tals, these detectors can reach CTRs of about 200ps FWHM [8]. These values are comparable to
and even better than the best values obtained with PMTs [9]. The photon travel jitter within the
crystal is not a negligible factor and has to be taken into account in order to understand the system’s
time resolution [10, 11]. With dimensions of 3× 3× 5 mm3 it is for example possible to achieve
CTRs of 147ps FWHM with LSO:Ce doped crystals. This value degrades to 186ps FWHM for
3× 3× 20 mm3 [12]. The research performed so far highlights the strong advantages of SiPMs
in terms of timing. On the other hand, their drawbacks are the high dark count rate (DCR), high
temperature dependence and the need for fast and low noise electronics to amplify and read out
the signals generated by one pixel. This paper discusses the limits of commercial multi pixel pho-
ton counters (MPPCs) from the producer Hamamatsu in terms of timing. We used only LSO:Ce
codoped 0.4% Ca crystals [13] with a length of 3mm from the producer Agile with properties sim-
ilar to ones used in PET systems, i.e. being non hygroscopic and with high stopping power. There
were several attempts to model the time resolution of a photomultiplier based scintillation detector,
e.g. [14, 15]. To our knowledge however there is still a missing analysis on how to incorporate
the crystal geometry into the statistical model, because even for short crystals, e.g. 2×2×3 mm3,
one cannot omit this influence. This is due to the light transfer inefficiency and the photon travel
time spread in the crystal in a specific configuration (Teflon wrapping, grease, surface state, . . . ).
The light transfer efficiency is the ratio between the photons arriving at the photodetector and the
intrinsic light yield, i.e. the total amount of scintillation photons produced. The photon travel time
jitter is a combination of the light transfer time jitter of the scintillation photons and the gamma ray
interaction point fluctuation in the crystal. This paper is organized in two main sections. First we
present experimental results on coincidence time measurements using the so called NINO chip [16]
and newly developed electronics. In the second part we present a complete Monte Carlo simulation
tool modeling: (1) the scintillation statistics, (2) photon propagation and loss in the crystal (simu-
lated by SLITRANI), (3) photodetector properties like single photon time resolution (SPTR) and
detection efficiency, (4) signal pile-up considering the single cell signal of the SiPM, (5) dark count
rate and optical crosstalk of the SiPM and (6) the effect of the electronics, i.e. bandwidth limita-
tions and noise. A comparison of the simulation with experimental data shows good agreement for
the influence of the bias voltage and NINO threshold on the CTR. We will use this simulation tool
to discuss the nature of several important parameters to the time resolution, like scintillation rise
time and fall time and light yield, as well as single photon time resolution (SPTR) and the photo
detection efficiency of the SiPM.

2 Experimental methods and results

We use a time coincidence setup (see figure 1) to test the time resolution of the system. The
radioactive β+decay of a 22Na source produces a positron which emits two back-to-back 511keV γs
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Figure 1. Schematic of the coincidence time measurement
setup. In our test we use NINO for the precise time stamp
and a voltage amplifier to determine the output charge and
thus the energy.

Figure 2. Generation of the NINO output
signal from the SiPM input using time over
threshold.

by annihilation with an electron. The 22Na source has an activity of 3MBq and a spherical geometry
with 1mm diameter. In the scintillating crystal these 511keV gammas are converted into visible
photons with wavelength around 420nm. These photons are then detected by the photodetector
(SiPM). The SiPM signals are fed into the CERN-developed NINO chip [16]. NINO is an ultrafast
discriminator-amplifier employing the time over threshold technique. It produces a squared output
pulse with the leading edge determining the time information (leading edge discrimination) and the
width being a function of the pulse charge and thus delivering energy information (see figure 2).
For the measurements in this paper however we will use the output of the linear voltage amplifier
to get the energy information. NINO uses a common mode configuration with differential input
signals coming from the SiPM [17] and hence can actively suppress common ground noise and
pick-up.

Despite the advantages of NINO being able to encode time and energy in one single pulse the
method has an inherent drawback. Let us consider the SiPM pulse consisting of a single exponential
with decay constant τ and amplitude A,

y(t) = A · exp
(
− t

τ

)
+Vnoise. (2.1)

The term Vnoise represents the electronic noise as well as noise generated by SiPM dark count events.
It is modeled as a Gaussian distribution around the baseline. The NINO output pulse width (PW )
as a function of the threshold voltage Vth can be calculated by setting equation (2.1) equal to Vth:
Vth = A · exp(−PW/τ)+Vnoise. Considering that the amplitude of the SiPM signal is proportional
to the gain G: A = a ·G, this gives:

PW = τ · ln
(

a
Vth−Vnoise

)
+ τ · ln

(
G

Vth−Vnoise

)
. (2.2)
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The first term in equation (2.2) is related to the unit gain output a of the SiPM signal. It
logarithmically encodes the energy resolution through the signal a and fluctuations of Vnoise. The
gain of a SiPM can be increased by operating the device at higher overvoltages. This however
also increases the DCR and thus leads to a higher noise component (Vnoise). If a linear amplifier
was used, the additional noise would be compensated by an increase in SiPM pulse height. On the
other hand, equation (2.2) shows that in the logarithmic encoding used in NINO, an increase of the
gain only leads to an additional constant factor in the pulse width (right term of (2.2)). Since the
fluctuation of Vnoise also increases with higher overvoltage and is not offset by an increase in gain
(left term of formula (2.2)), the energy resolution degrades. This behavior represents a disadvantage
in the photopeak selection process when using the logarithmic energy measurement as compared
to a linear one. This statment is supported by the findings in [18]. There we find an optimum
in CTR around 1.7V overvoltage for the Hamamatsu 50µm MPPC. At higher bias overvoltages
the CTR value degrades from 140ps (at 1.7V overvoltage) to 200ps (at 2.2V overvoltage). This
degradation is almost entirely caused by a poor photopeak selection from the NINO pulse width
energy measurement.

2.1 Electronics for SiPM readout

We developed a board with a parallel analog readout of the SiPM signal to overcome the problem
of the NINO pulse width energy selection and to exploit the full capabilities of the SiPM. Figures 3
and 4 respectively show a picture of the circuit board and the simplified schematics of the elec-
tronics. The voltage amplifier has a high resistive input impedance to avoid additional noise at the
NINO input. The board is designed to read out two SiPMs independently. The CTR can thus be
measured with a single board that hosts two independent signal chains for a SiPM, NINO and a
voltage amplifier.

Figure 3. The new NINO Board. The board offers the
possibility to connect and read out two SiPMs indepen-
dently.

Figure 4. Circuit diagram of the SiPM readout
electronics.
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(a) (b)

Figure 5. Analog SiPM pulse and response of NINO operating at 60mV threshold coupled to the SiPM
operated at 2V overvoltage. (a) left arm and (b) right arm of the coincidence setup

Table 1. Parameters of the two MPPCs (SiPMs) from the producer Hamamatsu.

branch of setup MPPC type active area number of cells breakdown voltage charge gain
@ 20◦C @ 2V overvoltage

left S10931-050P 3x3mm2 3600 70.4V 1.4 ·106

right S10931-050P 3x3mm2 3600 70.5V 1.4 ·106

Figure 5 shows the NINO and amplifier output signals of SiPM dark count events. Figure 5(a)
shows the left arm of the coincidence setup. A cascade of afterpulse events can be seen at the
analog amplifier output, together with the corresponding NINO signals. In figure 5(b) the right
branch shows a typical dark count event at 0ns and a crosstalk event at 1000ns. The long fall time
observed for the amplifier signals is generated by the 200Ω bias resistors. Due to the coupling
capacitor between the SiPM and NINO, leading to a differential input impedance of 40Ω [16], this
long fall time is not observed by NINO. It is only sensitive to signal changes in the nanosecond
range. This behavior is intended as it corrects baseline shifts.

