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aIstituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati,

Via E. Fermi 40, I-00044 Frascati, Italy
bPH Department, TH Unit, CERN,

CH-1211 Geneva 23, Switzerland
cCenter for Cosmology, Particle Physics and Phenomenology (CP3),
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more involved processes.

Keywords: QCD Phenomenology, Jets

ArXiv ePrint: 1501.07226

1On leave from the “Fonds National de la Recherche Scientifique” (FNRS), Belgium.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2015)036

mailto:Vittorio.DelDuca@lnf.infn.it
mailto:Claude.Duhr@cern.ch
mailto:Gabor.Somogyi@cern.ch
mailto:Zoltan.Trocsanyi@cern.ch
mailto:Francesco.Tramontano@cern.ch
http://arxiv.org/abs/1501.07226
http://dx.doi.org/10.1007/JHEP04(2015)036


J
H
E
P
0
4
(
2
0
1
5
)
0
3
6

Contents

1 Introduction 1

2 Notation 3

3 Leading order 5

4 Next-to-leading order 6

4.1 Real emission contribution 6

4.2 Virtual contribution 7

5 Next-to-next-to-leading order 9

5.1 Double real emission contribution 9

5.2 Real-virtual contribution 11

5.3 Double virtual contribution 14

6 Inclusive and differential results 19

7 Conclusions 20

A Matrix elements 22

A.1 Two partons 22

A.2 Three partons 23

A.3 Four partons 24

B I
(0)
1 insertion operator to O(ε) 26

1 Introduction

In run I, the ATLAS and CMS collaborations of the Large Hadron Collider (LHC) discov-

ered a new particle [1, 2] with quantum numbers corresponding to those of the Higgs boson

in the Standard Model (SM) within the experimental accuracy of the measurements [3–6].

Thus by now it is widely accepted that the new particle is the Higgs boson of the SM.

Nevertheless, further more precise measurements are being prepared for the upcoming run

II. In particular, a lot of emphasis is put on the precise determination of the couplings of

the Higgs boson to the heavy fermions to check whether the fermion masses are consistent

with fermion mass generation in the SM.

Since the b-quark is quite light (its mass is only about 2 % of the vacuum expectation

value of the Higgs field), the rate of associated production of a b-quark pair with a Higgs

boson is rather low. This fact, together with the overwhelming number of background
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events coming from direct QCD b-quark pair production makes the determination of the

b-quark Yukawa coupling through Hbb̄ production impossible. A better option that gives

direct access to the Hbb̄ Yukawa coupling is to measure the H → bb̄ decay in the associated

production of a Higgs boson with a W or a Z boson in a boosted or semi-boosted regime [7].

In this scenario it is possible to use the kinematic and topological properties of the final

states to isolate the H → bb̄ decay. In this respect, first measurements have been performed

by the CMS [8] and ATLAS [9] collaborations.

Such search strategies may be aided by accurate modeling of QCD radiation in the

H → bb̄ decay, which motivates the computation of the fully differential decay rate at

next-to-next-to-leading order (NNLO) accuracy in QCD perturbation theory. Computing

fully differential cross sections and decay rates at NNLO turns out to be rather involved,

however the last decade has witnessed substantial development [10–41] leading to a number

of differential results for specific processes [42–76].

The first computation of the fully differential decay rate of the SM Higgs boson into

b-quarks at NNLO accuracy was published in ref. [47]. That computation was performed

with the method of sector decomposition based on non-linear mappings [13]. Here we offer

a different approach based on the numerical implementation of the general subtraction

scheme developed in a series of papers for the computation of QCD jet cross sections at

NNLO accuracy [31–41]. This method, which is used for the first time in this paper to com-

pute a physical observable at NNLO, employs the universal infrared factorization of QCD

squared matrix elements to define local subtraction terms for regulating the singularities

emerging in unresolved real radiation.

Specifically, we can write the NNLO correction to the cross section of a generic m-jet

process as a sum of three contributions, the tree level double real radiation, the one-loop

plus a single radiation, and the two-loop double virtual terms of the basic process under

consideration,

σNNLO =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m

dσVV
m Jm , (1.1)

and rearrange it as follows,

σNNLO =

∫
m+2

dσNNLO
m+2 +

∫
m+1

dσNNLO
m+1 +

∫
m

dσNNLO
m , (1.2)

where,

dσNNLO
m+2 =

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
ε=0

, (1.3)

dσNNLO
m+1 =

{[
dσRV

m+1 +

∫
1

dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)
A1

]
Jm

}
ε=0

, (1.4)

dσNNLO
m =

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)
A1

]}
ε=0

Jm . (1.5)
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The subscripts on the integral signs are simply reminders that the integration is over the

phase space of n = m, m+ 1 or m+ 2 final state particles. Above Jn denotes the value of

some infrared-safe observable J evaluated on an n parton final state.

The right-hand sides of eqs. (1.3) and (1.4) are integrable in four dimensions by con-

struction [31–34], while the integrability of eq. (1.5) in four dimensions is ensured by the

Kinoshita-Lee-Nauenberg (KLN) theorem on infrared-safe quantities, provided that our

subtraction scheme is well defined.

The counterterms which contribute to dσNNLO
m+2 and to dσNNLO

m+1 were introduced

in refs. [33] and [34]. The integration of the real-virtual counterterms (the last two terms of

eq. (1.5)) was performed in refs. [35, 36, 38]. The integral of the iterated single unresolved

counterterm (the third term of eq. (1.5)) was computed in ref. [39]. The integration of

the collinear-type contributions to the double unresolved counterterm (the second term of

eq. (1.5)) was performed in ref. [40]. The soft-type contributions to the same counterterm

were presented in ref. [41]. Most of these results were given as expansions in ε whose

coefficients were computed numerically. Here we present the relevant integrals with pole

coefficients evaluated analytically, while the finite parts are given numerically. The final

test on the consistency of our subtraction scheme is then to verify that eq. (1.5) is free

of singularities, as prescribed by the KLN theorem. In this paper, we perform that check

analytically for the first time by computing the fully differential decay rate1 of the Higgs

boson into b-quarks at NNLO.

The present work is the first physical application of this method, therefore in order to

facilitate reading we present the full computation as implemented in a parton level Monte

Carlo program in detail. As usual in such codes, the jet function J is computed from

generated momenta in d = 4 dimensions, therefore, the implementation of any infrared-

safe physical quantity is straightforward as demonstrated here.

The paper is organized as follows: in section 2, the notation and conventions we

use are introduced; in sections 3 and 4, we show the decay width at leading order and

next-to-leading order (NLO) accuracy in αs; in section 5, we display the counterterms

and the insertion operators which are necessary to define the double real (1.3) and the

real-virtual (1.4) contributions to the decay width, and we show that the double virtual

contribution (1.5) is free of singularities; in section 6, we show a selection of illustrative

results; we draw our conclusions in section 7. The two appendices provide details on the

matrix elements we use, as well as on the insertion operator used in the NLO computation.

2 Notation

We consider the partial decay width Γ
H→bb̄

[J ] of the Higgs boson into a b-quark pair,

for any infrared-safe observable J . Through NNLO in QCD, this decay width receives

contributions from the following partonic subprocesses:

LO H(pH)→ b(p1) + b̄(p2) tree level

NLO H(pH)→ b(p1) + b̄(p2) + g(p3) tree level

H(pH)→ b(p1) + b̄(p2) one-loop

1In eqs. (1.1)–(1.5) we presented the basic structure of our subtraction scheme for computing a generic

cross section, however our method applies equally to decay rates, as spelled out in detail in sections 3–5.
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NNLO H(pH)→ b(p1) + b̄(p2) + g(p3) + g(p4) tree level

H(pH)→ b(p1) + b̄(p2) + q(p3) + q̄(p4) tree level

H(pH)→ b(p1) + b̄(p2) + b(p3) + b̄(p4) tree level

H(pH)→ b(p1) + b̄(p2) + g(p3) one-loop

H(pH)→ b(p1) + b̄(p2) two-loop

where we show also the four-momenta of the particles in parentheses. We report the matrix

elements corresponding to all subprocesses up to the required loop level in appendix A.

