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Abstract

The COMPASS collaboration at CERN has measured diffractive dissociation of 190 GeV/c pions
into the π−π−π+ final state using a stationary hydrogen target. A partial-wave analysis (PWA) was
performed in bins of 3π mass and four-momentum transfer using the isobar model and the so far
largest PWA model consisting of 88 waves. A narrow JPC = 1++ signal is observed in the f0(980)π

channel. We present a resonance-model study of a subset of the spin-density matrix selecting 3π

states with JPC = 2++ and 4++ decaying into ρ(770)π and with JPC = 1++ decaying into f0(980)π .
We identify a new a1 meson with mass (1414+15

−13)MeV/c2 and width (153+8
−23)MeV/c2. Within the

final states investigated in our analysis, we observe the new a1(1420) decaying only into f0(980)π ,
suggesting its exotic nature. To our knowledge, such a state has never been predicted.
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Observation of a new narrow axial-vector meson a1(1420) 1

The known light-meson spectrum is presently interpreted in terms of qq quark-model states that are
associated with flavor SU(3) multiplets according to their mass and JPC quantum numbers. For some JPC

combinations, more states were reported than can be accommodated by SU(3) symmetry. Depending on
their coupling to specific production mechanisms and their decay pattern, these states are interpreted as
either carrying a strong glueball component, e.g. f0(1500), as molecular-type excitations, e.g. f1(1420),
or as tetra-quark states. For a detailed review see Ref. [1]. However, their exotic structure is under debate,
unlike for states that carry spin-exotic quantum numbers, e.g. JPC = 1−+, and hence cannot be qq states.
This is in contrast to the sector of heavy mesons containing c or b quarks, where exotic mesons have
clearly been identified, e.g. X , Y , and Z states. In particular, the recent observation of charged Z-states,
such as Zc(3900)± and Zb(10610)±, has proven the existence of mesons with exotic structure [2, 3, 4].

In the sector of light mesons, the situation remains unresolved. The lowest-mass state discussed in this
context is the f0(980), which contains nn (n = {u,d}) and a dominant ss component. It has also been
interpreted as a KK molecule [5, 6, 7]. The f1(1420) with a width of only 55 MeV/c2 couples strongly
to KK∗ and was also suggested as molecular-type structure [8]. In Ref. [9], the Particle Data Group
has tentatively adopted the scenario of f1(1420) being the SU(3) partner of f1(1285). In the class of
spin-exotic mesons, the π1(1600) is the only meson observed by several experiments in different decay
modes. However, the masses quoted and in particular the widths vary considerably between different
experiments, and values for the width often exceed 400 MeV/c2. This suggests dynamical effects to
be at work, similar to the case of a1(1260). The situation is characterized by individual states without
recognizable pattern and, except for a0(980) and f0(980), the absence of any observed isospin partners.

In order to search for new exotic mesons, we have studied the diffractive reaction π−+ p→ π−π−π++
precoil with focus on waves with quark-model JPC combinations 1. We have studied the JPC = 1++ states in
order to search for a possible partner of the isosinglet f1(1420). Our analysis aims at the charged isospin
I = 1 analogue decaying into π−π−π+. Although this final state and the mass range of 1 to 2 GeV/c2

have already been studied by many experiments, improvement by almost two orders of magnitude in
sample size has opened a new avenue for analysis.

The COMPASS experiment [10, 11] is located at the M2 beam line of the CERN Super Proton Synchrotron.
For this measurement, negative hadrons of 190 GeV/c were used impinging on a 40 cm long liquid-
hydrogen target that was surrounded by a recoil-proton detector (RPD). The hadronic components of
the secondary hadron beam at the target position are 96.8 % π−, 2.4 % K−, and 0.8 % p. Pions are
identified with a Cherenkov counter placed in the beam line at the entrance to the experimental area. The
large-acceptance high-precision spectrometer is well suited for investigating high-energy reactions at
low to intermediate values of the reduced squared four-momentum transfer t ′ to the target proton, where
t ′ ≡ |t|− |t|min. For this measurement t ′ is chosen to be in the range of 0.1 to 1.0 (GeV/c)2. Outgoing
charged particles are detected by the tracking system and their momenta are determined using two
large-aperture magnets.