We measured the NINO output pulse slew rate to dV/dt = 179V/µs. Together with the rms
noise floor of the oscilloscope of σnoise = 1.45mV we can calculate the influence of our acquisition
system on the time resolution according to formula (2.3). The factor 2 ∗

√
2∗ ln(2) ∗

√
2 = 3.33

converts to coincidence time resolution FWHM.

CT Racquisition =
σnoise

dV/dt
∗3.33 = 27ps(FWHM) (2.3)

Table 1 summarizes the parameters for the SiPMs from Hamamatsu on this experimental
board, including the measured breakdown voltage at a temperature of 20◦C.

2.2 NINO threshold calibration

The calibration of the NINO threshold is necessary to compare measurements with simulations. It
relates the NINO threshold value to the SiPM output amplitude, expressed in multiples of single
SPAD pulse height. These quantities can be derived from so called staircase plots, produced by
measuring the number of triggers in counts per second versus the NINO threshold for different
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(a) (b)

Figure 6. Staircase plots for (a) the left and (b) right arms of the coincidence setup versus NINO threshold
for different overvoltages. Measurements at 20◦C.

Figure 7. NINO threshold calibration from the shown staircase plots. In addition to the expected linear term
we observe an exponential component, that is due to non-linearities of NINO.

SiPM overvoltages (see figure 6). The measurements were performed in a temperature stabilized
dark box at a temperature of 20◦C. No crystal was attached to the SiPM.

Each step in the staircase plot represents the single SPAD amplitude incremented by an in-
teger number [19]. NINO shows a non-linear behavior between its threshold and the equivalent
cell amplitude N (see figure 7). Superimposed on the expected linear behavior one observes an
exponential component in the threshold-to-amplitude response.

To account for this non-linearity we calibrate the NINO threshold in terms of the equivalent
cell (SPAD) amplitude N with equations (2.4)–(2.7), by fitting exponentials to the measurements
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(see figure 7).

UOV = 1.1V : Threshold = 61.5∗N ∗ exp
[

N
15.6

]
(2.4)

UOV = 1.5V : Threshold = 73.6∗N ∗ exp
[

N
7.6

]
(2.5)

UOV = 1.9V : Threshold = 82.7∗N ∗ exp
[

N
4.9

]
(2.6)

UOV = 2.3V : Threshold = 113.3∗N ∗ exp
[

N
5.4

]
(2.7)

2.3 Measured CTR with LSO:Ce codoped 0.4% Ca and 511 keV gammas

The experimental setup for the CTR measurements is shown in figure 1. The entire setup is housed
in a thermally insulated dark box. The temperature is held stable at 20±0.1◦C. This avoids tem-
perature induced gain fluctuations during a single CTR measurement run. The data acquisition is
performed with a high sampling rate oscilloscope, LeCroy DDA 735Zi (40GS/s). The dual pulse
heights from the voltage amplifier outputs (operating at an amplification of 1.6) of each branch of
the coincidence setup, plus their NINO leading edge delay, were recorded on disk. In the offline
data analysis, we histogram the mutual time delay accepting only events from the two photopeaks.
An example of this can be seen in figure 8. The crystals with sizes of 2× 2× 3 mm3, were fully
wrapped in Teflon and coupled to the SiPMs with optical grease (Rhodorsil 47V). The crystal face
opposite the SiPM is unpolished and all the other faces are polished.

In figures 9 and 10 we show the CTR versus the NINO threshold and SiPM bias, respectively.
The threshold scans show best CTR values of 108ps FWHM at∼80mV, being below the single cell
amplitude. SiPM bias scans show a steady improvement of the CTR with increasing overvoltage
where the highest resolution (minimum in the plots) is reached at an overvoltage of around 2.2V.

The rise in CTR value for low NINO thresholds (figure 9) can be explained by two factors,
electronic noise and the SPTR of the SiPM. Due to the single cell signal pile-up the SiPM output

(a)
(b)

Figure 8. We select pulses from the left and right photopeak (a) and plot their delay time histogramm (b)
from which we determine the CTR.
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Figure 9. CTR versus NINO threshold. A minimum
of the CTR∼108ps can be seen at around 80mV for
2.3V bias overvoltage.

Figure 10. CTR versus the SiPM overvoltage. At
2.2V overvoltage a minimum in the CTR∼108ps is
obtained with a NINO threshold of 80mV.

signal can be described by a parabolic function, in a first order approximation and for low signal
values. Thus the slew rate (dV/dt) is getting smaller for lower NINO thresholds, and consequently
the electronic noise starts to dominate the CTR value. On the other hand the smearing of the
scintillation signal by the photodetector’s SPTR causes a significant change to the influence of the
photon statistics. Triggering on the first photon emitted by the scintillation will not give the best
CTR values anymore. This is mainly caused by the long tails of the SPTR well described by a
Gaussian distribution [20]. These two effects are responsible for the rise of the CTR values for
low NINO thresholds. We want to mention that these two effects are not independent, for a higher
SPTR will as well influence the slew rate of the SiPM output signal.

The improvement of the CTR values with bias overvoltage (figure 10) can be mainly described
by an enhancement of the photon detection efficiency (PDE) of the SiPM. The PDE includes
the geometrical fill factor, quantum efficiency of the silicon and the probability of triggering an
avalanche [19]. With increasing bias voltage the avalanche triggering probability becomes higher,
allowing to detect more photons from the scintillation process and thus to improve the timing by
higher statistics. The dark count rate and optical cross talk are increasing with bias overvoltage as
well. At a certain bias overvoltage, however, this increase in DCR and optical cross talk will begin
to deteriorate the time resolution, giving rise to the observed minimum.

3 Simulation of the system time resolution

3.1 Model description

This section gives an overview of the photon statistics to model the scintillation process. It provides
a mathematical description of the signal pile-up as well as an overview (flow chart) of a dedicated
Monte-Carlo simulation tool.

– 8 –



2
0
1
3
 
J
I
N
S
T
 
8
 
P
0
7
0
1
4

3.1.1 Scintillation mechanism and photon statistics

The photon emission rate of a scintillation process can be described by bi-exponential functions
with one or several rise and fall times [21]. We use this phenomenological model to describe the
photon generation process with the following probability density function (PDF):

f̂ (t) =
l

∑
i=1

Yl

exp
(
− t−∆t

τd,i

)
− exp

(
− t−∆t

τr,i

)
τd,i− τr,i

Θ(t−∆t) (3.1)

The parameter ∆t describes the start of the scintillation process, i.e. the absorption of a gamma
in the crystal, and Θ denotes the Heaviside step function. Each contribution in the sum models
different energy transfer mechanisms that populate and de-populate the luminescence centers by
convoluting two exponential functions for each mechanism. Yl denotes the yield of every single
energy transfer mode with ∑

l
i Yl = 1. The cumulative distribution function (CDF) is then defined in

equation (3.2) as:

F̂(t) =
∫ t

−∞

f̂ (t ′)dt ′ =
l

∑
i=1

Yl

1−
τd,i · exp

(
− t−∆t

τd,i

)
− τr,i · exp

(
− t−∆t

τr,i

)
τd,i− τr,i

 Θ(t−∆t) (3.2)

The area below f̂ (t) is normalized to one. By multiplying f̂ (t) with the intrinsic light yield
n we obtain the average photon rate of the scintillation process f (t) = n · f̂ (t). In the special
case of L(Y)SO:Ce crystals we assume equation (3.1) and (3.2) to be simple bi-exponentials (l =
1) [22, 23].