We use the colour and spin space notation of ref. [77] where the matrix element for

a given subprocess, |Mn〉, is a vector in color and spin space, normalized such that the

squared matrix element summed over colours and spins is given by

|Mn|2 = 〈Mn|Mn〉 , (2.1)

where n is the number of particles in the final state. The matrix element has the following

formal loop expansion

|Mn〉 = |M(0)
n 〉+ |M(1)

n 〉+ |M(2)
n 〉+ . . . ,

with the dots denoting higher-loop contributions. We will always consider matrix elements

computed in conventional dimensional regularization (CDR) with MS subtraction. We

will also use the following ⊗ product notation to indicate the insertion of colour charge

operators between 〈M(`1)| and |M(`2)〉:

〈M(`1)|M(`2)〉 ⊗ T i ·T k ≡ 〈M(`1)|T i ·T k |M(`2)〉 ,

〈M(`1)|M(`2)〉 ⊗ {T i ·T k,T j ·T l} ≡ 〈M(`1)|{T i ·T k,T j ·T l}|M(`2)〉 .
(2.2)

We use the customary normalization of TR = 1/2 for the colour-charge operators, thus the

quadratic Casimirs are CA = 2TRNc = Nc in the adjoint and CF = TR(N2
c − 1)/(Nc) =

(N2
c − 1)/(2Nc) in the fundamental representation, where Nc = 3 is the number of colours.

The b-quark mass is much smaller than the scale of the problem that is the Higgs

boson mass, therefore, we treat the b-quarks as massless, both in the matrix elements and

phase space integrals, retaining the b-quark mass only in the Yukawa coupling. We neglect

the t-quark throughout and consider nf = 5 light quark flavours.

In QCD the renormalized amplitudes are obtained from the unrenormalized ones by

replacing the bare couplings yBb and αBs with their renormalized counterparts evaluated at

the renormalization scale µ

yBb µε0 = yb µ
ε

{
1− αs

4π

3CF

ε
+

(
αs

4π

)2[(11CA

2
+

9CF

2
− 2nfTR

)
1

ε2

−
(

97CA

12
+

3CF

4
− 5nfTR

3

)
1

ε

]
+ O(α3

s )

}
, (2.3)

αBs µ
2ε
0 =

αs

SMS
ε

µ2ε

[
1− αs

4π

β0

ε
+ O(α2

s )

]
, (2.4)

– 4 –



J
H
E
P
0
4
(
2
0
1
5
)
0
3
6

where

β0 =
11CA

3
− 4nfTR

3
, (2.5)

and SMS
ε = (4π)ε exp(−εγE) corresponds to MS subtraction. Although the factor

(4π)ε exp(−εγE) is often abbreviated as Sε in the literature, we reserve the latter to denote

Sε =
(4π)ε

Γ(1− ε)
. (2.6)

On the right-hand side, yb ≡ yb(µ) and αs ≡ αs(µ) are the dimensionless renormalized

couplings in the MS scheme evaluated at the renormalization scale µ.

The n particle massless phase space measure reads

dφn(Q2) ≡ dφn(p1, . . . , pn;Q) =

[
n∏
i=1

ddpi
(2π)d−1

δ+(p2
i )

]
(2π)dδ(d)(p1 + . . .+ pn −Q) . (2.7)

Throughout the paper, we will use yik to denote twice the dot-product of two momenta,

scaled by the total momentum squared Q2. For example,

yik =
2pi · pk
Q2

and yiQ =
2pi ·Q
Q2

. (2.8)

We also introduce the combination

Yik,Q =
yik

yiQykQ
(2.9)

for later convenience.

3 Leading order

Let us denote the Born differential decay rate by,

dΓB
2 =

1

2mH
dφ2(m2

H) |M(0)

bb̄
|2 . (3.1)

Then the leading order decay width is,

ΓB[J ] =

∫
2

dΓB
2 J2 =

1

2mH

∫
dφ2(m2

H) |M(0)

bb̄
|2J2 . (3.2)

Here J is an infrared-safe observable whose value evaluated on a kinematic configuration

with two partons is J2. For the inclusive decay width (J ≡ 1) at leading order we have

ΓLO = ΓB[J = 1] =
y2

bmHNc

8π
, (3.3)

where the expression on the right-hand side is the four-dimensional result.
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4 Next-to-leading order

4.1 Real emission contribution

The real emission contribution to the differential decay width reads

dΓR
3 =

1

2mH
dφ3(m2

H) |M(0)

bb̄g
|2 . (4.1)

dΓR
3 is divergent when the radiated gluon becomes unresolved (soft, or collinear with one

of the b-quarks). In order to regularize it, we subtract an approximate decay rate,

dΓ
R,A1
3 =

1

2mH
dφ3(m2

H)A1|M(0)

bb̄g
|2 , (4.2)

where the counterterm for processes with m+1 partons in the final state is given by [32, 33],

A1|M(0)
m+1|

2 =

m+1∑
r=1

m+1∑
i=1
i 6=r

1

2
C(0,0)
ir −

S(0,0)
r −

m+1∑
i=1
i 6=r

CirS(0,0)
r


 . (4.3)

In eq. (4.3) the functions C(0,0)
ir and S(0,0)

r appearing in the right-hand side correspond

to counterterms which regularize the pi||pr collinear limit and the pr → 0 soft limit. In

order to avoid double counting in the overlapping soft-collinear region, we must add back a

soft-collinear counterterm, CirS
(0,0)
r . The precise definitions of these subtractions are given

in refs. [32, 33]. In our convention the indices of C(0,0)
ir are not ordered, C(0,0)

ir = C(0,0)
ri .

Since the sums over i and r in eq. (4.3) are likewise not ordered, the factor of 1
2 assures

that we count each collinear limit precisely once. Finally, the superscript (`1, `2) means

that the corresponding counterterm involves the product (in colour or spin space) of an

`1-loop unresolved kernel (an Altarelli–Parisi splitting function or a soft eikonal current)

with an `2-loop squared matrix element. Thus, (0, 0) means that we consider a tree level

collinear or soft function acting on a tree level reduced matrix element. Such superscripts

will appear also for other counterterms throughout the paper. For definitiveness, we spell

out eq. (4.3) explicitly for H → bb̄g (m = 2) below,

A1|M(0)

bb̄g
|2 = C(0,0)

13 + C(0,0)
23 + S(0,0)

3 − C13S
(0,0)
3 − C23S

(0,0)
3 , (4.4)

where the b, b̄ and gluon carry the labels 1, 2 and 3.

With the counterterms given in refs. [32, 33] it is straightforward to check that

the difference

dΓNLO
3 ≡ dΓR

3 J3 − dΓ
R,A1
3 J2 (4.5)

is integrable in all kinematic limits. Then, the regularized real contribution to the de-

cay rate,

ΓNLO
3 [J ] =

∫
3

[
dΓNLO

3

]
ε=0

(4.6)

is finite in four dimensions for any infrared-safe observable. An explicit calculation for the

contribution to the total decay width from the real emission part plus subtractions yields

ΓNLO
3 [J = 1] = ΓLOαs

π
CF

1729

450
. (4.7)
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4.2 Virtual contribution

The virtual contribution to the differential decay width reads

dΓV
2 =

1

2mH
dφ2(m2

H) 2<〈M(0)

bb̄
|M(1)

bb̄
〉 , (4.8)

and is of course divergent in four dimensions. Its ε-expansion reads (see eq. (A.2))

dΓV
2 = dΓB αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε
CF

[
− 2

ε2
− 3

ε
− 2 + π2 + 3L+ O(ε)

]
, (4.9)

where we have introduced the abbreviation L = ln
(
µ2

m2
H

)
. In eq. (4.9), dΓB denotes the

d-dimensional Born decay rate as given in eq. (3.1).

By the KLN theorem, the integral of the approximate decay rate precisely cancels

the divergences of the virtual piece, so adding back what we have subtracted from the

real correction, the virtual contribution becomes finite as well. We have performed the

integration of the various subtraction terms analytically in ref. [32] and here we only quote

the result, which can be written as,∫
1

dΓ
R,A1
m+1 = dΓB

m ⊗ I
(0)
1 ({p}m; ε) , (4.10)

where the ⊗ product is defined in eq. (2.2) and the insertion operator is in general given

by [32]2

I
(0)
1 ({p}m; ε) =

αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε m∑
i=1

C
(0)
1,i (yiQ; ε)T 2

i +

m∑
k=1
k 6=i

S
(0),(i,k)
1 (Yik,Q; ε)T iT k

 . (4.11)

The variables yiQ and Yik,Q were defined in eqs. (2.8) and (2.9) and Qµ is the total incom-

ing momentum. The functions C
(0)
1,i (yiQ; ε) and S

(0),(i,k)
1 (Yik,Q; ε) have been computed as

Laurent expansions in ε in ref. [32] and are recalled here up to finite terms in appendix B.

