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1 Introduction

In run I, the ATLAS and CMS collaborations of the Large Hadron Collider (LHC) discov-
ered a new particle [1, 2] with quantum numbers corresponding to those of the Higgs boson
in the Standard Model (SM) within the experimental accuracy of the measurements [3—6].
Thus by now it is widely accepted that the new particle is the Higgs boson of the SM.
Nevertheless, further more precise measurements are being prepared for the upcoming run
II. In particular, a lot of emphasis is put on the precise determination of the couplings of
the Higgs boson to the heavy fermions to check whether the fermion masses are consistent
with fermion mass generation in the SM.

Since the b-quark is quite light (its mass is only about 2% of the vacuum expectation
value of the Higgs field), the rate of associated production of a b-quark pair with a Higgs
boson is rather low. This fact, together with the overwhelming number of background



events coming from direct QCD b-quark pair production makes the determination of the
b-quark Yukawa coupling through Hbb production impossible. A better option that gives
direct access to the Hbb Yukawa coupling is to measure the H — bb decay in the associated
production of a Higgs boson with a W or a Z boson in a boosted or semi-boosted regime [7].
In this scenario it is possible to use the kinematic and topological properties of the final
states to isolate the H — bb decay. In this respect, first measurements have been performed
by the CMS [8] and ATLAS [9] collaborations.

Such search strategies may be aided by accurate modeling of QCD radiation in the
H — bb decay, which motivates the computation of the fully differential decay rate at
next-to-next-to-leading order (NNLO) accuracy in QCD perturbation theory. Computing
fully differential cross sections and decay rates at NNLO turns out to be rather involved,
however the last decade has witnessed substantial development [10-41] leading to a number
of differential results for specific processes [42-76].

The first computation of the fully differential decay rate of the SM Higgs boson into
b-quarks at NNLO accuracy was published in ref. [47]. That computation was performed
with the method of sector decomposition based on non-linear mappings [13]. Here we offer
a different approach based on the numerical implementation of the general subtraction
scheme developed in a series of papers for the computation of QCD jet cross sections at
NNLO accuracy [31-41]. This method, which is used for the first time in this paper to com-
pute a physical observable at NNLO, employs the universal infrared factorization of QCD
squared matrix elements to define local subtraction terms for regulating the singularities
emerging in unresolved real radiation.

Specifically, we can write the NNLO correction to the cross section of a generic m-jet
process as a sum of three contributions, the tree level double real radiation, the one-loop
plus a single radiation, and the two-loop double virtual terms of the basic process under

consideration,
oNNLO — / dopt o T2 +/ oty Jmt1 +/ oy, Jm (1.1)
m-+2 m~+1 m
and rearrange it as follows,
oNNLO _ / doNNLO +/ doNNLO +/ doNNLO (1.2)
m-+2 m—+1 m
where,
RR,A RR,A RR,A
dop50 = {dagﬁngw —doy, 5 Im — [d Omta  Jmt1 —doy, 12Jm] } , (1.3)
e=0

A, A A,
darljzli%o {[ m+1+/dgfﬁ2 } m+1 — [ 22114' (/d 5&2 ) ]Jm} , (1.4)
e=0

RR,A RR,A
2

+/1 [d g (ﬁdﬂiﬁl)“]} I (1.5)
e=0



The subscripts on the integral signs are simply reminders that the integration is over the
phase space of n = m, m + 1 or m + 2 final state particles. Above J,, denotes the value of
some infrared-safe observable J evaluated on an n parton final state.

The right-hand sides of egs. (1.3) and (1.4) are integrable in four dimensions by con-
struction [31-34], while the integrability of eq. (1.5) in four dimensions is ensured by the
Kinoshita-Lee-Nauenberg (KLN) theorem on infrared-safe quantities, provided that our
subtraction scheme is well defined.

The counterterms which contribute to da,ljllfio and to dag?ffo were introduced
in refs. [33] and [34]. The integration of the real-virtual counterterms (the last two terms of
eq. (1.5)) was performed in refs. [35, 36, 38]. The integral of the iterated single unresolved
counterterm (the third term of eq. (1.5)) was computed in ref. [39]. The integration of
the collinear-type contributions to the double unresolved counterterm (the second term of
eq. (1.5)) was performed in ref. [40]. The soft-type contributions to the same counterterm
were presented in ref. [41]. Most of these results were given as expansions in € whose
coefficients were computed numerically. Here we present the relevant integrals with pole
coeflicients evaluated analytically, while the finite parts are given numerically. The final
test on the consistency of our subtraction scheme is then to verify that eq. (1.5) is free
of singularities, as prescribed by the KLN theorem. In this paper, we perform that check
analytically for the first time by computing the fully differential decay rate' of the Higgs
boson into b-quarks at NNLO.

The present work is the first physical application of this method, therefore in order to
facilitate reading we present the full computation as implemented in a parton level Monte
Carlo program in detail. As usual in such codes, the jet function J is computed from
generated momenta in d = 4 dimensions, therefore, the implementation of any infrared-
safe physical quantity is straightforward as demonstrated here.

The paper is organized as follows: in section 2, the notation and conventions we
use are introduced; in sections 3 and 4, we show the decay width at leading order and
next-to-leading order (NLO) accuracy in ag; in section 5, we display the counterterms
and the insertion operators which are necessary to define the double real (1.3) and the
real-virtual (1.4) contributions to the decay width, and we show that the double virtual
contribution (1.5) is free of singularities; in section 6, we show a selection of illustrative
results; we draw our conclusions in section 7. The two appendices provide details on the
matrix elements we use, as well as on the insertion operator used in the NLO computation.

2 Notation

We consider the partial decay width I'y, ,,-[J] of the Higgs boson into a b-quark pair,
for any infrared-safe observable J. Through NNLO in QCD, this decay width receives
contributions from the following partonic subprocesses:

LO  H(py) — b(p1) + b(p2) tree level
NLO  H(pu) — b(p1) + b(p2) + g(p3) tree level
H(pr) — b(p1) + b(p2) one-loop

n egs. (1.1)~(1.5) we presented the basic structure of our subtraction scheme for computing a generic
cross section, however our method applies equally to decay rates, as spelled out in detail in sections 3-5.



NNLO H(pg) — b(p1) +b(p2) + g(p3) + g(ps) tree level
H(pg) — b(p1) +b(p2) + q(ps) + q(ps)  tree level
H(pu) — b(p1) + b(p2) + b(ps) + b(ps)  tree level
H(pu) — b(p1) + }:3(]?2) +9(p3) one-loop
H(pu) — b(p1) + b(p2) two-loop

where we show also the four-momenta of the particles in parentheses. We report the matrix
elements corresponding to all subprocesses up to the required loop level in appendix A.