We are able to describe the kth photon’s generation time PDF using the average photon rate
and a modified binomial distribution [22, 24, 25],

pk:n(t) = n
(

n−1
k−1

)
f̂ (t)F̂(t)k−1(1− F̂(t))n−k (3.3)

with f̂ (t) and F̂(t) being the propability density function and cumulative density function of the
photon generation process, respectively. Equation 3.3 describes the probability of the kth photon
being emitted in the time interval t and t+dt. To better understand formula (3.3) we ask: “What is
the probability of a photon y out of n to be the kth one and to be emitted in the time interval t and
t+dt? “ It is the probability that k-1 photons out of n-1 have already been emitted as described by
the binomial distribution p =

(n−1
k−1

)
F̂(t)k−1(1− F̂(t))n−k, multiplied by the probability of photon

emission in the specific time interval t and t+dt, i.e. f̂ (t)dt. Since one can repeat this for every
photon of n, we apply the factor n in equation (3.3). This treatment is valid only if the rate of
photon emission is time independent and identically distributed for each event. For n · F̂(t) reaching
a constant value and in the limit of n→ ∞, i.e. k being small compared to the total number of
photons n, the binomial expression (3.3) can be reduced to the Poisson distribution:

pk:n(t)→
F(t)k−1

(k−1)!
e−F(t) f (t). (3.4)

With F(t) = n ·F̂(t) and f (t) = n · f̂ (t). Equation (3.4) was already used by Post and Schiff [26]
to describe the time response of a scintillator coupled to a PMT.
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3.1.2 SLITRANI for light ray tracing

LITRANI [27] is a Monte Carlo program based on ROOT [28]. In this work, the newest version
of LITRANI, called SLITRANI for “Super LIght TRansmission in ANIsotropic media“, was used.
Any three dimensional setup that can be described by the TGeo [28] class of ROOT can be used as
a setup in SLITRANI. Each volume can be of a different material, and each material can have dif-
ferent optical properties. The optical characteristics of materials can be modeled with a dielectric
constant, absorption length and diffusion length. Rayleigh and Compton scattering can also be sim-
ulated. Wavelength dependency can be added to most of the parameters. In contrast to other Monte
Carlo light ray tracing programs (e.g. GEANT4), LITRANI can handle an anisotropic dielectric
constant and absorption length. One has various possibilities to produce photons in SLITRANI:
spontaneous emission of photons, photons coming from an optical fibre, photons generated by ion-
izing particles, photons generated by gamma rays of energy between 0.1 and 1MeV or photons
generated by a high energy electromagnetic shower. One can define any volume and material in-
side the setup as the detector. All photons are tracked until they are absorbed or detected. Most of
the transition, reflection and absorption processes can be recorded during the simulation for further
analysis. The standard histograms are showing the amount of detected photons, the arrival time,
the different wavelengths, materials and volumes where photon absorption or reflection appears.
To handle unpolished surfaces and imperfect polishing, we added a self-built function where the
roughness can be controlled by a single parameter.

The SLITRANI simulations can be summarized by two important parameters, i.e. the light
transfer time jitter ξ and the light transfer efficiency η of the scintillaton light in the crystal. Both
parameters are dependent on the gamma interaction point χ within the crystal. The light transfer
time jitter describes the variation of the time between the generation of a scintillation photon and
the moment it reaches the photodetector. We assume an isotropic emission angle of the photons.
The transfer efficiency describes the fraction of photons reaching the photodetector compared to
the total number of generated photons. It is dependent on the photon absorption and scattering in
the crystal as well as on Teflon wrapping and also on the position of the gamma interaction point.
We can define an average transfer efficiency η̄ , averaging the transfer efficiency η over all possible
gamma interaction points.

3.1.3 Organisation of the Monte Carlo simulation tool

A multi pixel photon counter (MPPC) or SiPM consists of many micro cells (e.g. 3600 for the
Hamamatsu 50µm type). If one of the micro cells or SPADs is fired, they always give rise to the
same output signal, no matter how many photons initially triggered the avalanche. The single cell
signal is defined by the SiPM’s equivalent circuit and the circuitry around the SiPM [29]. In a
first order approximation it arises from RC-filters and thus should only have exponential character.
The time constants are dependent on the overvoltage, i.e. on the cell capacitance changing with the
overvoltage as the depletion zone will change in dimension. However these changes are assumed
to be negligible, and to good approximation, we can further assume that the time constants deter-
mining the single cell signal are independent of the overvoltage. We model the single cell signal
with a bi-exponential function (3.5) with τMr and τMd being the rise time and fall time of the signal,
respectively. The parameter A denotes the maximum amplitude of the single SPAD signal, and ε
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the moment when each microcell fires. Typically the rise time τMr is in the order of hundreds of
ps and the fall time τMd in the order of tens of ns. A single cell amplitude jitter caused by gain
fluctuations can be modelled by a Gaussian distribution A = 1√

2πσA
exp
[
−Ā/(2σA)

]
, with Ā being

the mean value and σA the standard deviation of the fluctuation. The value σA/Ā gives the percental
gain fluctuation, and the inverse, Ā/σA, will be called SNRgainfluctuation.

sε(t) =
A

b
1

1−b −b
1

1/b−1

(
exp
[
− t− ε

τMd

]
− exp

[
− t− ε

τMr

])
Θ(t− ε) with b =

τMd

τMr
(3.5)

Coupling the SiPM to a scintillator with an intrinsic light yield n and a light transfer efficiency
η it will give rise to n ·PDE ·η avalanches. Because not all photons generated by the scintillation
n will actually produce an avalanche due to absorption in the crystal and limited photo detection
efficiency of the SiPM. The probability of one photon emitted by the scintillation to produce an
avalanche is n ·PDE ·η . This process of losing photons from the scintillation to the production of
an avalanche is denoted as random deletion. The output signal of the device can be described as
the sum of the single cell signals (3.6). Because of the long decay time of a single cell signal this
process is often referred to as signal pile-up.

SSiPM =
n

∑
k=1

sε(k)(t) · Θ [PDE ·η(χ)− random(1)] (3.6)

The function “random(1)” generates a random number between 0 and 1 for each k. Thus the
Heaviside function Θ [PDE ·η(χ)− random(1)] represents the random deletion due to the limited
detection efficiency of the SiPM (PDE) and the transfer efficiency of the crystal (η). The transfer
efficiency η(χ) depends on the scintillation origin in the crystal (χ) and thus changes with each
gamma interaction.

In our simulation ε(k) is a crucial parameter as it models the entire timing behaviour of the
system. We identify four contributions to ε(k), i.e. the time ∆t from the emission of the 511keV
gamma until its absorption in the crystal, the scintillation statistics (see section 3.1.1), the light
transfer time jitter ξ and the detection transit time spread of the SiPM. Supposing that the Tk(p)
operator generates a single random time stamp with the PDF p, then ε(k) can be expressed as (3.7).