The data presented in this Letter were recorded in the year 2008. A detailed description of setup, data
selection, and analysis scheme can be found in Refs. [12, 13]. The trigger is based on a recoil-proton
signal in the RPD in coincidence with an incoming beam particle and no signal in the beam-veto counters.
We require a production vertex located within the target volume, with one incoming beam-pion track
and three outgoing charged particles, compatible with the pion hypothesis based on information from the
RICH counter. The momentum sum of the outgoing particles is required to be equal to the average beam
momentum within ±3.78GeV/c. We require Feynman-x of the fastest final-state pion to be below 0.9 for
rapidity differences between the fast π− and the slower π−π+ pair in the range 2.7 to 4.5. This suppresses
the small contamination of centrally produced final states, which contribute mainly at higher 3π masses.
A total of 46×106 events was selected in the mass range between 0.5 to 2.5 GeV/c2.

1The C-parity refers to the neutral state of the isospin multiplet.
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In order to extract the spectrum of resonances produced in the reaction, we have performed a partial-wave
analysis (PWA) that is pursued in two steps. First, we fit the intensity distributions in the 5-dimensional
phase space independently in one hundred 20 MeV/c2 wide bins of 3π mass m3π , each divided into
11 bins of t ′. We adopt the notation JPC Mε [isobar]π L to define partial waves. Here, ε denotes the
reflectivity and M ≥ 0 the magnitude of the spin projection along the beam axis (see Ref. [14]). L is the
orbital angular momentum between the isobar and the bachelor pion in the decay of the 3π state. We
use the isobar model, which for our fits contains 88 waves, namely 80 waves with positive reflectivity,
7 with negative and one non-interfering wave representing uncorrelated three pions. This set contains all
significant isobars that decay into π−π+ and has been derived from a much larger set with 128 waves
by requiring a minimum relative intensity of about 10−4. The likelihood fit function is built from two
incoherently added terms that correspond to the two values of reflectivity ε =±1. Each term coherently
sums over all partial-wave amplitudes that belong to the respective value of ε . Details on the fit model, the
fitting procedure, and the results are described in Refs. [12, 13]. The division of our data set into 11 bins
of t ′ is motivated by the very different t ′-dependences of resonant and non-resonant components [15, 12].
In all partial waves studied, the intensity of non-resonant, i.e. Deck-like components [16], drops off much
faster with increasing t ′ than that of resonances.

The result of this first PWA step reveals a number of well-known resonances with JPC = 0−+, 2−+, 1++,
2++, and 4++. They are identified by structures in the mass spectra and a mass-dependent phase that
is measured against the reference wave 1++ 0+ ρ(770)π S. The 1++ 0+ f0(980)π P intensity shows a
clear signal slightly above 1.4 GeV/c2 that cannot be associated with a known 1++ state [see points in
Fig. 1(a)]. Rapid phase rotations with respect to known resonances are observed in the signal region,
independent of t ′ [see points in Figs. 1(d) and 1(e)]. The same feature is observed in the π−π0π0 final
state [17].

In the second analysis step, we use a resonance model to fit the resulting spin-density matrices simultane-
ously in all bins of t ′ and in wave-specific ranges in m3π . Typically, only subsets of these spin-density
matrices are fit simultaneously. In this Letter, we present such a fit using a minimal set of 3 waves, namely
2++ 1+ ρ(770)π D, 4++ 1+ ρ(770)π G, and 1++ 0+ f0(980)π P. The first two waves contain the known
a2(1320) and a4(2040). These two waves act as interferometers in order to search for structures in 1++

0+ f0(980)π P, where no resonances have yet been reported. For this fit, we model the amplitudes by
coherent superpositions of resonant contributions that are described by relativistic Breit-Wigner (BW)
amplitudes and non-resonant contributions. In the 4++ and 1++ waves, the latter are described by terms
of the form F (m3π) = e−c1 q2(m3π ), where c1 is a fit parameter and q is the two-body break-up momentum
for a particular isobar at the mass m3π . For the non-resonant term in the 2++ wave, this parametrization is
extended to include an explicit t ′-dependence. The a4(2040) and the JPC = 1++ state are described by
simple BW amplitudes, the a2(1320) by a BW with mass-dependent width, whereby the decay phase
space is approximated assuming quasi-two-body decays into 80 % ρ(770)π and 20 % η π .