We mention that there is no one-to-one correspondence between the unintegrated subtrac-

tion terms in eq. (4.3) and the kinematic functions that appear in eq. (4.11). The latter

are obtained from the former after summing over all unobserved quantum numbers (colour

and flavour) in addition to integrating over the unresolved momentum, and organizing the

result in colour and flavour space. Loosely speaking, the integrated form of C(0)
ir enters

C
(0)
1,i and that of S(0)

r enters S
(0),(i,k)
1 . However, we are free to assign the integrated form of

CirS
(0)
r to either of the integrated counterterms and this final organization was performed

differently in ref. [32] and in this paper. In ref. [32], the integrated form of CirS
(0)
r was

grouped into S
(0),(i,k)
1 , while here we find it more convenient to group it into C

(0)
1,i .

2The expansion parameter in ref. [32] was chosen αs/S
MS
ε implicitly, with the harmless factor 1/SMS

ε

suppressed. For the sake of clarity we reinstate the factor 1/SMS
ε here, as well as in all other insertion

operators in eqs. (5.30), (5.34), (5.39) and (5.43) below.

– 7 –
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For H → bb̄, with only two partons in the final state the colour connections factorize

completely,

T 1T 2 = −CF . (4.12)

Furthermore, momentum conservation implies that

y1Q = y2Q = Y12,Q = y12 = 1 . (4.13)

Thus, the insertion operator I
(0)
1 becomes,

I
(0)
1 (p1, p2; ε) =

αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε
2CF

[
C

(0)
1,q(1; ε)− S

(0),(1,2)
1 (1; ε)

]
, (4.14)

where, as indicated, we must evaluate all functions with arguments equal to one. The

Laurent expansion of eq. (4.14) in ε is,

I
(0)
1 (p1, p2; ε) =

αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε
× CF

[
2

ε2
+

3

ε
+

1267

450
− π2+

(
137π2

90
− 707519

13500

)
ε− 95.9144ε2 + O(ε3)

]
,

(4.15)

where, for future reference, we have also provided the O(ε) part in terms of rational numbers

and known transcendental constants. The uncertainty of the O(ε2) numerical result, as well

as those of all other numerical results we show affect the last quoted digit, unless specifically

stated otherwise.

It is easy to check that the expression

dΓNLO
2 ≡

[
dΓV

2 +

∫
1

dΓ
R,A1
3

]
J2 , (4.16)

is free of ε-poles. Hence

ΓNLO
2 [J ] =

∫
2

[
dΓNLO

2

]
ε=0

(4.17)

is finite in four dimensions for any infrared-safe observable. For the contribution to the

total width from the virtual part plus integrated subtractions we find

ΓNLO
2 [J = 1] = ΓLO αs

π

(
367

900
CF +

3

2
CFL

)
. (4.18)

Combining eqs. (4.7) and (4.18), we obtain the full NLO correction to the total decay rate,

ΓNLO = ΓNLO
3 [J = 1] + ΓNLO

2 [J = 1] = ΓLO αs

π

(
17

4
CF +

3

2
CF L

)
. (4.19)

As CF = 4
3 in the conventions used, we recover the well-known NLO result [78–80].
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5 Next-to-next-to-leading order

5.1 Double real emission contribution

The double real emission contribution to the differential decay width is

dΓRR
4 =

1

2mH
dφ4(m2

H)

(
1

2!
|M(0)

bb̄gg
|2 +

∑
q 6=b

|M(0)

bb̄qq̄
|2 +

1

(2!)2
|M(0)

bb̄bb̄
|2
)
, (5.1)

and its integral over the phase space is divergent in four dimensions due to kinematic

singularities emerging in unresolved regions. In order to regularize the singularities of

eq. (5.1) due to two unresolved partons, we subtract an approximate decay rate,

dΓ
RR,A2
4 =

1

2mH
dφ4(m2

H)

(
1

2!
A2|M(0)

bb̄gg
|2 +

∑
q 6=b

A2|M(0)

bb̄qq̄
|2 +

1

(2!)2
A2|M(0)

bb̄bb̄
|2
)
, (5.2)

where the double unresolved counterterm for processes with m + 2 partons in the final

state is [33]

A2|M(0)
m+2|

2 =

m+2∑
r=1

m+2∑
s=1


m+2∑
i=1
i 6=r,s

[
1

6
C(0,0)
irs +

m+2∑
j=1
j 6=i,r,s

1

8
C(0,0)
ir;js

+
1

2

(
CS(0,0)
ir;s − CirsCS

(0,0)
ir;s −

m+2∑
j=1
j 6=i,r,s

Cir;jsCS
(0,0)
ir;s

)

− CSir;sS(0,0)
rs − 1

2
CirsS(0,0)

rs + CirsCSir;sS(0,0)
rs

+

m+2∑
j=1
j 6=i,r,s

1

2
Cir;jsS(0,0)

rs

]
+

1

2
S(0,0)
rs

 .

(5.3)

In eq. (5.3), the functions C(0,0)
irs , C(0,0)

ir;js , CS(0,0)
ir;s and S(0,0)

rs denote counterterms which reg-

ularize the pi||pr||ps triple collinear, the pi||pr, pj ||ps double collinear, the pi||pr, ps → 0

one collinear, one soft (collinear+soft) and the pr → 0, ps → 0 double soft limits. The

rest of the counterterms which appear in eq. (5.3) account for the double or triple overlap

of limits, their role is to make sure that no multiple subtractions are performed in over-

lapping double unresolved regions. Thus, for instance, CirsCS
(0,0)
ir;s accounts for the triple

collinear limit of the collinear+soft counterterm, and the rest of the counterterms have a

similar interpretation as suggested by the notation. The precise definitions of all functions

appearing in eq. (5.3) were given in ref. [33]. As in our convention the collinear indices of

counterterms and the sums over them in eq. (5.3) are not ordered, the factors of 1
6 , 1

8 , etc.,

are needed so that each limit is counted precisely once.

After subtracting the double unresolved approximate cross section, the difference

dΓRR
4 − dΓ

RR,A2
4 (5.4)
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is however still singular in the single unresolved regions of phase space. To regularize it,

we also subtract

dΓ
RR,A1
4 =

1

2mH
dφ4(m2

H)

(
1

2!
A1|M(0)

bb̄gg
|2 +

∑
q 6=b
A1|M(0)

bb̄qq̄
|2 +

1

(2!)2
A1|M(0)

bb̄bb̄
|2
)
, (5.5)

where A1 has been defined in eq. (4.3). To avoid double subtraction in overlapping single

and double unresolved regions of phase space, we must also consider

dΓ
RR,A12
4 =

1

2mH
dφ4(m2

H)

(
1

2!
A12|M(0)

bb̄gg
|2 +

∑
q 6=b
A12|M(0)

bb̄qq̄
|2 +

1

(2!)2
A12|M(0)

bb̄bb̄
|2
)
.

(5.6)

The general formula for the iterated single unresolved counterterm is

A12|M(0)
m+2|

2 =

m+2∑
t=1

m+2∑
k=1
k 6=t

1

2
CktA2|M(0)

m+2|
2 +

StA2|M(0)
m+2|

2−
m+2∑
k=1
k 6=t

CktStA2|M(0)
m+2|

2


 ,

(5.7)

where the three terms above are given by [33],

CktA2 =

m+2∑
r=1
r 6=k,t

[
CktC

(0,0)
ktr + CktCS

(0,0)
kt;r − CktCktrCS

(0,0)
kt;r − CktCrktS

(0,0)
kt

+

m+2∑
i=1

i 6=r,k,t

(
1

2
CktC

(0,0)
ir;kt − CktCir;ktCS

(0,0)
kt;r

)]
+ CktS

(0,0)
kt , (5.8)

StA2 =

m+2∑
r=1
r 6=t


m+2∑
i=1
i 6=r,t

[
1

2

(
StC

(0,0)
irt + StCS

(0,0)
ir;t − StCirtCS

(0,0)
ir;t

)

− StCirtS
(0,0)
rt − StCSir;tS

(0,0)
rt + StCirtCSir;tS

(0,0)
rt

]
+ StS

(0,0)
rt

}
, (5.9)

CktStA2 =

m+2∑
r=1
r 6=k,t

[
CktStC

(0,0)
krt +

m+2∑
i=1

i 6=r,k,t

(
1

2
CktStCS

(0,0)
ir;t − CktStCSir;tS

(0,0)
rt

)

− CktStCkrtS
(0,0)
rt − CktStCrktS

(0,0)
kt + CktStS

(0,0)
rt

]
+ CktStS

(0,0)
kt . (5.10)

The interpretation of the various terms in eqs. (5.8)–(5.10) are suggested by the notation:

for instance, CktC
(0,0)
ktr in eq. (5.8) accounts for the pk||pt single collinear limit of the C(0,0)

ktr

triple collinear counterterm, while, for example, StC
(0,0)
irt in eq. (5.9) represents the coun-

terterm appropriate to the pt → 0 soft limit of C(0,0)
irt . Thus, A12|M(0)

m+2|2 cancels the single

unresolved singularities of the double unresolved subtraction term A2|M(0)
m+2|2. However,

very importantly, it can also be shown [33] that A12|M(0)
m+2|2 simultaneously cancels the
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double unresolved singularities of the single unresolved subtraction term A1|M(0)
m+2|2 and

so properly accounts for the overlap of single and double unresolved subtractions. All of the

counterterms appearing in eqs. (5.8)–(5.10) were precisely defined in ref. [33]. As before,

the collinear indices and sums over them in eqs. (5.7)–(5.10) are not ordered, hence the

appearance of the factors of 1
2 at various instances.