ε(k) = ∆t +Tk( f )+ξk(χ)+Tk(g) (3.7)

The function Tk( f ) gives one time stamp per kth photon of the scintillation process, according
to the method described in section 3.1.1. The function ξk(χ) gives the random time spread caused
by the light transfer in the crystal for the kth photon simulated by SLITRANI (see section 3.1.2).
It should again be noted that ξk(χ) is dependent on the position of the scintillation origin χ . Tk(g)
models the photodetector’s transit time spread (see formula (3.8)) and gives a random time stamp
generated by a Gaussian distribution. The sigma of this Gaussian is the single photon time resolu-
tion (SPTR) of the SiPM.

g(t) =
1√

2πσSPTR
exp
[
−(t−∆M)

2σSPTR

]
(3.8)

The parameter ∆M denotes a possible electronic delay and σSPTR is the single photon time
resolution of the SiPM.
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Figure 11. Flow chart of the Monte Carlo program to simulate the time resolution.

The Monte Carlo simulation is organized in the following way:

• Generate a 511keV gamma and calculate the time ∆t until it is absorbed in the crystal at the
coordinates χ according to the exponential gamma ray absorption law with an absorption
length of 11.5mm [30]. The point χ will be the scintillation point of origin.

• At point χ calculate from SLITRANI simulations n random photon transfer time jitters
ξ1 . . .ξn. Add to every photon transfer time jitter ξk a random time stamp tk, with k being the
photon rank k ∈ n. tk is subject to the scintillation statistics described in section 3.1.1.

• Perform random deletion of photons according to the product of PDE and the photon transfer
efficiency of the scintillator (η) simulated by SLITRANI. The transfer efficiency depends on
the scintillation origin χ .

• Generate a random noise floor taking into account the DCR and the optical crosstalk of the
SiPM.

• With (3.6) generate signal pile-up for those photons that have “survived” the random deletion
process. This also includes signals from crosstalk which are assumed to be simply smeared
by the SPTR because at this time no model of time evolution of crosstalk events is known to
the authors.

• Filter the obtained signal with a first order Butterworth low pass filter with a cut off frequency
of 1GHz, matching the bandwidth of NINO.
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We wish to note that we did not include any saturation effects of the SiPM in the simulations.
Within the first nanosecond approximately 100 avalanches are created at the photodetector and
therefore we assume that the used SiPM with a total number of 3600 SPADs will show no signs of
saturation. Therefore our method should be a good representation of the SiPM signal in the first
few nanoseconds of the scintillation pulse. We then apply leading edge discrimination producing
the time stamp of the simulated output pulse. Electronic noise is added by Gaussian distributed
white noise on the threshold value. To obtain sufficient statistics we repeat this procedure about
10000 times. A flow chart of the program and processing steps can be seen in figure 11.

As a last step we quadratically add CT Racquisition = 27ps FWHM to the simulated CTR value,
to account for the time jitter generated by the oscilloscope (see formula (2.3)). In the simulation
we did not include any fluctuations of the intrinsic light yield, i.e. the intrinsic energy resolution of
the crystal.

3.2 Model parameters

In this section we describe the different measurements and methods to obtain values for all input
parameters necessary for the simulation.

3.2.1 Single cell signal

We model the single cell signal by a bi-exponential function with a single rise time τMr and fall
time τMd (equation (3.5)). Figure 12 shows the measurement of a single cell signal coming from
the voltage amplifier. The NINO discriminator, although not used here, was nonetheless coupled
to the SiPM in order to preserve the same circuit conditions as for real timing measurements.

The measured signal is the direct output voltage of the SiPM. We can observe two fall time
components. A slow one with 260ns and a fast component with 11ns. The slow 260ns component

Figure 12. Single cell signal measured at the SiPM with 2V overvoltage when NINO is coupled to the
SiPM as well. Measurements are done with the voltage amplifier at an amplification of 88. The fast fall time
component represents τMd = 11ns. Because of the 1nF coupling capacitor in front of NINO, it does not see
the long fall time component.
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is generated by the electronics around the SiPM, i.e. the 200Ω resistors (as can be seen in figure 4).
The fast fall time component is generated by the 1nF coupling capacitor at the front end of NINO
and its additional input impedance of 40Ω. It corresponds to the fall time τMd in equation (3.5)
which is 11ns. It should be noted that a very small fraction of the slow 260ns-component can still
couple into NINO. This fraction however is small enough and will be neglected in our further dis-
cussions. In addition we measured the single cell signal with 50Ω bias resistors to determine the
SiPM capacitance. The decay time was measured to be 50ns hence corresponding to a SiPM capac-
itance of 500pF. Compared with the values measured in [29] we suspect a high passive capacitance
in our system generated by rather long leads and jumpers used to guide the SiPM signal to NINO.
The rise time can be determined to τMr = (CD +Cq)RD [31]. It is difficult to find the proper values
for the “micro plasma” resistance RD, the SPAD capacitance CD, and the quenching capacitance
Cq. Together with the values given in [32] we deduce τMr = 400ps using a value of RD = 3kΩ and
CD +Cq = 130pF . This value is most probably too high. However, because of the low pass filtering
in our simulations, the single cell rise rime tMr is not a critical parameter. It should be noted that
also the exact value of the fall time tMd is not very critical since we are only interested in the pile-up
process in the first nanoseconds.

3.2.2 Electronic noise and gain fluctuation

NINO operates as a current mode amplifier and has a low differential input impedance of 40Ω [16].
A schematic of the SiPM bias circuit can be seen in figure 4. It is important to determine the exact
electronic noise of the system, in particular when measuring the SPTR. Gain fluctuations of the
SiPM have a similar influence on the time resolution as electronic noise. These gain fluctuations
can be directly modeled by an amplitude fluctuation of the single cell signal, supposing that the rise
and fall times of the single cell signal are independent of SiPM overvoltage and identical within
every cell (section 3.1.3). We developed a technique to estimate the electronic noise and the gain
fluctuation by means of measurements. With the oscilloscope we measure, at the same time, both
the analog SiPM signal from the amplifier and the output pulse of NINO, being operated at a
specific threshold. For each dark count event in the SiPM we record the SiPM pulse amplitude and
if there was a parallel output signal from NINO or not. In the offline analysis, we select single dark
count events using the recorded SiPM amplitude histogram to exclude crosstalk and afterpulsing.
We plot the number of events where NINO does not generate a signal versus the threshold (see
figure 13). For low thresholds, NINO triggers on every signal, whereas for high thresholds the input
signal from a single cell is too low to give rise to a trigger, and thus no signal at the NINO output is
seen. For a perfect input signal with no noise and gain fluctuations this transition should be a sharp
step function. In a noisy system, however, this transition is smooth and blurred by electronic noise
and amplitude fluctuations. We are able to deduce the combined influence of electronic noise and
gain fluctuations by calculating the derivative of this transition and applying a Gaussian fit. The
ratio of sigma and mean of the Gaussian fit denotes the measured signal to noise ratio SNRmeas = µ

σ
.