We use the colour and spin space notation of ref. [77] where the matrix element for
a given subprocess, |M,,), is a vector in color and spin space, normalized such that the
squared matrix element summed over colours and spins is given by

M, |? = (M, |M,,), (2.1)

where n is the number of particles in the final state. The matrix element has the following
formal loop expansion

(M) = M) + M)+ M)+

with the dots denoting higher-loop contributions. We will always consider matrix elements
computed in conventional dimensional regularization (CDR) with MS subtraction. We
will also use the following ® product notation to indicate the insertion of colour charge
operators between (M| and |M(¢2)):

(MO |MB) @ T Ty = (MDD T3 Ty My
(2.2)
(MO ME)Yy @ {T;- Ty, T T1} = (MO T Ty, T Ty} M)

We use the customary normalization of Tg = 1/2 for the colour-charge operators, thus the
quadratic Casimirs are Oy = 2TRN. = N, in the adjoint and Cp = TR(NZ — 1)/(N.) =
(N2 —1)/(2N.) in the fundamental representation, where N. = 3 is the number of colours.

The b-quark mass is much smaller than the scale of the problem that is the Higgs
boson mass, therefore, we treat the b-quarks as massless, both in the matrix elements and
phase space integrals, retaining the b-quark mass only in the Yukawa coupling. We neglect
the t-quark throughout and consider ny = 5 light quark flavours.

In QCD the renormalized amplitudes are obtained from the unrenormalized ones by
replacing the bare couplings yf and of with their renormalized counterparts evaluated at
the renormalization scale p

2
B € € Qg 3CF Qg 110A 9CF 1
Yo Ho = { 4 € (477) [< 9 72 — 2n¢IR 2

97Cx Cg 5nfTR 1
—( L )J } (2.3)




where
_ 11Cx  4AngTRr

3 3 7

Bo (2.5)

and S?TS = (4m)exp(—eyg) corresponds to MS subtraction. Although the factor
(4m)¢ exp(—eyg) is often abbreviated as Se in the literature, we reserve the latter to denote

Se=—"t . (2.6)

On the right-hand side, yp, = yp(p) and ag = ag(p) are the dimensionless renormalized
couplings in the MS scheme evaluated at the renormalization scale .
The n particle massless phase space measure reads

n

dp.
Apn(Q*) = den(pr, - pn; Q) = [H (zif;’la(p?)] @m0 (pr+... +pa— Q). (27)

i=1

Throughout the paper, we will use y;; to denote twice the dot-product of two momenta,
scaled by the total momentum squared Q2. For example,

2p; - pr, 2p; - Q
Yik = o and YiQ = 7 (2.8)
We also introduce the combination
Yik
Yipo = 2.9
Q= Youo (2.9)
for later convenience.
3 Leading order
Let us denote the Born differential decay rate by,
1
B _ 2 0)2
dl'y = Md@(mH) |Mb5‘ : (3.1)
Then the leading order decay width is,
1
Bry _ By _ 2 (0),2
IBLJ] = /2de Jo= g /dng(mH) MOR,. (3.2)

Here J is an infrared-safe observable whose value evaluated on a kinematic configuration
with two partons is Jo. For the inclusive decay width (J = 1) at leading order we have

_ ygmHNc

o —rBy=1
[ ] S

(3.3)

where the expression on the right-hand side is the four-dimensional result.



4 Next-to-leading order

4.1 Real emission contribution

The real emission contribution to the differential decay width reads
ry = debd(mH) \M |2 (4.1)

dF3R is divergent when the radiated gluon becomes unresolved (soft, or collinear with one
of the b-quarks). In order to regularize it, we subtract an approximate decay rate,

dry™ = —d¢3<mH> MM, (4.2)

2m

where the counterterm for processes with m+1 partons in the final state is given by [32, 33],

m—+1 m+1 m+1
AMO 2= >3 Lo _ Zc S . (4.3)
r=1 =1
T z;ﬁr

In eq. (4.3) the functions Ci(f 9 and Sﬁo,o) appearing in the right-hand side correspond
to counterterms which regularize the p;||p, collinear limit and the p, — 0 soft limit. In
order to avoid double counting in the overlapping soft-collinear region, we must add back a

soft-collinear counterterm, C, .Sy 00 The precise definitions of these subtractions are given
in refs. [32, 33]. In our convention the indices of Ci(B ) are not ordered, CZ-(S 0 = 7{?’0).

Since the sums over ¢ and r in eq. (4.3) are likewise not ordered, the factor of % assures
that we count each collinear limit precisely once. Finally, the superscript (¢1,¢2) means
that the corresponding counterterm involves the product (in colour or spin space) of an
¢1-loop unresolved kernel (an Altarelli-Parisi splitting function or a soft eikonal current)
with an fs-loop squared matrix element. Thus, (0,0) means that we consider a tree level
collinear or soft function acting on a tree level reduced matrix element. Such superscripts
will appear also for other counterterms throughout the paper. For definitiveness, we spell
out eq. (4.3) explicitly for H — bbg (m = 2) below,

0) 0,0 0,0 0,0 0,0
Ai ’/\/llgbg‘2 ( D 653 Rt 5?5 ) 6133§ ) C23S:£, ) ; (4.4)

where the b, b and gluon carry the labels 1, 2 and 3.
With the counterterms given in refs. [32, 33| it is straightforward to check that
the difference
drytO = dr{J; — dritg, (4.5)

is integrable in all kinematic limits. Then, the regularized real contribution to the de-
cay rate,

YO = /3 [dr™°] _, (4.6)

is finite in four dimensions for any infrared-safe observable. An explicit calculation for the
contribution to the total decay width from the real emission part plus subtractions yields

. 172
FLOa Ly (4.7)

oL =1 = 450



4.2 Virtual contribution
The virtual contribution to the differential decay width reads

1
ATy = 5 —dea(miy) 2RMug M) (48)

and is of course divergent in four dimensions. Its e-expansion reads (see eq. (A.2))

S, u? N\ 2 3
Iy —qrBds 2 (£ _L 2 942y 4,
d d o SN (m%) CF[ 2 +7°+3L+O0(e)| , (4.9)

where we have introduced the abbreviation L = In (%) In eq. (4.9), dT'B denotes the
d-dimensional Born decay rate as given in eq. (3.1).