With these definitions, the difference

dΓNNLO
4 ≡ dΓRR

4 J4 − dΓ
RR,A2
4 J2 − dΓ

RR,A1
4 J3 + dΓ

RR,A12
4 J2 (5.11)

can be shown to be integrable in all kinematic limits [33]. Thus, the regularized double

real contribution to the decay rate

ΓNNLO
4 [J ] =

∫
4

[
dΓNNLO

4

]
ε=0

(5.12)

is finite in four dimensions for any infrared-safe observable and can be computed with

standard numerical techniques. For the total cross section (J = 1) at µ = mH (L = 0)

we find,

ΓNNLO
4 [J = 1] = ΓLO

(
αs

π

)2

1.05(1) . (5.13)

This numerical value has been obtained by implementing eq. (5.12) in a fully differential

parton level Monte Carlo program using four dimensional double real emission matrix

elements and phase space. However, we have also reproduced the result by integrating

the matrix elements and subtraction terms directly in d dimensions and then summing

the separate contributions. We stress that this is a highly non-trivial cross check, as both

calculations are very different conceptually and technically.

5.2 Real-virtual contribution

The real-virtual contribution to the differential decay rate reads

dΓRV
3 =

1

2mH
dφ3(m2

H) 2<〈M(0)

bb̄g
|M(1)

bb̄g
〉 , (5.14)

which contains explicit ε-poles coming from the one-loop matrix element and furthermore

it is divergent in phase space regions where the gluon becomes unresolved. The explicit

poles are cancelled by the integral of the single unresolved subtraction term in the double

real emission contribution to the full NNLO decay rate,∫
1

dΓ
RR,A1
4 = dΓR

3 ⊗ I
(0)
1 (p1, p2, p3; ε), (5.15)

where the real emission differential decay rate dΓR
3 is given by eq. (4.1), while the insertion

operator I
(0)
1 (p1, p2, p3; ε) is given by eq. (4.11). As there are only three partons in the

final state, the colour connections that appear in the generic case in eq. (4.11) factorize

completely,

T 1T 2 =
CA − 2CF

2
and T 1T 3 = T 2T 2 = −CA

2
. (5.16)
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Thus,

I
(0)
1 (p1, p2, p3; ε) =

αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε{
CF

[
C

(0)
1,q(y1Q; ε) + C

(0)
1,q(y2Q; ε)− 2S

(0),(1,2)
1 (Y12,Q; ε)

]
+ CA

[
C

(0)
1,g(y3Q; ε) + S

(0),(1,2)
1 (Y12,Q; ε)

− S
(0),(1,3)
1 (Y13,Q; ε)− S

(0),(2,3)
1 (Y23,Q; ε)

]}
. (5.17)

Using the expressions in appendix B, it is straightforward to check that

I
(0)
1 (p1, p2, p3; ε) =

αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε{2CF + CA

ε2
+

1

ε

[
(CA − 2CF) ln y12

− CA(ln y13 + ln y23) +
11

6
CA + 3CF −

2

3
nfTR

]
+ O(ε0)

}
,

(5.18)

hence the combination

dΓRV
3 +

∫
1

dΓ
RR,A1
4 (5.19)

is finite in ε.

Nevertheless, eq. (5.19) is still singular in the single unresolved regions of phase space

and requires regularization. We achieve this by subtracting two suitably defined approxi-

mate decay rates, dΓ
RV,A1
3 and

(∫
1 dΓ

RR,A1
3

)A1

. First, we consider

dΓ
RV,A1
3 =

1

2mH
dφ3(m2

H)A12<〈M(0)

bb̄g
|M(1)

bb̄g
〉 , (5.20)

which matches the kinematic singularity structure of dΓRV
3 . The general definition of the

real-virtual counterterm is [34],

A12<〈M(0)
m+1|M

(1)
m+1〉 =

m+1∑
r=1

m+1∑
i=1
i 6=r

1

2
C(0,1)
ir +

S(0,1)
r −

m+1∑
i=1
i 6=r

CirS(0,1)
r




+
m+1∑
r=1

m+1∑
i=1
i 6=r

1

2
C(1,0)
ir +

S(1,0)
r −

m+1∑
i=1
i 6=r

CirS(1,0)
r


 .

(5.21)

The basic structure of this subtraction in terms of unresolved limits is the same as the

tree level single unresolved counterterm in eq. (4.3). However, in accordance with the form

of infrared factorization of one-loop QCD matrix elements [81–84], in eq. (5.21) we have

terms with tree level collinear or soft functions multiplying (in colour or spin space) one-

loop matrix elements (those with the (0, 1) superscript), as well as terms with one-loop

collinear or soft functions multiplying tree level matrix elements (denoted with the (1, 0)

superscript). The precise definitions of the functions appearing in eq. (5.21) are given

in ref. [34].
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Then we consider the counterterm,(∫
1

dΓ
RR,A1
4

)
A1

=
1

2mH
dφ3(m2

H)A1

(
|M(0)

bb̄g
|2 ⊗ I(0)

1

)
, (5.22)

which matches the kinematic singularity structure of
∫

1 dΓ
RR,A1
4 . In general, the countert-

erm is given by [34],

A1

(
|M(0)

m+1|
2 ⊗ I(0)

1

)
=

m+1∑
r=1

m+1∑
i=1
i 6=r

1

2
C(0,0⊗I)
ir +

S(0,0⊗I)
r −

m+1∑
i=1
i 6=r

CirS(0,0⊗I)
r




+

m+1∑
r=1

m+1∑
i=1
i 6=r

1

2
CR×(0,0)
ir +

SR×(0,0)
r −

m+1∑
i=1
i 6=r

CirSR×(0,0)
r


 .
(5.23)

The organization of this subtraction in terms of unresolved limits is again identical to the

tree level single unresolved counterterm in eq. (4.3). However, for each limit, we have

two types of terms, labeled by the different superscripts. The reason is as follows. This

counterterm is built from the infrared factorization formulae for the product of a QCD

squared matrix element times the I
(0)
1 insertion operator of eq. (4.11). It turns out that

these factorization formulae are sums of two pieces. Both of these involve the product of a

tree level collinear or soft function times a tree level matrix element, but one piece is further

multiplied by the I
(0)
1 insertion operator appropriate to the reduced matrix element, while

the other is multiplied with a well-defined remainder functionR [34]. Hence the superscripts

on the various terms in eq. (5.23).