It should be noted that throughout this work the signal in the SNR term is always equal to the cell
amplitude. This equivalent cell amplitude is changing with bias overvoltage and thus SNRmeas as
well. We can model the measured SNR as shown in equation (3.9).(

1
SNRmeas

)2

=
(

1
SNRelectronicnoise

)2

+
(

1
SNRgainfluctuation

)2

(3.9)
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Figure 13. Number of no NINO-output-signal-
seen versus the NINO threshold. On the deriva-
tive we apply a Gaussian fit which gives the mea-
sured SNR.

Figure 14. Measured SNR versus bias
overvoltage. The fit is parametrized
as SNRelectronicnoise = 14 ∗ Uov and
SNRgainfluctuation = 26.

Because the electronic noise is independent of overvoltage in contrast to the single cell am-
plitude changing linearly with gain and hence with bias overvoltage, SNRelectronicnoise is directly
proportional to the overvoltage Uov. We further assume that the gain fluctuations are mainly gener-
ated by non-uniformities of the 3600 SPADs of the SiPM. Thus, the relative fluctuation of the gain
(SNRgainfluctuation) should be independent of the bias overvoltage. We model the two contributions
in equation (3.9) as SNRelectronicnoise = a ·Uov and SNRgainfluctuation = b with a and b being two con-
stant parameters. In figure 14 we show the measured SNR versus the bias overvoltage. Applying
a fit according to formula (3.9), we can deduce the parameters as: a = 14/V and b = 26. Thus the
electronic signal to noise ratio is SNRelectronicnoise = 14 ·Uov, and the gain (single cell amplitude)
fluctuation is 3.8%.

3.2.3 Dark count and crosstalk

DCR and optical crosstalk are dependent on the bias overvoltage and can be derived from the
staircase plots in section 2.2. The first plateau is at thresholds lower than a single SPAD signal and
hence corresponds to the dark count rate. The second plateau is generated from a single crosstalk,
the third from two simultaneous crosstalk events and so on. In figure 15 we plot measured dark
count and crosstalk values for four different bias overvoltages. We can fit the DCR and crosstalk
rates with exponential functions depending on the overvoltage. The functions are summarized in
equations (3.10) to (3.13).

DCR = 183278∗ exp [1.15∗UOV ] (3.10)

1stcrosstalk = 4201∗ exp [2.26∗UOV ] (3.11)

2ndcrosstalk = 105∗ exp [3.39∗UOV ] (3.12)

3rdcrosstalk = 4∗ exp [4.33∗UOV ] (3.13)

The parameters deduced from these fits are not directly related to physical processes. They
rather provide a phenomenological tool to describe DCR and crosstalk in an easy and integral form
for our simulations. As such they are look-up tables in a mathematical description.
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Figure 15. Measured dark count and crosstalk values for different bias voltages deduced from the staircase
plots. Data points can be approximated by exponential fits.

3.2.4 Photon detection efficiency

For the photon detection efficiency we used the results published in [33]. In this article measure-
ments of the PDE versus the bias overvoltage at different wavelengths, ranging from 465nm to
870nm, are reported. We are only interested in the measurements for 465nm because of the emis-
sion peak at 420nm for LSO:Ce codoped 0.4% Ca.

We can parametrize the PDE as a function of overvoltage for 465nm with equation (3.14) (see
figure 16).

PDE(UOV ) = 0.591∗
(
1− e−0.379∗UOV

)
(3.14)

Figure 16. Photon detection efficiency versus
bias overvoltage for the Hamamatsu 50µm type,
experimental data and fit for 465nm. Data was
taken from [33].

Figure 17. Measured emission spectrum of
LSO:Ce codoped 0.4%Ca and the PDE of the
SiPM.
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These parameters only provide a phenomenological description of the data without a direct
physical explanation. However, as we can see in figure 16, this parametrization of the PDE is a
good representation of the experimental data. If we couple the photodetector to a scintillator, we
also have to account for the emission spectra of the scintillator. In figure 17 we plot the emission
spectrum of the used LSO:Ce codoped 0.4%Ca scintillator together with the PDE of the photode-
tector versus the wavelength. If we normalize the PDE at a wavelength of 465nm we can calculate
the weighted integral of the PDE with the emission spectrum which results in a correction factor of
0.96 applied to equation (3.14):

PDE(UOV )scint. = 0.591∗
(
1− e−0.379∗UOV

)
∗0.96 (3.15)

3.2.5 Single photon time resolution

The single photon time resolution (SPTR) describes the time jitter of the photodetector when detect-
ing single photons and is commonly quoted in sigma, i.e. not in FWHM. The SPTR is influenced
by the characteristics of one single pixel, i.e. the avalanche spread in the SPAD, the uniformity of
the single cells and the uniformity of the signal transmission to the output. As the signals from the
SiPM are small, the electronics plays an important role for the SPTR value. It is therefore impor-
tant to measure the SPTR with the same electronics used in the CTR measurements. We tested the
time response of the SiPM using a femtosecond laser operating at 400nm wavelength and with a
pulse width of 200fs [20]. The measured SPTR values can be seen in figure 18.

To get an idea of the influence of the electronic noise and gain fluctuations, we used the values
derived in section 3.2.2 and simulated the time jitter of the noise contributions taking into account
the NINO threshold and its shift in terms of equivalent cell amplitude when changing the bias
voltage. Subtracting the noise contribution from the measured SPTR values we obtain an almost
constant value of σSPTR = 66ps. Although this result is still under investigation, it seems that the
SPTR is not strongly dependent on the bias overvoltage. This could be explained by the fact that
the SPTR in our MPPC with 3600 SPADs is dominated by uniformity jitter and signal transmission
delays. Thus, a device with smaller geometrical dimensions could lead to a better SPTR.
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Figure 18. Measured SPTR for the 50µm SPAD-size Hamamatsu MPPC. Data was taken out of [20].
Substracting the noise contribution of NINO we obtain an almost constant single photon time resolution
σSPTR = 66ps.
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Figure 19. Scintillation decay time measured with the time correlated single photon counting technique.

3.2.6 Scintillation rise and fall time

For the scintillation decay time measurement we used the time correlated single photon counting
technique originated by Bollinger and Thomas [34]. This way we determined the single fall time
of our LSO:Ce codoped 0.4%Ca scintillator to 30.3±1ns (see figure 19), in good agreement with
the values stated in [35]. To measure the scintillation rise time is more difficult as one needs to
deconvolute the impulse response of the measurement apparatus from the intrinsic rise time of the
scintillation signal [36]. The rise time values stated in the literature for LSO:Ce range from 0ps to
70ps [23, 36]. In this work we choose a rise time of 70ps, comparable to the value stated in the
most recent work [23]. Using equation (3.1), we derive the parameters for the PDF of the photon
generation process as a single bi-exponential (l = 1) with a rise time τr = 70ps and a fall time
τd = 30.3ns.

3.2.7 Light yield measurements for the adaptation of SLITRANI crystal model parameters

The different parts of the SLITRANI setup (crystal, photodetector, wrapping, etc.) are modelled
as three dimensional objects that are provided by the ROOT geometry package. In figure 20 a
schematic of the main parts of the light yield measurement setup can be seen, as well as the dif-
ferent regions of a scintillating crystal which were modeled with different surface roughnesses.
The photons in our setup are produced with a Cs137 gamma source. Other parameters neces-
sary for photon generation by gamma excitation, like the photo-electric cross section, the gamma-
absorption length, and the emission spectrum, were taken from the work of [39].