By the KLN theorem, the integral of the approximate decay rate precisely cancels
the divergences of the virtual piece, so adding back what we have subtracted from the
real correction, the virtual contribution becomes finite as well. We have performed the
integration of the various subtraction terms analytically in ref. [32] and here we only quote

the result, which can be written as,
A
/ drpyt = dr @ 1Y ({phmie) (4.10)
1

where the ® product is defined in eq. (2.2) and the insertion operator is in general given
by [32]

s Se 2\ & = i
1)) = 52 e (52) 3 |clgiTd + 38D (gt | - (411
€ i=1 k=1
ki

The variables y;g and Yj, o were defined in egs. (2.8) and (2.9) and Q* is the total incom-
ing momentum. The functions Cg?i) (vig; €) and Sgo)’(i’k) (Yik,0; €) have been computed as
Laurent expansions in € in ref. [32] and are recalled here up to finite terms in appendix B.
We mention that there is no one-to-one correspondence between the unintegrated subtrac-
tion terms in eq. (4.3) and the kinematic functions that appear in eq. (4.11). The latter
are obtained from the former after summing over all unobserved quantum numbers (colour
and flavour) in addition to integrating over the unresolved momentum, and organizing the
result in colour and flavour space. Loosely speaking, the integrated form of CZ-(B ) enters

Cg?i) and that of 87(,0) enters Sgo)’(i’k). However, we are free to assign the integrated form of

CiTS,EO) to either of the integrated counterterms and this final organization was performed

differently in ref. [32] and in this paper. In ref. [32], the integrated form of C,, ) was

(0),(3,k) (0)

grouped into S; , while here we find it more convenient to group it into C7;.

2The expansion parameter in ref. [32] was chosen as/ SMS implicitly, with the harmless factor 1 /SMS
suppressed. For the sake of clarity we reinstate the factor 1/5’2VIS here, as well as in all other insertion
operators in egs. (5.30), (5.34), (5.39) and (5.43) below.



For H — bb, with only two partons in the final state the colour connections factorize
completely,

T T, =—-CF. (4.12)
Furthermore, momentum conservation implies that

Y1Q = y2Q = Y120 =12 =1. (4.13)

Thus, the insertion operator I go) becomes,

s Se 2\°
I&O)(phm;e) <M> 2Ck [C(O)(1§€)—550)7(1’2)(1%) ; (4.14)

o SMS \ m;

where, as indicated, we must evaluate all functions with arguments equal to one. The
Laurent expansion of eq. (4.14) in € is,

Se (1?2 \°©
1 (pr, pase) = o 6<>
21 GMS \ m3,

2 3 1267, (1377 707519
450 90 13500

XCF|:€2+€+_7T+ — >€—95.914462+O(63) ,
(4.15)

where, for future reference, we have also provided the O(e) part in terms of rational numbers
and known transcendental constants. The uncertainty of the O(¢?) numerical result, as well
as those of all other numerical results we show affect the last quoted digit, unless specifically
stated otherwise.

It is easy to check that the expression

dryo = [dFQV + /1 drgR’Al} Ja, (4.16)

is free of e-poles. Hence

O] = / [dryhO] (4.17)

2

e=0

is finite in four dimensions for any infrared-safe observable. For the contribution to the
total width from the virtual part plus integrated subtractions we find

ag (367 3
YOy = 1] = IO = (9000F + QCFL> ) (4.18)

Combining egs. (4.7) and (4.18), we obtain the full NLO correction to the total decay rate,
NLO NLO NLO Lo as (17 3
r =3I =1+TIy"[J=1=1" —= ZC'F+§C’FL . (4.19)
T

As Cp = % in the conventions used, we recover the well-known NLO result [78-80].



5 Next-to-next-to-leading order

5.1 Double real emission contribution

The double real emission contribution to the differential decay width is

1
RR _ 2 >+ :
ATRR = md¢4(mH) < |Mbbgg| ;J |Mbbqq| ( )2 |Mbbbb| ) (5.1)

and its integral over the phase space is divergent in four dimensions due to kinematic
singularities emerging in unresolved regions. In order to regularize the singularities of
eq. (5.1) due to two unresolved partons, we subtract an approximate decay rate,

2
dr} Q- ) , (5.2)

RR,A, 1 2 2 (0) 2 |
_2de¢4(mH)< A\Mbbgg| +;A|Mbbqq\ a )

where the double unresolved counterterm for processes with m + 2 partons in the final
state is [33]

m+2m+2 | m+2 ( m+2
0,0)
RS 9 LD LT L
r=1 s=1 i=1
1#r,s ;é
1 (0,0) (0,0 cs5(0:0)
+ 5 (asir;s CzrsCSzr ] Z C““Js ir;s
e (5.3)
- aszr s‘s‘vgg 0 CZTS‘S?SS 0 + C aszr 587(‘2 O)
m—+2
O 0 0,0
+ Z 17‘ 7S 7“8 ) +5 S( )
];ﬁz 7,8

In eq. (5.3), the functions Cl(fso), CZ(SJOS), CLS’Z(BS) nd S(O 9 denote counterterms which reg-
ularize the p;||p,||ps triple collinear, the p;||p,, p;||ps double collinear, the p;||p,, ps — 0
one collinear, one soft (collinear+soft) and the p, — 0, ps — 0 double soft limits. The
rest of the counterterms which appear in eq. (5.3) account for the double or triple overlap
of limits, their role is to make sure that no multiple subtractions are performed in over-
lapping double unresolved regions. Thus, for instance, C, GSZ(T S) accounts for the triple
collinear limit of the collinear+soft counterterm, and the rest of the counterterms have a
similar interpretation as suggested by the notation. The precise definitions of all functions
appearing in eq. (5.3) were given in ref. [33]. As in our convention the collinear indices of
counterterms and the sums over them in eq. (5.3) are not ordered, the factors of & & , etc.,
are needed so that each limit is counted precisely once.

After subtracting the double unresolved approximate cross section, the difference

drRR — qriifhe (5.4)



is however still singular in the single unresolved regions of phase space. To regularize it,
we also subtract

RRA, 1 2 2 0) |2
dr, 1_2de¢4(mH)< A M2 +ZA|M |7+

2
Dl + G AMEE ) 69
q#b

bbgg

(2 )

where A; has been defined in eq. (4.3). To avoid double subtraction in overlapping single
and double unresolved regions of phase space, we must also consider

RRA,, 1 2 0) |2 0) |2 2
dF 12 _d¢4(mH)< ./41 Mbbgg| +ZA Mbbqq’ +( ) A12‘Mbbbb| >

2m q#b
(5.6)
The general formula for the iterated single unresolved counterterm is
mt2 | mt2 m+2
Mol = 30 |3 5 CudelMoial® + | SAIMuaP =D CuSi el Mol ||
= i
(5.7)
where the three terms above are given by [33],
m+2
Crpda = > [thcl(cg;*()) + thCS;g? V- thcktraglgt O oy SLyY
o
m+2
+ Z < CriCy ir: kt — CiCiy, ktagxggf)) + thS(O o, (5.8)
ikt

m+2 | m+2
S Ay =" [ (3 e + s,ei) — 8,C,,CSLY, °>>

irt ir;t ir;t
r=1 i=1
r#t  \i#rt
-8 CzrtS(O 0 -S C'Szr tS(O 9 +S Czrtcszr tS(%O) + St‘S?E?’O) } ’ (59)
m+2 0.0) m+2 0.0
CrSida = Y [cktstcliﬁ 2 ( CrSiC8 1) — S, 0SSy >)
rgé:k{t 1757“ k it

— CuSiCini S = CluSiCoa St + CS SO | + CuS S . (5.10)