It can be shown that the combination

dΓNNLO
3 ≡

[
dΓRV

3 +

∫
1

dΓ
RR,A1
4

]
J3 −

[
dΓ

RV,A1
3 +

(∫
1

dΓ
RR,A1
4

)
A1

]
J2 (5.24)

is both free of ε-poles and integrable in all kinematically singular limits [34]. Thus, the

regularized real-virtual contribution to the decay rate

ΓNNLO
3 [J ] =

∫
3

[
dΓNNLO

3

]
ε=0

(5.25)

is finite and can be computed numerically in four dimensions for any infrared-safe observ-

able. For the total cross section (J = 1) at µ = mH (L = 0) we find,

ΓNNLO
3 [J = 1] = ΓLO

(
αs

π

)2

69.35(1) . (5.26)

As for the double real emission contribution, the numerical result of the Monte Carlo

program in eq. (5.26) has been reproduced by integrating the real-virtual matrix element

and the subtraction terms separately in d dimensions and summing the contributions.
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5.3 Double virtual contribution

The double virtual contribution to the differential decay rate reads

dΓVV
2 =

1

2mH
dφ2(m2

H)
[
2<〈M(0)

bb̄
|M(2)

bb̄
〉+ |M(1)

bb̄
|2
]
, (5.27)

which contains explicit ε-poles coming from the two-loop matrix element and the square of

the one-loop matrix element:

dΓVV
2 = dΓB

(
αs

2π

Sε

SMS
ε

)2{
2C2

F

ε4
+

[
11CACF

4
+ (6 + 4L)C2

F − nfTRCF

]
1

ε3

+

[(
8

9
+
π2

12
+

11

6
L

)
CACF +

(
17

2
− 2π2 + 6L+ 4L2

)
C2

F

−
(

4

9
+

2

3
L

)
nfTRCF

]
1

ε2

+

[(
− 961

216
+

13ζ3

2
− 1

18
(67− 3π2)L

)
CACF

+

(
109

8
− 2π2 − 14ζ3 + 4(2− π2)L+ 3L2 +

8

3
L3

)
C2

F

+

(
65

54
+

10

9
L

)
nfTRCF

]
1

ε
+ O(ε0)

}
.

(5.28)

The finite part of dΓVV
2 is also known exactly [85] which we recall in appendix A (see

eqs. (A.3) and (A.4)). In order to regulate these poles, we add the integrals of the coun-

terterms which have been subtracted in sections 5.1 and 5.2. The KLN theorem then

ensures that, provided the physical observable we are to compute is infrared-safe and our

subtraction scheme is internally consistent, the ensuing result will be free of infrared di-

vergences. It is our task in this section to verify that this is indeed the case.

Let us begin with the integral of the double unresolved subtraction term, eq. (5.2),

which can be written as, ∫
2

dΓ
RR,A2
m+2 = dΓB

m ⊗ I
(0)
2 ({p}m; ε) , (5.29)

where the insertion operator has five contributions according to the possible colour

structures,

I
(0)
2 ({p}; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2{ m∑
i=1

[
C

(0)
2,i (yiQ; ε)T 2

i +
m∑
j=1
j 6=i

C
(0)
2,ij(yiQ, yjQ, Yij,Q; ε)T 2

j

]
T 2
i

+

m∑
j,l=1
l 6=j

[
S

(0),(j,l)
2 (Yjl,Q; ε)CA +

m∑
i=1

CS
(0),(j,l)
2,i (yiQ, Yij,Q, Yil,Q, Yjl,Q; ε)T 2

i

]
T jT l

+
m∑

i,k=1,
k 6=i

m∑
j,l=1,
l 6=j

S
(0),(i,k)(j,l)
2 (Yik,Q, Yij,Q, Yil,Q, Yjk,Q, Ykl,Q, Yjl,Q; ε){T iT k,T jT l}

}
.

(5.30)
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The kinematic functions in eq. (5.30) have been defined and computed as expansions in ε

in refs. [40, 41]. Again, there is no one-to-one correspondence between the unintegrated

double unresolved subtraction terms in eq. (5.3) and the kinematic functions that appear

in eq. (5.30). The latter are obtained from the former after integration over unresolved

momenta and summation over unobserved colours and flavours. This remark applies to

the rest of the insertion operators to be discussed below.

For H → bb̄, the colour connections that appear in eq. (5.30) are simply given by

eq. (4.12), and the kinematic variables simplify as in eq. (4.13). Furthermore, when eval-

uating eq. (5.30) the coincidence of certain summation indices is allowed. In particular, i

in the second line need not be distinct from j and l, while in the last line we only require

that i and k as well as j and l are different, with no further restrictions, as shown in the

formula. As a result, some indices of kinematic functions coincide once we explicitly write

out eq. (5.30). Specifically, since in our case there are only two hard partons in the final

state, only CS
(0),(i,l)
2,i and S

(0),(i,k),(i,k)
2 appear, while the more general functions CS

(0),(j,l)
2,i or

S
(0),(i,k),(j,l)
2 are absent from the sum, as those require at least three hard partons if all

indices are different. In such cases we also simplify the list of arguments of the functions

so that we do not display arguments that are the same or identically zero. For instance,

in CS
(0),(j,l)
2,i if i = j, then Yij,Q = 0 and Yil,Q = Yjl,Q. Hence, CS

(0),(i,l)
2,i is a function of yiQ

and Yil,Q only. Similarly S
(0),(i,k),(i,k)
2 depends just on the variable Yik,Q. Then, we obtain

the I
(0)
2 (p1, p2; ε) operator,

I
(0)
2 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{
2C2

F

[
C

(0)
2,q(1; ε) + C

(0)
2,qq(1, 1, 1; ε)− 2CS

(0),(1,2)
2,q (1, 1; ε)

+ 4S
(0),(1,2)(1,2)
2 (1; ε)

]
− 2CFCAS

(0),(1,2)
2 (1; ε)

}
,

(5.31)

whose ε-expansion is

I
(0)
2 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{(
CACF

2
+ 2C2

F

)
1

ε4

+

(
29CACF

12
+ 6C2

F −
nfTRCF

3

)
1

ε3

+

[(
68

9
− 7π2

12

)
CACF +

(
170

9
− 8π2

3

)
C2

F −
14nfTRCF

9

]
1

ε2

+

[(
−301

216
− 37π2

12
+
ζ3

2

)
CACF +

(
6149

216
− 47π2

18
− 70ζ3

)
C2

F

+

(
−97

18
+

5π2

9

)
nfTRCF

]
1

ε

− 227.559CACF − 236.532C2
F + 30.9273nfTRCF + O(ε)

}
.

(5.32)

The coefficients of the poles are all given in terms of rational numbers and known tran-

scendental constants.
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Next, we consider the integral of the iterated single unresolved subtraction term,

eq. (5.6), which can be written as,∫
2

dΓ
RR,A12
m+2 = dΓB

m ⊗ I
(0)
12 ({p}m; ε) , (5.33)

where the insertion operator in general has the same structure in colour and flavour space

as I
(0)
2 in eq. (5.30),

I
(0)
12 ({p}; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2

×

×

{
m∑
i=1

[
C

(0)
12,i(yiQ; ε)T 2

i +

m∑
k=1
k 6=i

C
(0)
12,ik(yiQ, yjQ, Yij,Q; ε)T 2

k

]
T 2
i

+
m∑

j,l=1
l 6=j

[
S

(0),(j,l)
12 (Yjl,Q; ε)CA+

m∑
i=1

CS
(0),(j,l)
12,i (yiQ, Yij,Q, Yil,Q, Yjl,Q; ε)T 2

i

]
T jT l

+

m∑
i,k=1
k 6=i

m∑
j,l=1
l 6=j

S
(0),(i,k)(j,l)
12 (Yik,Q, Yij,Q, Yil,Q, Yjk,Q, Ykl,Q, Yjl,Q; ε){T iT k,T jT l}

}
.

(5.34)

The kinematic functions in eq. (5.34) have been defined and computed as expansions in

ε in ref. [39]. The discussion below eq. (5.30) applies to eq. (5.34) as well, hence, using

eqs. (4.12) and (4.13), we obtain the I
(0)
12 (p1, p2; ε) operator,

I
(0)
12 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{
2C2

F

[
C

(0)
12,q(1; ε) + C

(0)
12,qq(1, 1, 1; ε)− 2CS

(0),(1,2)
12,q (1, 1; ε)

+ 4S
(0),(1,2)(1,2)
12 (1; ε)

]
− 2CFCAS

(0),(1,2)
12 (1; ε)

}
,

(5.35)

whose ε-expansion is

I
(0)
12 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{
4C2

F

ε4
+

(
−CACF

3
+ 12C2

F −
2nfTRCF

3

)
1

ε3

+

[(
−155

18
+ π2

)
CACF +

(
788

25
− 16π2

3

)
C2

F −
31nfTRCF

9

]
1

ε2

+

[(
−5911

54
+

101 ln 2

9
+

49π2

6
+ 42ζ3

)
CACF

−
(

116497

4500
+

296π2

45
+ 104ζ3

)
C2

F

+

(
71

36
− 202 ln 2

9
+

8π2

9

)
nfTRCF

]
1

ε

+ 215.508CACF − 717.881C2
F + 22.1494nfTRCF + O(ε)

}
.

(5.36)
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As in the case of I
(0)
2 , the coefficients of the poles are all given in terms of rational numbers

and known transcendental constants.