There are a number of parameters that are well known like the index of refraction of the crystal
or of the glue, but there are nonetheless others that change from crystal to crystal and are difficult to
measure (e.g. the roughness of surfaces and edges, the diffusion length inside the crystal). There-
fore these parameters were fitted to our model using the model-matching technique [37]. In the
work of [38] the parameters, like the crystal diffusion and absorption length as well as the surface
roughness, were fitted making use of light yield measurements with crystals of differently shaped
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(a)
(b) (c)

Figure 20. (a): the general setup of a standard light yield measurement using optical glue, diffusive wrapping
and a photomultiplier tube. (b) and (c): schematics of the crystal model. The surface (b) has different
material properties than the edges (c); that way the model tries to incorporate the different surface roughness
of the different crystal areas.

Table 2. Parameters used in our SLITRANI sim-
ulation setup. Parameters were taken from the
work of [38] and [39].

Table 3. Parameters used in our SLITRANI simula-
tion setup. Parameters fitted to the light yield results
of the crystals used in this work.

Crystal diffusion length 70cm
Thickness of the glue layer 10-20µm
Crystal absorption length 30cm
Index of refraction of the crystal 1.82
Index of refraction of the glue 1.41

Roughness sidewalls 0.5◦deg. σ

Roughness edges 5◦deg. σ

Diffusion of the wrapping 98%
Airgap between crystal/wrapping No
Index of refraction of the wrapping 1.37
Absorption of the wrapping 2%

walls and different contact agents. The parameters for the crystal used in this work were partly im-
ported from the work of [38], but since wrapping was not considered there, some parameters had to
be estimated by running another set of simulations as part of a second model-matching technique
for this work. Similar to the work of [37, 38] the unknown parameters of the setup were adjusted to
fit the results of independent measurements with crystals of different size. The unknown parame-
ters for our model were: (1) airgap between wrapping and crystal, (2) roughness of walls and edges
(3) absorption and diffusion of the Teflon wrapping and (4) index of refraction of the wrapping. To
fit those parameters we made light yield measurements with a crystal with a common 2× 2 mm2

face that is in contact with the photodetector but different lengths of 3, 5, 10 and 20mm. The crys-
tals were wrapped in Teflon, and optical glue was used for the coupling to the photodetector. The
fitted parameters together with parameters taken from other references can be seen in table 2 and
table 3.

In table 4 we summarize the measured light yield and the simulated light transfer efficiencies
for different crystal configurations. The light yield was measured with a Photonis XP2020Q PMT.
The values are corrected for the quantum efficiency of the PMT and given in photons per MeV. We
measured the light yield in different configurations, i.e. with 5 (5FP) or 6 polished faces (6FP) and
different crystal lengths. The configuration “5 faces polished” means that only the side opposite
to the SiPM is unpolished. The crystal was always wrapped in Teflon, 0.075mm thick and with at
least 5 layers, and coupled to the photodetector with optical grease: Rhodorsil 47V.

The measured light yield uncertainty was estimated to be about 5%, including uncertainties
in quantum efficiency and collection efficiency of the PMT. This number also includes handling
uncertainties caused by the mounting of the samples onto the PMT with possible misalignment and
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Table 4. Light yield values of the used LSO:Ce codoped 0.4%Ca crystals in photons/MeV, measured with
a Photonis XP2020Q photomultiplier. Averaged photon transfer efficiency η̄ as simulated by SLITRANI is
shown as well. The crystals were fully wrapped in Teflon and the square 2×2 mm2 side was coupled to the
PMT with optical grease. The surface opposite the PMT was either unpolished (5FP) or polished (6FP).

configuration measured light yield average light transfer intrinsic light yield
[ph/MeV] (5% error) efficiency η̄ [%] [ph/MeV]

3mm / grease / 5FP 26200 0.682 38420
5mm / grease / 5FP 23950 0.617 38820

10mm / grease / 5FP 21400 0.497 43060
5mm / grease / 6FP 23200 0.589 39390

10mm / grease / 6FP 19900 0.480 41460
20mm / grease / 6FP 14800 0.386 38340

the use of optical grease. The computed intrinsic light yield in table 4 is fluctuating by ∼10%.
These fluctuations are higher than the measured light yield uncertainties and are caused by defi-
ciencies in the SLITRANI model. If we suppose that the measured light yield and SLITRANI
errors are mainly of statistical nature we can define a global light yield, averaging the intrinsic light
yield in table 4, which should give the most reliable value. We determine this global intrinsic light
yield to 39920 ph/MeV.

4 Model validation

In this section we compare the simulated CTR values with the measured ones. In table 5 we
summarize the input parameters describing the scintillation process and in table 6 those for the
SiPM. We emphasize that the simulation parameters were not deduced from any fit of the measured
CTR. Thus the simulation outcome is pure prediction without incorporating any prior knowledge
of the CTR measurements.

Table 5. Summary of the scintillation input parameter values used for the Monte Carlo simulation tool.

scintillation rise time τr = 70ps
scintillation fall time τd = 30.3ns

intrinsic light yield of the scintillation 39920 ph/MeV

Table 6. Summary of the SiPM input parameter values used for the Monte Carlo simulation tool.

single cell pulse rise time τMr = 400ps
single cell pulse fall time τMd = 11ns

cell-to-cell amplitude fluctuation ratio SNRgainfluctuation = 26
cell signal to noise ratio SNRelectronicnoise = 14∗Uov

single photon time resolution σSPTR = 66ps
photon detection efficiency for LSO:Ce,Ca PDE(UOV )scint. = 0.591∗

(
1− e−0.379∗UOV

)
∗0.96

dark count rate DCR = 183278∗ exp [1.15∗UOV ]
first crosstalk rate 1xtalk = 4201∗ exp [2.26∗UOV ]

second crosstalk rate 2xtalk = 105∗ exp [3.39∗UOV ]
third crosstalk rate 3xtalk = 4∗ exp [4.33∗UOV ]
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Figure 21. Time resolution of the SiPM for different light levels and comparison with simulation. Experi-
mental data was taken from [20].

4.1 Special case: timing of the SiPM using a femtosecond laser

An important special case is the simulation of the time response of the SiPM plus the accompany-
ing readout electronics alone without the scintillation mechanism and light transfer. Measurements
were done at different light levels with a femtosecond laser operating at 400nm wavelength and
200fs pulse width [20]. Figure 21 shows the measured time response of a Hamamatsu 50µm SPAD
size MPPC versus the number of fired cells or photo-electrons. The SiPM was operated at an over-
voltage of 2.2V. We compare the experimental data with simulations described in section 3.1.3. For
that purpose we “switched off” the scintillation and crystal influence. The simulation thus repre-
sents the interplay of the signal pile-up with the SPTR jitter and the leading edge discrimination.
The solid line shows the simulation with its associated 99.7% confidence interval. These error
bars comprise only the statistical Monte Carlo fluctuation since we have not yet incorporated the
uncertainties of the input parameters.

4.2 CTR as a function of SiPM Bias and NINO threshold

We compare the Monte Carlo simulation results with measured data. In the following plots (fig-
ure 22 and 23) the solid lines show the simulation with a 99.7% statistical confidence level (no
parameter uncertainties are incorporated) different shaped points are the data points from different
CTR measurements, e.g. CTR versus bias overvoltage and CTR versus NINO threshold voltage.