T

The interpretation of the various terms in egs. (5.8)—(5.10) are suggested by the notation:
for instance, thC,gt;O) in eq. (5.8) accounts for the py||p; single collinear limit of the C; (O 0)

(0,0) .

o ineq. (5.9) represents the coun-

triple collinear counterterm, while, for example, S,C;
terterm appropriate to the p; — 0 soft limit of nggto)' Thus, ¢412|/\/l,(21r2|2 cancels the single
unresolved singularities of the double unresolved subtraction term AQ‘M,,,(.)L ' o2, However,

very importantly, it can also be shown [33] that A12|M +2|2 simultaneously cancels the

~10 -



double unresolved singularities of the single unresolved subtraction term A1|M£2L2|2 and
so properly accounts for the overlap of single and double unresolved subtractions. All of the
counterterms appearing in egs. (5.8)—(5.10) were precisely defined in ref. [33]. As before,
the collinear indices and sums over them in egs. (5.7)—(5.10) are not ordered, hence the
appearance of the factors of % at various instances.

With these definitions, the difference

dTYNLO — qrBRR 7, qrifede g, qrits g, qritRde g (5.11)

can be shown to be integrable in all kinematic limits [33]. Thus, the regularized double
real contribution to the decay rate

YN0 = / [dry O] (5.12)
4

is finite in four dimensions for any infrared-safe observable and can be computed with
standard numerical techniques. For the total cross section (J = 1) at g = my (L = 0)
we find,

2
PNNLO[ 7 — 1] = 1O <a> 1.05(1). (5.13)

™

This numerical value has been obtained by implementing eq. (5.12) in a fully differential
parton level Monte Carlo program using four dimensional double real emission matrix
elements and phase space. However, we have also reproduced the result by integrating
the matrix elements and subtraction terms directly in d dimensions and then summing
the separate contributions. We stress that this is a highly non-trivial cross check, as both
calculations are very different conceptually and technically.

5.2 Real-virtual contribution

The real-virtual contribution to the differential decay rate reads
1
RV 2 (0) (1)
drs” = ST dos(miy) 2§R<Mng|Mng> , (5.14)

which contains explicit e-poles coming from the one-loop matrix element and furthermore
it is divergent in phase space regions where the gluon becomes unresolved. The explicit
poles are cancelled by the integral of the single unresolved subtraction term in the double
real emission contribution to the full NNLO decay rate,

/dIngMAl = dF3R ® IgO) (p1>p27p3; 6)7 (515)
1

where the real emission differential decay rate dF3R is given by eq. (4.1), while the insertion
operator Igo) (p1,p2,p3;€) is given by eq. (4.11). As there are only three partons in the
final state, the colour connections that appear in the generic case in eq. (4.11) factorize

completely,
—2
Ty = Ca—20r g TiT5 =ToT5 = ey

5 5 (5.16)

- 11 -



Thus,

as S. 2\
0 (01, p2.p35) = - B (:;) {CF [GS‘?Q(le; €) + C)(yagi €) — 28712 (Vip ; e)}
€ H

+ Ca [Cg(y:ﬂ@; €) + S (Vi g5 e)

5Oy, 0 ) — SO 5, o eﬂ } . (D)

Using the expressions in appendix B, it is straightforward to check that

s Se ‘(2CF +C 1
I§0)(p1,p2,p3; €) = Q;Sm(M ) { FEQ A +6[(CA—2C’F)Iny12
My

11 2
— CA(lny13 + lnygg) + ECA +3CF — 37’LfTR:| + 0(60)} ,
(5.18)

hence the combination
aryv + / dritA (5.19)

is finite in .
Nevertheless, eq. (5.19) is still singular in the single unresolved regions of phase space
and requires regularization We achieve this by subtracting two suitably defined approxi-

RRA,\ AT L :
mate decay rates, dI‘3 ! and < fl dI'y ) . First, we consider

1
ariVit - Md@(qu)mzw/\/{(o M), (5.20)

FRV

which matches the kinematic singularity structure of dI'3"Y. The general definition of the

real-virtual counterterm is [34],

m+1 m+1 m+1
A 2RMD MOy = S > 5 Lo 4 [ g0 Z
r=1 i=1
el & (5.21)
m+1 m+1 m+1
+ Z Z C (1,0) 4 S (1,0) Z C S (1,0)
l7é7” i;ér

The basic structure of this subtraction in terms of unresolved limits is the same as the
tree level single unresolved counterterm in eq. (4.3). However, in accordance with the form
of infrared factorization of one-loop QCD matrix elements [81-84], in eq. (5.21) we have
terms with tree level collinear or soft functions multiplying (in colour or spin space) one-
loop matrix elements (those with the (0, 1) superscript), as well as terms with one-loop
collinear or soft functions multiplying tree level matrix elements (denoted with the (1,0)
superscript). The precise definitions of the functions appearing in eq. (5.21) are given
in ref. [34].
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Then we consider the counterterm,

(/dFRRA )Al = 2d¢3(mH).A1<|M 2w I )) (5.22)

which matches the kinematic singularity structure of fl dF?R’Al. In general, the countert-
erm is given by [34],

m+1 m+1 m+1

A1<|Mm+12®10)> Z Z COOM)Jr 500@1 ZCWSTOO®I
=t ks
+mz+:l mirzl CRX 00)+ SRX 0,0) mi:lcwsﬁx 0,0)
z;ér i;ér

(5.23)

The organization of this subtraction in terms of unresolved limits is again identical to the
tree level single unresolved counterterm in eq. (4.3). However, for each limit, we have
two types of terms, labeled by the different superscripts. The reason is as follows. This
counterterm is built from the infrared factorization formulae for the product of a QCD

(0)

squared matrix element times the I’ insertion operator of eq. (4.11). It turns out that
these factorization formulae are sums of two pieces. Both of these involve the product of a
tree level collinear or soft function times a tree level matrix element, but one piece is further
multiplied by the I 50) insertion operator appropriate to the reduced matrix element, while
the other is multiplied with a well-defined remainder function R [34]. Hence the superscripts
on the various terms in eq. (5.23).