Turning to the integral of the real-virtual single unresolved subtraction term, eq. (5.20),

we find [35] ∫
1

dΓ
RV,A1
m+1 = dΓV

m ⊗ I
(0)
1 ({p}m; ε) + dΓB

m ⊗ I
(1)
1 ({p}m; ε) , (5.37)

where the insertion operator I
(0)
1 is given in eq. (4.11), expanded to sufficiently high order

in eq. (4.15) to obtain the first term on the right-hand side in eq. (5.37) to O(ε), while the

I
(1)
1 operator in general reads

I
(1)
1 ({p}m; ε) = I

(1),B
1 ({p}m; ε)− αs

2π

β0

2ε
I

(0)
1 ({p}m; ε) . (5.38)

The unrenormalized operator I
(1),B
1 has the following structure in colour and flavour space,

I
(1),B
1 ({p}m; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2 m∑
i=1

[
C

(1),B
1,i (yiQ; ε)CAT

2
i

+

m∑
k=1
k 6=i

S
(1),(i,k),B
1 (Yik,Q; ε)CAT iT k

+

m∑
k=1
k 6=i

m∑
l=1
l 6=i,k

S
(1),(i,k,l),B
1 (Yik,Q, Yil,Q, Ykl,Q; ε)

∑
a,b,c

fabcT
a
i T

b
kT

c
l

]
.

(5.39)

The bare kinematic functions in eq. (5.39) have been defined and computed as expan-

sions in ε in ref. [35]. Using eqs. (4.12) and (4.13), the unrenormalized I
(1),B
1 (p1, p2; ε)

operator becomes

I
(1),B
1 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{
2CACF

[
C

(1),B
1,q (1; ε)− S

(1),(1,2),B
1 (1; ε)

]}
. (5.40)

The term involving triple colour correlations on the second line of eq. (5.39) does not

contribute, the triple sum over i, k and l being empty because we cannot form a triplet of

distinct indices. The ε-expansion of the bare insertion operator I
(1),B
1 reads

I
(1),B
1 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{
− CACF

2ε4
− 3CACF

2ε3

+

[(
83

450
+
π2

2

)
CACF +

(
− 5

2
+

2π2

3

)
C2

F

]
1

ε2

+

[(
580571

6750
− 43π2

30
− 15ζ3

)
CACF

+

(
661

50
− 13184 ln 2

225
+

71π2

45
+ 38ζ3

)
C2

F

]
1

ε

+ 292.930CACF + 134.720C2
F + O(ε)

}
.

(5.41)

– 17 –



J
H
E
P
0
4
(
2
0
1
5
)
0
3
6

Also here we see that the pole coefficients are all given in terms of rational numbers and

known transcendental constants.

Finally the iterated integral of the double real single unresolved subtraction term,

eq. (5.22), can be written as,∫
1

(∫
1

dΓ
RR,A1
m+2

)
A1

= dΓB
m ⊗

[
1

2

{
I

(0)
1 ({p}m; ε), I

(0)
1 ({p}m; ε)

}
+ I

(0,0)
1,1 ({p}m; ε)

]
, (5.42)

where the insertion operator I
(0)
1 is given in eq. (4.11), expanded to sufficiently high order

in eq. (4.15) to obtain the first term on the right-hand side of eq. (5.42) to O(ε), while

I
(0,0)
1,1 in general reads

I
(0,0)
1,1 ({p}m; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

Q2

)ε]2 m∑
i=1

[
C

(0,0)
1,1,i (yiQ; ε)CAT

2
i

+
m∑
k=1
k 6=i

S
(0,0),(i,k)
1,1 (Yik,Q; ε)CA T iT k

]
. (5.43)

The kinematic functions in eq. (5.43) have been defined and computed as expansions in ε

in ref. [35]. Using eqs. (4.12) and (4.13), we obtain

I
(0,0)
1,1 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{
2CACF

[
C

(0,0)
1,1,q(1; ε)− S

(0,0),(1,2)
1,1 (1; ε)

]}
, (5.44)

whose ε-expansion is

I
(0,0)
1,1 (p1, p2; ε) =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2{
−
(
CACF

3
+

2nfTRCF

3

)
1

ε3

+

[(
−587

50
+ π2

)
CACF +

(
5− 4π2

3

)
C2

F −
31nfTRCF

9

]
1

ε2

+

[(
−622583

3375
+

101 ln 2

9
+

502π2

45
+ 50ζ3

)
CACF

+

(
393797

13500
+

13184 ln 2

225
− 274π2

45
− 66ζ3

)
C2

F

+

(
11557

2700
− 202 ln 2

9
+

8π2

9

)
nfTRCF

]
1

ε

− 15.2343CACF − 318.099C2
F + 46.4407nfTRCF + O(ε)

}
.

(5.45)

All the pole coefficients are again given in terms of rational numbers and known transcen-

dental constants.

Using eqs. (5.28), (5.32), (5.36), (5.41) and (5.45), it is straightforward to check that

the regularized double virtual contribution

dΓNNLO
2 ≡

{
dΓVV

2 +

∫
2

[
dΓ

RR,A2
4 −dΓ

RR,A12
4

]
+

∫
1

[
dΓ

RV,A1
3 +

(∫
1

dΓ
RR,A1
4

)A1
]}
J2 (5.46)
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is free of ε-poles. Hence, the regularized double virtual contribution to the decay rate

ΓNNLO
2 [J ] =

∫
2

[
dΓNNLO

2

]
ε=0

(5.47)

is finite for any infrared-safe observable and can be computed numerically in four dimen-

sions. For the total cross section (J = 1) at µ = mH (L = 0) we find,

ΓNNLO
2 [J = 1] = −ΓLO

(
αs

π

)2

41.25(1) . (5.48)

We note that the error estimate of the above result comes entirely from the uncertainty

associated with the numerical computation of the finite parts of the insertion operators.

The statistical uncertainty of the Monte Carlo integration over the two-parton phase space

is completely negligible.

Finally, summing eqs. (5.13), (5.26) and (5.48), we obtain

ΓNNLO[J = 1] = ΓNNLO
4 [1] + ΓNNLO

3 [1] + ΓNNLO
2 [1] = ΓLO

(
αs

π

)2

29.15(2) , (5.49)

to be compared with the know analytic result

ΓNNLO[J = 1] = ΓLO

(
αs

π

)2

29.146714 . . . . (5.50)

6 Inclusive and differential results

In this section, we show that using the fully differential two-, three- and four-parton con-

tributions of eqs. (3.1), (4.5), (4.16), (5.11), (5.24) and (5.46), we can make predictions

for any infrared-safe jet cross section with jet functions Jn (n = 2, 3 and 4) defined in

d = 4 dimensions.

The inclusive decay rate is obtained by setting J = 1 and is given by the sum of the

leading order width (3.3) and the NLO (4.19) and NNLO (5.49) corrections. At µ = mH

we obtain

ΓNNLO = ΓLO

[
1 +

αs

π

17

3
+

(
αs

π

)2

29.15(2)

]
, (6.1)

in agreement with the known analytic prediction [78–80]. In figure 1, we compute the

inclusive decay rate at µ = mH/2 and µ = 2mH and compare it to the known analytic

result for the scale dependence, finding excellent agreement.

To illustrate the impact of NNLO QCD corrections on differential distributions, we

apply the Durham jet algorithm [86] with resolution parameter ycut = 0.05 to cluster

final state partons and order the resulting jets in energy. In the top panel of figure 2 we

show the energy distribution of the leading jet in the rest frame of the decaying Higgs

boson for two-jet events. In ref. [47] the same distribution was computed for jets clustered

according to the JADE algorithm with ycut = 0.1. We have repeated that calculation and

found excellent agreement with the published results. However, for two-parton kinematics
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Figure 1. Scale dependence of the inclusive decay rate at LO, NLO and NNLO accuracy. The

estimated uncertainty on the numerical results is too small to be appreciated.

the energy of the leading jet is just Emax = mH/2, so at leading order the leading jet

energy distribution is a delta function. Furthermore, double unresolved subtractions for

four parton matrix elements, as well as single unresolved subtractions for three parton

matrix elements also contribute to this distribution only at Emax = mH/2. Then, to

show the subtraction method at work on an observable that has a non-trivial distribution

already at leading order, we consider the absolute value of the pseudorapidity of the leading

jet, |η1|, with respect to an arbitrary axis. The effect of higher order corrections on this

distribution is shown on the bottom panel of figure 2. In this last illustrative example we

note that going from the leading order to NNLO, the uncertainty bands shrink, and that

the NNLO band falls within the NLO band, thereby showing the good convergence of the

perturbative series.