Figure 22 shows the CTR versus the SiPM bias overvoltage. Points show the experimental
data at a NINO threshold of 80mV. We achieved best CTR values for all SiPM overvoltages around
this threshold value. The simulation is in good agreement with the experimental data. The decrease
of the plot (which corresponds to an improvement in CTR) as a function of SiPM overvoltage is
almost perfectly matched by the corresponding increase in PDE, as we modeled the SPTR to be
constant with bias voltage. For higher bias overvoltages the experiment shows a higher saturation
or even a degradation in CTR when compared to simulations. One possible explanation can be the
neglect of an additional time smearing of the crosstalk events, which we had assumed to be prompt.
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Figure 22. Comparison of CTR values derived from the Monte Carlo simulation tool versus experimental
data as a function of the bias overvoltage. Good agreement with experimental data can be seen.
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Figure 23. Comparison of simulated CTR values with experimental ones as a function of the NINO threshold
for three different bias overvoltages.

We also neglected afterpulsing and its time distribution. However we do not believe that afterpulses
influence the time resolution to a high degree as these events happen relatively late compared to the
avalanches triggered by the relatively high scintillation photon rate (∼10 avalanches per 100ps).

In figure 23 the CTR versus the NINO threshold for different bias voltages can be seen. For low
bias overvoltage (1.1V) the simulation predicts around 5ps lower values of CTR than measured.
This could be an indication that the approximation of the SPTR being independent of the bias
overvoltage is not absolutely true. By looking more closely at picture 18 in section 3.2.5 we can
even see a slight dependence of the SPTR on the bias voltage. Furthermore for 1.1V overvoltage we
have no measured SPTR value available, and thus the simulation for this bias overvoltage region is
simple extrapolation. Figure 23 shows an interesting behavior at low threshold values. As we had
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noted in section 2.3 the rise in the CTR value at low threshold values is caused by the SPTR and
electronic noise. The fact that, in this low threshold region, the MC simulation predicts consistently
lower CTR values than the measured data could be explained by a deficiency in the model of the
single cell signal. An additional parabolic component at the beginning of the single cell signal
could lead to a lower slew rate of the signal at low threshold values. Because of electronic noise
this would lead to a deterioration of the measured CTR values as compared to the simulation, where
we assumed a simple bi-exponentially shaped single cell signal.

The deviation of the measurement from the simulation is in the range of the measurement error
plus the statistical fluctuations of the Monte Carlo simulation. In view of the fact that no fits were
made to the experimental CTR data, the agreement between simulation and measurement is quite
good. In a future work we will address the question of the SPTR in more detail and incorporate a
full model of the crosstalk and afterpulse events. We will also calculate full covariance matrices of
the simulations taking all parameter uncertainties into account.

5 Discussion

In the previous section we showed that the developed Monte Carlo simulation tool is in good
agreement with experimental data. This gives us confidence to correctly quantify the different
model input parameters to the CTR. We change one input parameter of the simulation, e.g. light
yield, scintillation rise-, fall time, PDE or SPTR while keeping the others constant. In figure 24 we
depict the minimum simulated CTR values versus the normalized parameter value, i.e. the model
input parameter under investigation multiplied by a factor ranging from 0.1 to 10.

The CTR is dependent on the square root of the intrinsic light yield (n), the scintillation fall
time (τd) and the SiPM photon detection efficiency (PDE), i.e. CT R ∝

√
τd/(n ·PDE). This is in

agreement with the findings of [14] and [40]. In the conditions given in table 5 and 6, a lower scin-
tillation rise time (τr) than 70ps seems to improve the CTR only marginally. This outcome is also
in agreement with [14]. For the minimum CTR values we calculate the number of photoelectrons

(a) (b)

Figure 24. Minimum simulated CTR when scanning one parameter by a multiplicative factor ranging from
0.1 to 10, whilst holding the other parameters constant. (a): scans for intrinsic light yield (n), scintillation
rise time (τr) and scintillation fall time (τd). (b): scans for single cell signal rise time (τMr), PDE and SPTR
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(a) (b)

Figure 25. Subtracting consecutively: electronic noise and gain fluctuation, DCR and crosstalk, SPTR, light
transfer time jitter and gamma conversion jitter (a): minimum simulated CTR versus bias overvoltage and
(b): CTR versus threshold for 2.3V bias overvoltage

already piled-up, until the SiPM signal reaches the leading edge threshold, to approximately 10.
Because of the electronic noise and the SPTR triggering on the first photon this situation will not
necessarilly lead to the best CTR values. This also explains why the scintillation rise time seems
to have only little influence on the CTR. If we could reach lower threshold values we might then
expect a behavior like CT R ∝

√
τr as predicted by photon statistics. For the SPTR we observe a

similar behavior as for the scintillation rise time: a decrease of the measured SPTR value of 66ps
by a factor of 10 only leads to a CTR improvement by ∼ 10ps. The single cell signal rise time has
almost no influence on the CTR (see figure 24(b)). This is because of the bandwith limitation of
NINO together with the low electronic noise and gain fluctuation in our system.

In figure 25 we show the minimum simulated CTR versus bias overvoltage and the simulated
CTR versus threshold expressed in terms of equivalent single cell amplitude at an overvoltage
of 2.3V. In these graphs we successively eliminate the contributions of electronic noise and gain
fluctuations, the dark count and crosstalk probability, the SPTR and finally the light transfer time
jitter and gamma conversion jitter in the crystal. The light transfer time jitter is denoted as ξk(χ)
and the gamma conversion jitter as ∆t in equation (3.7). We always keep the PDE and the photon
transfer efficiency of the crystal constant. We can see that electronic noise and gain fluctuations
have almost no influence on the final time resolution. We notice an improvement only for very
low bias and equivalent cell amplitude values if we set these two terms to zero. If additionally
we also set the dark count and crosstalk probabilties to zero, we notice an improvement by ∼5-
10ps at 2.3V overvoltage. This improvement is mostly due to the absence of crosstalk. Setting
additionally the SPTR to zero leads to an further improvement of around 20ps. In figure 25(b) we
see that the CTR changes significantly as a function of the equivalent cell amplitude. Because of
the zero SPTR, a minimum in the CTR plot at very low threshold values is observed, meaning that
Poisson-photostatistics gain in influence. If we only consider Poisson-photostatistics triggering on
the first photon would then lead to the best CTR, which in our system occurs only at very low
thresholds. The last test is to set the influence of the light transfer time and gamma conversion jitter
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Figure 26. Simulated CTR versus leading edge
discrimination threshold in equivalent cell am-
plitude at an overvoltage of 2.3V. Switching off
only the light transfer time and gamma conver-
sion jitter in the model leads to an CTR improve-
ment of around 20ps. The PDE and light transfer
efficiency (η) of the crystal remain untouched.

Figure 27. Light transfer time jitter in the crystal
with a geometry of 2×2×3 mm3. The left peak
stems from directly emitted photons towards the
photodetector and the second peak from back-
reflected ones. The tail is caused by totally re-
flected photons due to scattering and surface im-
purities.

in the crystal to zero. An additional improvement of approximately 25ps can be seen in figure 25,
manifesting the importance of the crystal dimensions on time resolution, and this even for small
crystals with dimensions of only 2× 2× 3 mm3. We want to mention that for these tests we kept
the PDE and photon transfer efficiency constant.