It can be shown that the combination
dryNLO = [ngw / driAs }Jg - {dr?V’Al + ( / driAs )A] T (5.24)

is both free of e-poles and integrable in all kinematically singular limits [34]. Thus, the
regularized real-virtual contribution to the decay rate

N0 = / [driNEOT (5.25)

=0
3

is finite and can be computed numerically in four dimensions for any infrared-safe observ-
able. For the total cross section (J = 1) at u = mpy (L = 0) we find,

2
TYNLO[7 = 1] = TLO (O‘S> 69.35(1) . (5.26)

™

As for the double real emission contribution, the numerical result of the Monte Carlo
program in eq. (5.26) has been reproduced by integrating the real-virtual matrix element
and the subtraction terms separately in d dimensions and summing the contributions.
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5.3 Double virtual contribution

The double virtual contribution to the differential decay rate reads
1 0 2 1
ar¥ = 5 —doa(mi) [2%<M£§|M§Dg> + \Mgg|2} : (5.27)

which contains explicit e-poles coming from the two-loop matrix element and the square of
the one-loop matrix element:

2
S, 202 11CACp 1
\AY B € F 2
dryV =dr (%S S) { I +{ 1 +(6+4L)C’F—nfTRC’F]63

9 12 6

4 2 1
— (= + 2L ) TrCr | =

961  13(3 1
+ [( ~oet o E(67 3 )L)CACF

8 2 11 17
+[< + 4 L)CACF+<2—2W +6L+4L2)CF

(5.28)

1
+ (gg —2n? — 143+ 42— 7 )L+3L2+§L3)C§

+ (gi + 190L> nfTRCF] ! + O(EO)}-
The finite part of dI'yV is also known exactly [85] which we recall in appendix A (see
egs. (A.3) and (A.4)). In order to regulate these poles, we add the integrals of the coun-
terterms which have been subtracted in sections 5.1 and 5.2. The KLN theorem then
ensures that, provided the physical observable we are to compute is infrared-safe and our
subtraction scheme is internally consistent, the ensuing result will be free of infrared di-
vergences. It is our task in this section to verify that this is indeed the case.

Let us begin with the integral of the double unresolved subtraction term, eq. (5.2),
which can be written as,

RR,A
[ariis = ark o 1 (o). (5.20)
2
where the insertion operator has five contributions according to the possible colour
structures,
o os S (12\T ([
Gs € 2 2 2
k0= 5 o (22) {Z O igi ) T +ZCM vio: i0- Ysi€) T2 | T
1=

J#Z

m m
(35l (5,
+ ) [Sgo) U (Yigre) Ca +> C’Séoz) 9 (yiq, Yijo Ying: Yirgs e) T?]T]Tl
1
J

gl= i=1

N
i
m m
0),(4,k) (4,0
DD DR )(J’)(Yik,QvEj,Q’nl,Q75?k,Q7Ykl,Qanl,@6){TiTvajTl}}‘
:17j7l:17
2

i,k
ki 1]

(5.30)
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The kinematic functions in eq. (5.30) have been defined and computed as expansions in e
in refs. [40, 41]. Again, there is no one-to-one correspondence between the unintegrated
double unresolved subtraction terms in eq. (5.3) and the kinematic functions that appear
in eq. (5.30). The latter are obtained from the former after integration over unresolved
momenta and summation over unobserved colours and flavours. This remark applies to
the rest of the insertion operators to be discussed below.

For H — bb, the colour connections that appear in eq. (5.30) are simply given by
eq. (4.12), and the kinematic variables simplify as in eq. (4.13). Furthermore, when eval-
uating eq. (5.30) the coincidence of certain summation indices is allowed. In particular,
in the second line need not be distinct from j and [, while in the last line we only require
that ¢ and k as well as j and [ are different, with no further restrictions, as shown in the
formula. As a result, some indices of kinematic functions coincide once we explicitly write
out eq. (5.30). Specifically, since in our case there are only two hard partons in the final

state, only ng?i)’(i’l) and Sgo)’(i’k)’(i’k) appear, while the more general functions CSS’JB’U’Z)

850)7(i7k)7(j9l)

or

are absent from the sum, as those require at least three hard partons if all
indices are different. In such cases we also simplify the list of arguments of the functions
so that we do not display arguments that are the same or identically zero. For instance,
in CSéE)Z.)’(j’l) it i = j, then Y;;0 = 0 and Y} g = Yj; . Hence, CSé?i)’(i’l) is a function of y;¢g
and Yj; ¢ only. Similarly Sgo)’(i’k)’(i’k) depends just on the variable Yj; ¢. Then, we obtain

the Igo) (p1, p2; €) operator,

as Se 2\
19 (p1,pase) = [ <M2>

21 SMS \ my;

2
{20% [cg?;u; €) + O (1,1, 15¢) — 26550 M D(1, 15 ¢)

2,qq

+ 4850)’(1’2)(1’2)(1; e)} — QCFCASS))’(LQ)(I; e)} ,

(5.31)
whose e-expansion is
s. 2\’ [ [caC !
IO ey = |25 S (1 AP L oe2) L
2 (p17p276> o Si\/IS m2H 9 + F 64
29CsCp o nfTRCF 1
( o T oCF 3 €3
68 T2 170  8x? 14n¢TRCr ] 1
— — — ) CAC — )R-/ =
+[<9 12> AF+<9 3) ’ 9 ]62 (5.32)
301 3772 (3 6149  47x? 5
* [<_216_ 12 +2> CACF+(216 "~ 18 _70<3> Cr
97  5m? 1
T T; Z
+< 8" >"f RCFL

— 227.559C A Cr — 236.532C2 + 30.9273n;TrCr + O(e)} .

The coefficients of the poles are all given in terms of rational numbers and known tran-
scendental constants.
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Next, we consider the integral of the iterated single unresolved subtraction term,
eq. (5.6), which can be written as,

/2 drihiz — arB & 190 ((p)ce) (5.33)

where the insertion operator in general has the same structure in colour and flavour space
as Iéo) in eq. (5.30),

10({p):0) = [% o (f;)]

m m
0 0
x { > !ng),i(ym; OT? + 3 CO) (i vjq. Yijoi€) T
=1 k=1
Tt

2

T;

T;T,

m m
,(J,l (3,1
+> !Sg) U0 (Vi i 000+ Y S99 (i, Vi, Yo, Yiig: €)T?
=1

+ Z Z S NI (Vi 0. Y00 Ying: Yika Ying: Yirgs ){TiTx, T; TZ}}

(5.34)

The kinematic functions in eq. (5.34) have been defined and computed as expansions in
e in ref. [39]. The discussion below eq. (5.30) applies to eq. (5.34) as well, hence, using
egs. (4.12) and (4.13), we obtain the Igg) (p1, p2; €) operator,

€12
as Se (4
o SMS qu

0 0),(1,2
{201% [052{ (Lre) + 19, (1, 1, 15 6)— 26819 (1, 15 ¢)

I§2)<p17p27 )

+ 450202 (4, e)} —20rCASY (1, e)} ,

(5.35)
whose e-expansion is
2
2 € 2
(0) Oéb SE 1% 4CF CACF 2 2nfTRCF 1
Iy (p1,p2;€) = 2m GV <H> {64+ i +12CF—7 -
155 788 1672\ , 3InfTRCr] 1
(e (35 2]
5911 1011n2 4972
+ [(— Tt +42<3> CaC 556)
116497 29672 9 '
— 104
< oo Tas T <3>C
71 202In2  8x? 1
— — T
+ (36 9 + 9 >nf RCF]