The bands in both distributions in figure 2 correspond to the envelope of varying the

renormalization scale in the range µ ∈ [mH/2, 2mH ].

7 Conclusions

In this paper, we have computed the fully differential decay rate of the SM Higgs boson

into b-quarks at NNLO accuracy in αs, by implementing a general subtraction scheme

developed in a series of papers for the computation of QCD jet cross sections at NNLO

accuracy [31–41].

We have shown that our subtractions render both the double real and real-virtual con-

tributions to the NNLO correction integrable in four dimensions. We have also presented

the integrated forms of our subtraction terms with pole coefficients evaluated analytically,

while the finite parts were given numerically. We confirmed that the sum of the double vir-
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Figure 2. The plots show the normalized distribution of the leading jet energy Emax (top) and

the distribution of the absolute value of the pseudorapidity |η1| of the highest energy jet (bottom)

at LO, NLO and NNLO accuracy. The bands show the dependence on the renormalization scale

corresponding to the range µ ∈ [mH/2, 2mH ]. Jets have been clustered using the Durham algorithm,

the resolution parameter for jet clustering was set to ycut = 0.05.

tual contribution and the integrated subtractions is free of infrared singularities as required

by the KLN theorem. We have implemented our computation in a parton level Monte Carlo

program and presented illustrative examples of differential distributions at NNLO.

The successful application of our subtraction scheme reported here opens the way to

the computation of other, more involved processes and is also encouraging to further devel-

opments of the scheme to deal with initial state radiation. These directions of development

are under way and will be the subject of further publications.
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A Matrix elements

We present the matrix elements in the form used in our parton level Monte Carlo program.

In particular, in our scheme we need the the four-parton tree level and the three-parton

one-loop matrix elements only up to finite terms in ε. Higher order terms must of course

be included when integrating the matrix elements and subtraction terms separately in d

dimensions. When needed for our cross checks, we take these higher order terms directly

from ref. [47].

A.1 Two partons

For H → bb̄ at tree level we have

|M(0)

bb̄
|2 = 2y2

bm
2
HNc . (A.1)

We computed the one-loop correction and obtained

2<〈M(0)

bb̄
|M(1)

bb̄
〉 =

αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε
|M(0)

bb̄
|2CF

{
− 2

ε2
− 3

ε
− 2 + π2 + 3L

−
(

4 +
π2

4
− 4ζ3 +

3

2
L2

)
ε

−
(

8− π2 + ζ3 +
π4

60
− π2

4
L− 1

2
L3

)
ε2 + O(ε3)

}
.

(A.2)

We used the formula at two loops as given in ref. [47]:

2<〈M(0)

bb̄
|M(2)

bb̄
〉 =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2

|M(0)

bb̄
|2
{
C2

F

ε4
+

(
11CACF

4
+ 3C2

F − nfTRCF

)
1

ε3

+

[(
8

9
+
π2

12
− 11

3
L

)
CACF

+

(
17

4
− 2π2 − 3L

)
C2

F −
(

4

9
− 4

3
L

)
nfTRCF

]
1

ε2

+

[(
− 961

216
+

13ζ3

2
− 11

2
L+

11

6
L2

)
CACF
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+

(
53

8
− 3π2

4
− 10ζ3 −

9

2
L+

3

2
L2

)
C2

F

+

(
65

54
+ 2L− 2

3
L2

)
nfTRCF

]
1

ε

+

[(
− 467

162
+

733π2

216
+

92ζ3

9
− 11π4

360

+

(
53

12
+

55π2

36

)
L+

11

2
L2 − 11

18
L3

)
CACF

+

(
17− 55π2

24
− 20ζ3 +

43π4

90
−
(

9

4
− 5π2

4

)
L+

9

2
L2 − 1

2
L3

)
C2

F

+

(
200

81
− 59π2

54
− 4ζ3

9
−
(

1

3
+

5π2

9

)
L

− 2L2 +
2L3

9

)
nfTRCF

]
+ O(ε)

}
. (A.3)

We checked that the poles of this expression satisfy the general formula given in ref. [87],

while the finite part agrees with that in ref. [85]. The square of the one-loop matrix

element is

2<〈M(1)

bb̄
|M(1)

bb̄
〉 =

[
αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε]2

|M(0)

bb̄
|2C2

F

{
1

ε4
+

3

ε3
+

(
17

4
− 3L

)
1

ε2

+

(
7− 5π2

4
− 4ζ3 −

9

2
L+

3

2
L2

)
1

ε

+

[
15 +

3π2

8
− 5ζ3 −

π4

15
−
(

3− 5π2

4

)
L+

9

2
L2 − 1

2
L3

]
+ O(ε)

}
.

(A.4)

A.2 Three partons

For H → bb̄g at tree level we have

|M(0)

bb̄g
|2 = 8π

αs

SMS
ε

µ2ε|M(0)

bb̄
|2CF

1

m2
H

[
(1− ε)y23

y13
+

(1− ε)y13

y23
+

2y12

y13y23
+ 2− 2ε

]
. (A.5)

At one loop, we use the ε-expansion of the formula from ref. [47], which we checked nu-

merically against GoSam [88, 89],

2<〈M(0)

bb̄g
|M(1)

bb̄g
〉 =

αs

2π

Sε

SMS
ε

(
µ2

m2
H

)ε{
|M(0)

bb̄g
|2
[
− 2CF + CA

ε2
−
(

3CF +
11CA

6
− 2nfTR

3

+ (CA − 2CF) ln y12 − CA(ln y13 + ln y23)

)
1

ε

+ (CA − 2CF)

(
R(y12, y13) +R(y12, y23) +

1

2
ln y2

12

)
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− CA

(
R(y13, y23) +

1

2
ln y2

13 +
1

2
ln y2

23

)
− 2CF + (2CF + CA)

π2

2

+

(
3CF +

11CA

6
− 2nfTR

3

)
L

]
+ 8π

αs

SMS
ε

µ2ε|M(0)

bb̄
|2(CA − CF)CF

1

m2
H

(
1

y13
+

1

y23

)
+ O(ε)

}
, (A.6)

where

R(x, y) = Li2 (1− x) + Li2 (1− y) + lnx ln y − π2

6
. (A.7)

A.3 Four partons

In our computation we need the H → four partons squared matrix elements at tree level

in d = 4 dimensions. We checked our formulae, presented below, with GoSam [88, 89].

For H → bb̄qq̄ we have

|M(0)

bb̄qq̄
|2 =

(
8παsµ

2ε

)2

|M(0)

bb̄
|2 1

m4
H

[
Cbb̄qq̄(p1, p2, p3, p4)TRCF

]
+ O(ε) , (A.8)

where

Cbb̄qq̄(p1, p2, p3, p4) =

[
1

2y34
− 1

2y134
− 1

2y2
134

− 1 + y13

y134y34
+

1 + 4y13 + y34

2y134y234
− y13

y2
134y34

+
1 + 2y13 + 2y2

13 + 2y13y23

2y134y234y34
− y2

13

y2
134y

2
34

+
y13y23

y134y234y2
34

+ (1↔ 2) + (3↔ 4) + (1↔ 2 , 3↔ 4)

]
.