In figure 26 we show the improvement of the CTR if we only set the light transfer time plus
the gamma conversion jitter to zero and leave all other parameters unchanged. Even in this case we
see an improvement of around 20ps. The improvement is smaller because other factors like SPTR,
DCR and crosstalk are deteriorating the CTR. We can estimate the influence of the light transfer
time plus the gamma conversion jitter to the CTR to

√
(110ps2−90ps2) = 63ps. According to [32]

we can determine the gamma conversion jitter for a 2× 2× 3 mm3 size crystal to approximately
6ps FWHM CTR and thus negligible if compared to 63ps.

To understand the rather dramatic influence of the crystal size on the CTR we show the light
transfer time jitter in figure 27. For this histogram we simulated random photon emissions in the
crystal according to the SLITRANI model also used for the CTR simulations (section 3.2.7). The
time from the emission of the photon until it reaches the face of the crystal next to the photodetector
is recorded and plotted in the histogram. We can see two initial peaks, the left one correspond to
direct photons and the second one to reflected photons. The direct photons are the ones emitted
directly towards the photodetector, whereas the reflected ones are emitted in the opposite direction
and thus have to undergo at least one reflection at the back end of the crystal in order to reach the
front face. In addition we observe a rather long exponential-like tail. This tail is caused by photons
that are not in a mode to exit the crystal directly. These photons undergo several reflections in
the crystal and eventually exit due to surface roughness and scattering in the crystal. It is still
under investigation how this tail influences the CTR, as the total number of photons in this tail
is not negligible. From figure 27 we determine the influence of the intrinsic light transfer time
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jitter (ξk(χ)) to 40ps. This value is smaller than the value of 63ps as calculated from the CTR
simulations and gives a first hint on how the tail in figure 27 might influence the time resolution.

6 Conclusion

We developed new electronics to probe the timing capabilities and limitations of a possible TOF-
PET system using LSO crystals. An analog voltage amplifier gives the energy information and
the discriminator amplifier NINO the leading edge time information. With LSO:Ce codoped 0.4%
Ca and crystal dimensions of 2× 2× 3 mm3 coupled to a commercial MPPC from Hamamatsu
(S10931-050P) we measured a CTR of 108±5ps FWHM for gammas with an energy of 511keV.
To understand the measured CTR values in detail we developed a comprehensive Monte Carlo sim-
ulation tool to model the scintillation process and the detector chain, i.e. the light transfer in the
crystal, the SiPM properties and the electronics. We took special care of deducing the input pa-
rameters for the Monte Carlo simulation without fitting to measured CTR values. Our simulations
show very good agreement with the experimental CTRs as a function of both bias overvoltage and
NINO threshold. In addition we were able to give a good description of the intrinsic time response
of the SiPM when exposed solely to femtosecond laser pulses with different light intensities.

In our system the CTR is strongly dependent on the scintillator’s light yield, on the scintillation
fall time and the PDE of the SiPM. Due to the interplay of the single cell signal pile-up with
the SPTR and the electronic noise we were unable to trigger on the first photon emitted in the
scintillation process. In addition, because of the SPTR, triggering on the first photon will not
automatically lead to the best CTR values. Consequently the scintillation rise time gives a smaller
contribution to the CTR. In addition the assumed rise time of 70ps is low compared to the achieved
CTR of 108ps. We used commercial SiPMs from Hamamatsu with a maximum PDE of 33%, a
rather modest value. Increasing the PDE of the SiPMs would be a plausible and effective way to
improve the time resolution. Also an increase in the scintillation light yield and a faster decay time
would both lead to similar improvements.

With the developed model we determined the photon travel jitter in the crystal influencing
the time resolution to a high degree. If we artificially set the photon travel jitter for the used
2×2×3 mm3 geometry to zero we would obtain a CTR improvement of 20ps. For PET systems,
crystals of 15mm length and longer are needed to achieve an acceptable conversion efficiency of
the 511 keV gamma rays. Thus the influence of the photon travel jitter will be more significant and
consequently a potential problem, if a CTR of 100ps FWHM is to be achieved. Techniques like
double-sided readout with travel jitter corrections could be a possible solution in that case.

Acknowledgments

We wish to thank Christian Fabjan and Alessio Ghezzi for vivid and helpful discussions, Alain
Machard for building the measurement bench and Dominique Deyrail for preparing the crystals.
This work was carried out in the frame of the Crystal Clear Collaboration.

– 26 –



2
0
1
3
 
J
I
N
S
T
 
8
 
P
0
7
0
1
4

References

[1] M. Conti, State of the art and challenges of time-of-flight PET, Phys. Medica 25 (2009) 1.

[2] B.W. Jakoby, Y. Bercier, M. Conti, M.E. Casey, B. Bendriem and D.W. Townsend, Physical and
clinical performance of the mCT timeof-flight PET/CT scanner, Phys. Med. Biol. 56 (2011) 2375.

[3] V. Bettinardi, L. Presotto, E. Rapisarda, M. Picchio, L. Gianolli and M.C. Gilardi, Physical
performance of the new hybrid PET/CT discovery-690, Med. Phys. 38 (2011) 5394.

[4] S. Surti, A. Kuhn, M.E. Werner, A.E. Perkins, J. Kolthammer and J.S. Karp, Performance of philips
gemini TF PET/CT scanner withspecial consideration for its time-of-flight imaging capabilities, J.
Nucl. Med. 48 (2007) 471.

[5] ENDOTOFPET-US collaboration, B. Frisch et al., Combining endoscopic ultrasound with
Time-Of-Flight PET: The EndoTOFPET-US Project, Nucl. Instrum. Meth. Phys. A (2013).

[6] C.L. Kim, G.C. Wang and S. Dolinsky, Multi-pixel photon counters for TOF-PET detectors and its
challenges, IEEE Trans. Nucl. Sci. 56 (2009) 2580.

[7] R. Vinke, H. Lohner, D.R. Schaart, H.T. van Dam, S. Seifert, F.J. Beekman and P. Dendooven,
Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors, Nucl. Instrum. Meth.
Phys. A 610 (2009) 188.

[8] S. Gundacker et al., A Systematic Study to Optimize SiPM Photodetectors for Highest Time
Resolution in PET, IEEE Trans. Nucl. Sci. 59 (2012) 1798.

[9] T. Szczesniak, M. Moszynski, L. Swiderski, A. Nassalski, P. Lavoute and M. Kapusta, Fast
photomultipliers for TOF PET, IEEE Trans. Nucl. Sci. 56 (2009) 173.

[10] E. Auffray et al., A comprehensive & systematic study of coincidence time resolution and light yield
using scintillators of different size, wrapping and doping, NSS/MIC, 2011 IEEE, Valencia 23-29 Oct.
2011, pp. 64-71.

[11] W.W. Moses and S.E. Derenzo, Prospects for Time-of-Flight PET using LSO Scintillator, IEEE
Trans. Nucl. Sci. NS-46 (1999) 474.

[12] J.Y. Yeom, R. Vinke and C.S. Levin, Optimizing timing performance of silicon photomultiplier-based
scintillation detectors, Phys. Med. Biol. 58 (2013) 1207.

[13] M.A. Spurrier, P. Szupryczynski, K. Yany, A.A. Carey and C.L. Melcher, Effects of Ca2+ co-doping
on the scintillation properties of LSO:Ce, IEEE Trans. Nucl. Sci. 55 (2008) 1178.

[14] S. Seifert, H.T van Dam, R. Vinke, P. Dendooven, H. Löhner, F.J. Beekman and D.R. Schaart, A
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