+ 215.508CA Cp — 7T17.881C2 + 22.1494n T Cy + O(e)} .
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As in the case of T 20)7 the coeflicients of the poles are all given in terms of rational numbers
and known transcendental constants.
Turning to the integral of the real-virtual single unresolved subtraction term, eq. (5.20),

we find [35]

/1 ared — ary @ 1 ({phm; €) + dTB @ I ({phnse) , (5.37)

where the insertion operator I go) is given in eq. (4.11), expanded to sufficiently high order
in eq. (4.15) to obtain the first term on the right-hand side in eq. (5.37) to O(e), while the
I gl) operator in general reads

10 ()i 0) = I ()i 0) — 2= 21O (p) i) (5.38)
(1),B

The unrenormalized operator I

ag Se
gl),B({p}m;e) = [27‘_ oS <Q2) ] Z [C(l)B le;e) CA’I’Z2

has the following structure in colour and flavour space,

+ Z Sgl)’(i’k)’ Yir Qs € ) C\T; T},

k=1 (5.39)
k;éi
kD),
+Z Z Sgl § Yir,Q, Yir,@: Yer,q; € ZfabcT TPTY
WZhilGh ;b

The bare kinematic functions in eq. (5.39) have been defined and computed as expan-
sions in e in ref. [35]. Using egs. (4.12) and (4.13), the unrenormalized Igl)’B(pl,pg;e)
operator becomes

2
as Se 2\¢
1P (o1, paie) = ! <M2>

2w SMS myy

{2CACF {053’3(1; e) — s{-2B (g e)] } . (5.40)

The term involving triple colour correlations on the second line of eq. (5.39) does not
contribute, the triple sum over i, k and [ being empty because we cannot form a triplet of

distinct indices. The e-expansion of the bare insertion operator I 51),13
2
{ CaCr 3CACr

o S (2
o SMS m 2¢t 2¢3

83 n? 5 272\ o]1
+[(450+2>0A0F+(_2+3>0F]€2

reads

1B (py pare) =

580571 432 (5.41)
* K 6750 30 )CACF
661 13184In2  7lx? 511
<50 225 | 45 +38C3>CF]6

+292.930C Cr + 134.720C% + 0(6)} .
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Also here we see that the pole coefficients are all given in terms of rational numbers and
known transcendental constants.

Finally the iterated integral of the double real single unresolved subtraction term,
eq. (5.22), can be written as,

/1(/1@5”3?1) =dly @ [ { (P} ),Igo)({p}m;e)}+111 {ptmse)| , (5.42)

where the insertion operator I 50) is given in eq. (4.11), expanded to sufficiently high order
in eq. (4.15) to obtain the first term on the right-hand side of eq. (5.42) to O(e), while

1 g?io) in general reads

as S, € m )
27rSMS< 2)] Z[ i (Wiq; €) CAT;

=1

OO ((phmse) =

-l-ZS Zk) sza )CATTk] (5.43)
k;éz

The kinematic functions in eq. (5.43) have been defined and computed as expansions in €
in ref. [35]. Using egs. (4.12) and (4.13), we obtain

2
S, 2\ ¢
I( )(p17p27 ) as = <>
1,1 o SMS m%{

whose e-expansion is

{zence el s o]

€12
I(Ovo)( L€) = Qg Se ,U«2 _ CaCF n 2niTrCF l
1,1 P11, P2; o S(M—S m%I 3 3 3

2
(T eaci (512 - Bt 1

50 3 9
[ (_ 6§§§§3 n 10191n2 n 504257'('2 n 50<3> CaCr )
2
(31933570907 n 131§;l5ln2 B 27;157r 66 <3> c
n <121750507 _ 20291n2 n 8;r > nfTRCF:| 1

— 15.2343CACr — 318.099C2 + 46.4407nTrCr + O(e)} .

All the pole coefficients are again given in terms of rational numbers and known transcen-
dental constants.

Using egs. (5.28), (5.32), (5.36), (5.41) and (5.45), it is straightforward to check that
the regularized double virtual contribution

Aq
dryNLO = {dr;’V+ /2 [dFRRAZ dFRRA”] /1 [dF3RV’A1+< / dFRRA1> ]}Jg (5.46)
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is free of e-poles. Hence, the regularized double virtual contribution to the decay rate

NNLO NNLO
[y P[] = /2 [dT ™) (5.47)
is finite for any infrared-safe observable and can be computed numerically in four dimen-
sions. For the total cross section (J = 1) at 4 =mpy (L = 0) we find,

o\ 2

YNLO[ ) = 1] = 1O (> 41.25(1). (5.48)

T
We note that the error estimate of the above result comes entirely from the uncertainty
associated with the numerical computation of the finite parts of the insertion operators.
The statistical uncertainty of the Monte Carlo integration over the two-parton phase space
is completely negligible.

Finally, summing eqgs. (5.13), (5.26) and (5.48), we obtain

2
PNNLOT 7 — 1] = DNEO[1] 4 TRNEO[q) 4 PINEO[7] = LO <0‘5> 29.15(2), (5.49)
T
to be compared with the know analytic result
o 2
PNNLO[ 7 = 1) = 2O <> 29.146714 ... . (5.50)
T

6 Inclusive and differential results

In this section, we show that using the fully differential two-, three- and four-parton con-
tributions of egs. (3.1), (4.5), (4.16), (5.11), (5.24) and (5.46), we can make predictions
for any infrared-safe jet cross section with jet functions J, (n = 2, 3 and 4) defined in
d = 4 dimensions.

The inclusive decay rate is obtained by setting J = 1 and is given by the sum of the
leading order width (3.3) and the NLO (4.19) and NNLO (5.49) corrections. At yu = mpy

we obtain

17 2
Tanpo =90 |14 220y <a> 29.15(2)] , (6.1)
T 3 T

in agreement with the known analytic prediction [78-80]. In figure 1, we compute the
inclusive decay rate at u = mg/2 and p = 2mpy and compare it to the known analytic
result for the scale dependence, finding excellent agreement.

To illustrate the impact of NNLO QCD corrections on differential distributions, we
apply the Durham jet algorithm [86] with resolution parameter yc,t = 0.05 to cluster
final state partons and order the resulting jets in energy. In the top panel of figure 2 we
show the energy distribution of the leading jet in the rest frame of the decaying Higgs
boson for two-jet events. In ref. [47] the same distribution was computed for jets clustered
according to the JADE algorithm with y., = 0.1. We have repeated that calculation and
found excellent agreement with the published results. However, for two-parton kinematics
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Figure 1. Scale dependence of the inclusive decay rate at LO, NLO and NNLO accuracy. The
estimated uncertainty on the numerical results is too small to be appreciated.

the energy of the leading jet is just Fnax = mpg/2, so at leading order the leading jet
energy distribution is a delta function. Furthermore, double unresolved subtractions for
four parton matrix elements, as well as single unresolved subtractions for three parton
matrix elements also contribute to this distribution only at Eyax = mpg/2. Then, to
show the subtraction method at work on an observable that has a non-trivial distribution
already at leading order, we consider the absolute value of the pseudorapidity of the leading
jet, |mi|, with respect to an arbitrary axis. The effect of higher order corrections on this
distribution is shown on the bottom panel of figure 2. In this last illustrative example we
note that going from the leading order to NNLO, the uncertainty bands shrink, and that
the NNLO band falls within the NLO band, thereby showing the good convergence of the
perturbative series.