(A.9)

For H → bb̄bb̄ we find

|M(0)

bb̄bb̄
|2 =

(
8παsµ

2ε
)2
|M(0)

bb̄
|2 1

m4
H

[
Abb̄bb̄(p1, p2, p3, p4)CACF +Bbb̄bb̄(p1, p2, p3, p4)C2

F

+ Cbb̄bb̄(p1, p2, p3, p4)TRCF

]
+ O(ε) , (A.10)

where

Abb̄bb̄(p1, p2, p3, p4) =

=

[
1

2y12
− 1

2y123
− 1

2y124
+
y23 + y24

y12y14
+
y13 + y14

y12y23

− 4y13 − 3y14 + y24 − 3y34

4y12y123
− y13 − 3y23 + 4y24 − 3y34

4y12y124

+
y13 − 4y23 − 3y24 − 2y34

2y12y134
− 3y13 + 4y14 − y24 + 2y34

2y12y234

− 2y12 − 3y13 − y14 − y23 − 3y24 − 8y34

4y123y124
+

3y12 + y24

2y123y134

+
3y12 + y13

2y124y234
− y13(y14 + y24 + y34)

y12y2
123

− y24(y13 + y23 + y34)

y12y2
124

+
y34(y14 + y23)

y12y123y124
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+
2y2

13 − 2y13y24 − 2y13y34 − 2y2
23 − 4y23y24 − 2y23y34 + y2

24 + 2y24y34 + 2y2
34

4y12y123y14

+
y2

13 − 4y13y14 − 2y13y24 + 2y13y34 − 2y2
14 − 2y14y34 + 2y2

24 − 2y24y34 + 2y2
34

4y12y124y23

− y2
13 + y13y34 + y2

14 + 2y14y24 + 3y14y34 − 2y2
23 + y2

24 + 4y24y34 + 4y2
34

4y12y123y134

− 2y2
14 − 2y14y23 + 2y14y24 + 2y14y34 + y2

23 + y2
24 + 2y24y34 + 3y2

34

4y12y123y234

− y2
13 + 2y13y23 + 2y13y34 + y2

14 − 2y14y23 + 2y2
23 + 2y23y34 + 3y2

34

4y12y124y134

− y2
13 + 2y13y23 + 4y13y34 − 2y2

14 + y2
23 + 3y23y34 + y2

24 + y24y34 + 4y2
34

4y12y124y234

− 2y3
23 + 2y2

23y24 + y23y
2
24

4y12y123y134y14
− y2

13y14 + 2y13y
2
14 + 2y3

14

4y12y124y23y234

+ (1↔ 3) + (2↔ 4) + (1↔ 3 , 2↔ 4)

]
, (A.11)

while

Bbb̄bb̄(p1, p2, p3, p4) = −2Abb̄bb̄(p1, p2, p3, p4) (A.12)

and finally

Cbb̄bb̄ =

[
Cbb̄qq̄(p1, p2, p3, p4) + (1↔ 3) + (2↔ 4) + (1↔ 3 , 2↔ 4)

]
. (A.13)

For H → bb̄gg we obtained:

|M(0)

bb̄gg
|2 =

(
8παsµ

2ε

)2

|M(0)

bb̄
|2 1

m4
H

[
Abb̄gg(p1, p2, p3, p4)CACF

+Bbb̄gg(p1, p2, p3, p4)C2
F

]
+ O(ε) ,

(A.14)

where

Abb̄gg(p1, p2, p3, p4) =

=

[
7

2y13
+

5

4y134
+

1

2y2
134

− 3(1− y23 − y34)

2y13y14
− 3(2− 2y14 − y34)

2y13y23

− 8− 10y14 − 7y34

4y13y24
− 3(2− 2y14 − y23 − y24)

4y13y34
+

3 + y23 − y24 + 2y34

4y13y134

+
10− 4y14 + 3y23 − y24 + 4y34

4y13y234
+

2 + y13

y134y34
− 8 + 8y13 + 5y34

4y134y234

+
y13

y2
134y34

+
4− 3y24 − 6y34 + y2

24 + 3y24y34 + 3y2
34

2y13y14y23

+
2− 4y14 + 2y2

14 + 2y14y23

4y13y24y34
+

4− 3y24 + 3y34 + y2
24 − y24y34 + y2

34

2y13y134y23
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+
4− 4y14 + 2y23 − 2y24 + 2y2

14 − 2y14y23 + 2y14y24 + y2
23 + y2

24

4y13y234y34

− 8 + 3y23 − 3y24 + 9y34 + y2
23 + 3y23y34 + y2

24 − y24y34 + 4y2
34

4y13y134y234

− 2 + y13 + y2
13 + y13y23

y134y234y34
+

y2
13

y2
134y

2
34

− 2− 4y34 + 3y2
34 − y3

34

8y13y14y23y24

− y13y23

y134y234y2
34

− 2 + 4y34 + 3y2
34 + y3

34

4y13y134y23y234

+ (1↔ 2) + (3↔ 4) + (1↔ 2 , 3↔ 4)

]
(A.15)

and

Bbb̄gg(p1, p2, p3, p4) =

=

[
− 11

2y13
+

1

2y2
134

+
3(1− y23 − y34)

y13y14
+

3(2− 2y14 − y34)

y13y23

+
7− 6y14 − 6y34

2y13y24
+

1− y34

2y13y134
− 5− 4y14 + y23 − y24 + 3y34

2y13y234
+

1 + y34

y134y234

− y14 − y34

2y13y2
134

− 4− 3y14 − 6y34 + y2
14 + 3y14y34 + 3y2

34

y13y23y24

− 4− 3y24 + 3y34 + y2
24 − y24y34 + y2

34

y13y134y23
− 4 + y14 − 2y23 − y34

2y13y134y24

+
y34(6 + y23 − y24 + 3y34)

2y13y134y234
+

2− 4y34 + 3y2
34 − y3

34

4y13y14y23y24
+

2 + 4y34 + 3y2
34 + y3

34

2y13y134y23y234

+
1

y13y134y234y24
+ (1↔ 2) + (3↔ 4) + (1↔ 2 , 3↔ 4)

]
. (A.16)

B I
(0)
1 insertion operator to O(ε)

We present the I
(0)
1 ({p}m; ε) insertion operator in eq. (4.11) to O(ε). More precisely, we

give the ε-expansion of the kinematic functions C
(0)
1,i (x, ε) and S

(0),(i,k)
1 (Y, ε) which appear

in eq. (4.11) up to and including finite terms.

Starting with C
(0)
1,i (x, ε), we have

C
(0)
1,q(x, ε) = [C

(0)
ir ]qg(x, ε)− [CirS

(0)
r ](ε) , (B.1)

C
(0)
1,g(x, ε) =

1

2
[C

(0)
ir ]gg(x, ε) + nf [C

(0)
ir ]qq̄(x, ε)− [CirS

(0)
r ](ε) , (B.2)

where

[C
(0)
ir ]qg(x, ε) =

1

ε2
+

(
3

2
− 2 ln(x)

)
1

ε

+ 2

(
1 +

1

(1− x)5

)
Li2 (1− x)− π2

2
+ 2 ln2(x)

+

(
8

3(1−x)5
− 3

2(1−x)4
− 1

3(1−x)3
+

1

3(1−x)2
+

3

2(1−x)
− 17

3

)
ln(x)
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+
2

3(1− x)4
− 2

3(1− x)3
− 5

12(1− x)2
+

5

24(1− x)
+

89

24
+ O(ε) , (B.3)

[C
(0)
ir ]qq̄(x, ε) =

TR

CA

{
− 2

3ε
+

2

3

(
1+

1

(1−x)5

)
ln(x)− 160

3

(
2

(2− x)6
− 1

(2− x)5

)
ln

(
x

2

)
+

2

3(1− x)4
+

1

3(1− x)3
+

2

9(1− x)2
+

1

6(1− x)
− 5

2
− 160

3(2− x)5

+
40

3(2− x)4
+

20

9(2− x)3
+

5

9(2− x)2
+

1

6(2− x)

}
+ O(ε) , (B.4)

[C
(0)
ir ]gg(x, ε) =

2

ε2
+

(
11

3
− 4 ln(x)

)
1

ε
+ 4

(
1 +

1

(1− x)5

)
Li2 (1− x) + 4 ln2(x)− π2

+
160

3

(
2

(2− x)6
− 1

(2− x)5

)
ln

(
x

2

)
+

(
14

3(1− x)5
− 3

(1− x)4
− 2

3(1− x)3
+

2

3(1− x)2
+

3

1− x
− 12

)
ln(x)

+
2

3(1− x)4
− 5

3(1− x)3
− 19

18(1− x)2
+

1

4(1− x)
+

37

4

+
160

3(2− x)5
− 40

3(2− x)4
− 20

9(2− x)3
− 5

9(2− x)2
− 1

6(2− x)
+ O(ε) ,

(B.5)

and

[CirS
(0)
r ](ε) =

1

ε2
+

11

3ε
− 7

6
π2 +

329

18
+ O(ε) . (B.6)

Turning to S
(0),(i,k)
1 (Y, ε), we have simply

S
(0),(i,k)
1 (Y, ε) = [S(0)

r ](i,k)(Y, ε) , (B.7)

where

[S(0)
r ](i,k)(Y, ε) = − 1

ε2
+

(
ln(Y )− 11

3

)
1

ε
− Li2 (1− Y )

− 1

2
ln2(Y ) +

7

6
π2 +

11

3
ln(Y )− 317

18
+ O(ε) .

(B.8)
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[39] P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross

sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01

(2011) 059 [arXiv:1011.1909] [INSPIRE].
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