The bands in both distributions in figure 2 correspond to the envelope of varying the
renormalization scale in the range p € [mpg/2,2mpg].

7 Conclusions

In this paper, we have computed the fully differential decay rate of the SM Higgs boson
into b-quarks at NNLO accuracy in ag, by implementing a general subtraction scheme
developed in a series of papers for the computation of QCD jet cross sections at NNLO
accuracy [31-41].

We have shown that our subtractions render both the double real and real-virtual con-
tributions to the NNLO correction integrable in four dimensions. We have also presented
the integrated forms of our subtraction terms with pole coefficients evaluated analytically,
while the finite parts were given numerically. We confirmed that the sum of the double vir-
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Durham clustering at y., = 0.05
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Figure 2. The plots show the normalized distribution of the leading jet energy Fia.x (top) and
the distribution of the absolute value of the pseudorapidity |n;| of the highest energy jet (bottom)
at LO, NLO and NNLO accuracy. The bands show the dependence on the renormalization scale
corresponding to the range u € [mpy/2,2mpg]|. Jets have been clustered using the Durham algorithm,
the resolution parameter for jet clustering was set to yeut = 0.05.

tual contribution and the integrated subtractions is free of infrared singularities as required
by the KLN theorem. We have implemented our computation in a parton level Monte Carlo
program and presented illustrative examples of differential distributions at NNLO.

The successful application of our subtraction scheme reported here opens the way to
the computation of other, more involved processes and is also encouraging to further devel-
opments of the scheme to deal with initial state radiation. These directions of development
are under way and will be the subject of further publications.
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A Matrix elements

We present the matrix elements in the form used in our parton level Monte Carlo program.
In particular, in our scheme we need the the four-parton tree level and the three-parton
one-loop matrix elements only up to finite terms in e. Higher order terms must of course
be included when integrating the matrix elements and subtraction terms separately in d
dimensions. When needed for our cross checks, we take these higher order terms directly
from ref. [47].

A.1 Two partons

For H — bb at tree level we have
\M ’2 = 2ypm3 Ne . (A1)

We computed the one-loop correction and obtained

S SE 2 3
R(MD MYy = ;rsMS( )\M 2Cp {—6—6—2+772+3L

4 i 4o+ 212 (A.2)
—<+4— C3—|—5 )6 .

4
—(8—7r +C3+60—4L—L3>6 + O(e )}

We used the formula at two loops as given in ref. [47]:

Se (12 \]? C2  [11CAC 1
MO |MED) = {a (“2” w{jfjﬁ{u <A F+3c}%—nfTRcF>63
H

2m GMS et 4
8 w2 11
— — — L |CAC
[(9+ 3 ) ACF

17 4 4 1
+ <4 — 2% — 3L> C% — (9 - 3L> nfTRC'F} =

961 13¢s 11 11 ,
R e )
[( 216 2 2 6 )CACF
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53 32 9 3
DA | Y Y r2 2
+<8 106G - SL+ 3L )CF

65 1

+ 2L — 212 Y ngThew | X

+<54 3 )"f RCFL

N 467 | T337%  92¢3  11rt
162 216 9 360

53 5572 11
= L+ —I%— L3
- <12 36 ) 2 18 )CACF
5572 4374 9 5r2 9 1
S VL4212 - 213 ) CE
+< 24 90 <4 4>+2 2>F

2 2
(R (1,
5  2L3

We checked that the poles of this expression satisfy the general formula given in ref. [87],
while the finite part agrees with that in ref. [85]. The square of the one-loop matrix

element is
2
WDy _ [@s Se (1 3 (M g\ L
WRM ML) = [%Sm( H) } M| CF{ +t5+ < T 3L )3
5m? 9 3 1
AL+ L)
(7 g Mgkt > ¢
32 m 5 9 5 1 4
[15+8—5C3_15— (3—4>L+2L —§L :| +O(6)}'
(A.4)
A.2 Three partons
For H — bbg at tree level we have
S 1-— 1 - 2
M2 = s e L [ (i By o]
g SMS m3, Y13 Y23 Y13Y23

At one loop, we use the e-expansion of the formula from ref. [47], which we checked nu-
merically against GOSAM [88, 89,

(0) 1), Qs Se 2\ 9 2CF 4+ Ca 11Cy  2n¢Tw
M) i ) {5 — e+ 5525

1
+ (CA — 2CF) In Y12 — CA(lnylg +1In y23)> ;

1
+ (Ca — 2CF) (R(yu, y13) + R(y12,923) + 3 In y%z)
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1 1 72
—Chx <R(y13; Yo3) + B 1112/%3 + B lny%3> —2Cr + (2CF + CA)?

11Cx 2nfTR>L:|

+<3CF+ 5 3

Qs 2¢) 4 4(0))2 1 < 1 1 ) }
+ 81— MZ(Cy — Cr)Cp—| —+— ] +0 , (A6
71-Sé\/[s'u | bb 7(Ca ) Fm%{ vz | 23 (€) (A.6)

where
2

R(x,y):Lig(l—x)—l—Lig(l—y)—l—ln:nlny—%. (A.7)

A.3 Four partons

In our computation we need the H — four partons squared matrix elements at tree level
in d = 4 dimensions. We checked our formulae, presented below, with GoSAM [88, 89].
For H — bbgqqg we have

2
0 2 _ 2 0p2 1 _
MO 2 (SMSM ) MO nﬁ{[cbbqq@l,pz,pg,m)ﬁcp 10, (A8)
where
Coi (p1,posp p4)—[ 1 1 1 1—|—y13+1+4y13+y34 Y13
q s P25 V3, — - - - -
bbag 234 2y134 2934, Y134y 29134234 Y2a4Y34
1+ 2y13 + 2y35 + 2y13Y23 Yis Y13Y23 A9
+ T2 .2 2 ( ')
29134Y234Y34 Y134Y34  Y134Y234Y34

+(1<—>2)+(3<—>4)+(1<—>2,3<—>4)].
For H — bbbb we find

MO 2 = (8mage®) MO L a5 CaCr + By )2
bbbb! si bb m%{ bbbb p17p27p37p4) AVUF bbbb\P1, P2, P3,P4)L R

+ Cbbbb(plap27p37p4>TRCF] +O(e), (A.10)
where
Appns (p1, P2, p3,p4) =
_| o b 1wty yistyu

212 2y123 29124 Y12Y14 Y1223
_ Ayi3 —3yia Y24 — 3ysa Y13 — 323 + 4yaa — 3y

4y12Y123 4y12Y124
L dy2s — 3y24 — 2ysa  3y13 +4Y14 — Y24 + 2y34

212134 2y12Y234
~ 2y12 — 3y13 — Y14 — Y23 — 3y24 — 8ysa n 3y12 + You

41123Y124 29123Y134
L 32t is Y13(y14 + y2a +ysa)  y2a(y13 + Y23 + y34) n y34(y14 + y23)
2Y124Y234 y12y%23 y12y%24 Y12Y123Y124
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n 2y% — 2y13Y24 — 2013Y34 — 2U35 — Ayo3y2a — 2Y23Ysa + Y34 + 2y2aysa + 23,
4y12Y123Y14
Y2y — dy13y1a — 2y13Y24 + 2013Y34 — 2yT4 — 201434 + 2U34 — 2y24Y34 + 293,
4dy12Y124Y23
i3 T Y13Y3a + Yig + 2y14y24 + 3y14y3a — 2955 + ya4 + 4y2aysa + 43,
491211239134
_ 2u%4 — 2914Y23 + 2y14Y24 + 2Y14Y34 + Y35 + Y34 + 2y24Y34 + 334
4y12Y123Y234
_ Y25 + 2y13Y23 + 2y13Y34 + Y4 — 2y14Y23 + 2y35 + 2y23Y34 + 3y,
4y12Y124Y134
i3+ 2013y23 + 4y13ysa — 2yis + Uds + 3y23y3a + Uiy + Y2ayza + 4u3,
4y12Y124Y234
 2y35 + 2y33y0 + Yasysy  Yisyia + 29137y + 2y
4Y12Y123Y134Y14 dy12Y124Y23Y234

+1e3)+2«4)+(1<3,2<4)], (A.11)

—+

while

Bypus (P15 02, 3, p4) = —2Au55(P1, P2, D3, P4) (A.12)

and finally
Chbbb = [Cbbqq(p1,p2,p3,p4) +(1e3)+2e4)+(1<3,26 4)] : (A.13)
For H — bbgg we obtained:

2
e G R

2 _
bbgg b | m7%1 |:Abbgg(p17p27p37p4)CACF

(A.14)
+ Bbbgg(plap2ap3ap4)0}2“] + O(e),

where

Angg(plap27p37p4) =

|7 5 1 3(1 —y23 —y31)  3(2 — 2y14 — Y34)
“ogs Tagm 22, 2 B 2
Y13 Y134 Y134 Y13Y14 Y13Y23
- 8—10y14 — Tyza  3(2 — 2y14 — Y23 — Y24) L 328 Yt 2y
4y13Y24 4y13Y34 4y13Y134
10 — 4y14 + 3y23 — Y21 + 4y34 . 2413 8+ 8yi3 + Sysa
4y13Y234 Y134Y34 4Y134Y234
LY 4 — 3yas — 6ysa + Y34 + 3y24yz4 + 33,
Yi34134 2y13Y14Y23
n 2 — dy1a + 293y + 2y14y23 N 4 — 3yas + 3ysa + Y3, — Y2434 + Yy
4Y13Y24Y34 2y13Y134Y23
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n 4 — dy14 4 2ya3 — 2yo4 + 2y14 — 2914123 + 2514524 + Y33 + Y3,
4Y13Y234Y34
84 3y23 — 324 + 9y3a + Y33 + 3y23y3a + Y34 — Yoayza + 43,
4y13Y134Y234
2+ y13 + yis + Y3y n Yz 2 —4ysa +3y3 —uh
Y134Y234Y34 YiaaYs 8Y13Y14Y23Y24
yisyes 2+ 4ysa + 3y3s + yi
3/134y234y32,4 4y13Y134Y23Y234

+(1+2)+Bc4)+(1+2,34) (A.15)
and

Bypgg(P1, 02, p3,p1) =
B 211 n 12 + 3(1 — Y23 — y34) n 3(2 — 2y14 — y34)
Y13 2Yiss Y13Y14 Y13Y23
n 7 — 6y14 — Bysa et T b dyuatyas —ypatdyss 1ty
2913Y24 29139134 29139234 Y134Y234
oy —ysa 4= 3yua — 6ysa + yiy + 3yraysa + 3y
2Y13Y334 Y13Y23Y24
4 —3you +3ysa T Y5, — Y2aysa T Y5 4+ Y14 — 2yo3 — ym
Y13Y134Y23 2913Y134Y24
Y34(6 + Y23 — Y24 + 3y34) n 2 — dyss + 3y3, — y3y n 2+ dysq + 3y3, + y3,
2913Y134Y234 4y13Y14Y23Y24 2913Y134Y23Y234

+(1+2)+Be40)+12,304)]. (A.16)

+

Y13Y134Y234Y24

B I§°) insertion operator to O(e)

We present the Igo)({p}m; €) insertion operator in eq. (4.11) to O(e). More precisely, we
give the e-expansion of the kinematic functions Cg?i) (x,€) and Sgo)’(z’k)(Y, €) which appear
in eq. (4.11) up to and including finite terms.

Starting with Cg?i) (x,€), we have

CP) (s €) = [CFlgg (. €) — [C1, SV (e), (B.1)
O, ) = 210Dy, 0) el CP g, 6) — [C SO (B.2)

where

[CES)]qg(%E) = ;2 + (; — 21n(:c)> %

+2(1+(11x)5> L12(1—x)—7;2+21n2(x)

8 3 1 1 3 17
* (3(1—33)5 20—z 3(1—2P 3(1-2)? 2(1-2) _3> In(z)
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2 2 5 ) 89

S0—2)0 30—2p 120 —27 oai—z T2 0 (B3

+

2 1 2 1 5 160
Tsa—ar T3 —er ou—ap o0 2 322

40 20 5 1
Tsa et To-ap oz a2 6w } Ol (B

[C],y (2, €) = 632 + <131 - 4ln(:c)> L (1 + (1_193)5> Liy (1 — 2) + 41n2(z) — 72

€

g <<2—2x>6 - <2—1x>5> . (926)

14 3 2 2 3
+ <3(1 P (-2t 3(1-2P 31-2? 1-z 12) In(z)

L2519 1T
31—xz)* 3(1—-x)3 181—-x)> 4(1-z) 4
L M0 a0 0 5 1 g0
32—x) 32-2)* 92—-x) 92—-2)* 6(2—1x) ’
(B.5)
and 1 11 7., 329
SOy = = 4 == — 24220
Turning to Sgo)’(i’k)(Y, €), we have simply
Sgo) ( )(Y, €) =[SOk (v, ¢), (B.7)
where
[SO)ER (Y, ¢) = — % + (ln(Y) — 131> Lo (1-Y)
‘ 1 6 7, 11 317 (B5)
IR 7o 11 _ ol
2111 Y)+ 5T T3 In(Y) 18 + O(e) .
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