The result of this fit is shown as curves in Fig. 1 and reveals the existence of a new axial-vector state in the
1++ 0+ f0(980)π P wave, which we introduce as a1(1420). This wave collects only 0.25 % of the total
observed intensity. Its resonance interpretation is supported by the observation of a rapid phase variation
by about 180° across the peak region with respect to the 4++ [see Fig. 1(d)] and 2++ reference waves.
As illustrated in Fig. 1(e), the 1++ 0+ f0(980)π P wave shows similarly rapid phase motion also relative
to the 1++ 0+ ρ(770)π S wave. This indicates that the observed structure in the f0(980)π decay mode is
not caused by the high-mass tails of the a1(1260), which dominates the ρ(770)π wave. Our fit reveals a
BW mass for the a1(1420) of 1414 MeV/c2 and a width of 153 MeV/c2.

The resonance-model fit is performed simultaneously in all 11 bins of t ′. We allow production strengths and
phases of resonances and non-resonant contributions to vary with t ′. Spectral shapes and BW parameters
are assumed to be independent of t ′. The resulting t ′-spectrum of the production intensity of the BW
representing the a1(1420) is shown in Fig. 1(f). The BW intensity and that of the non-resonant contribution
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Figure 1: (Color online) Results of the PWA in 3π mass bins of 20 MeV/c2 width (data points with statistical
errors only) showing the intensity of the three waves 1++ 0+ f0(980)π P (a), 2++ 1+ ρ(770)π D (b), and 4++ 1+

ρ(770)π G (c), summed over t ′ in the region 0.1 to 1.0 (GeV/c)2. The curves depict the result of the resonance-
model fit (red) and the individual components (blue: resonances, green: non-resonant contributions). As an example,
(d) shows the relative phase between 1++ and 4++ together with the model curves and (e) the phase between two
1++ decay modes, in both cases for 3 t ′ bins. Data points not used in the resonance-model fit are indicated in gray
or light colors, the extrapolated fit model by dashed curves. The t ′-dependence of the a1(1420) intensity in the
1++ 0+ f0(980)π P wave, integrated over the 3π mass range from 1.3 to 1.6 GeV/c2, is shown in (f). The red lines
represent a single-exponential fit to the data in the range 0.100 < t ′ < 0.724(GeV/c)2.

show a steep, approximately exponential t ′-dependence. Fits with a single exponential yield the slope
parameters. Resonances are typically described by slope parameters b ≈ 8 to 10(GeV/c)−2 that are
smaller than those of the non-resonant contributions with b≈ 12 to 15(GeV/c)−2 [12]. The new a1(1420)
has a slope parameter of b ≈ 10(GeV/c)−2 that is similar to those of a2(1320) and a4(2040), which
supports its resonance interpretation. The fact that the a1(1420) is produced with nearly constant phase
offset relative to the a2(1320), independent of t ′, provides further support for this interpretation. As
expected, the slope of the non-resonant contribution in the 1++ wave is steeper with b≈ 13(GeV/c)−2.

The 88 partial-wave set contains three independent contributions for the ππ S-wave isobars, namely the
f0(980) with parameters taken from Ref. [18], a broad component denoted [ππ]S taken from elastic ππ

S-wave scattering [19], and the f0(1500) described by a simple BW. The a1(1420) is observed only in
1++ 0+ f0(980)π P, while no signal with corresponding phase motion is seen in 1++ 0+ [ππ]S π P or any
other 1++ wave. In order to confirm the unique coupling of a1(1420) to f0(980)π , we have investigated
in a separate study [12, 20] the structure of the π−π+ subsystem forming 0++ isobars using a novel fit
procedure for the partial-wave decomposition in bins of m3π and t ′. Instead of describing the 0++ isobars
by several amplitudes with fixed shape, their mass dependence is replaced by a piecewise constant function
across m2π , which is determined from data. We thus remove possible bias originating from the isobar
model for 0++. For m3π around the new resonance, a clear intensity correlation of the new a1(1420) with
the f0(980) is observed within the extracted 0++ isobar amplitude [12].
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Due to the large data set, statistical uncertainties are negligible compared to systematic effects. Therefore,
we performed extensive systematic studies concerning event-selection cuts, the model used in the first step
of the PWA fit, as well as wave set and parametrizations employed in the resonance-model fit. The result
is stable under all these studies. The main systematic uncertainties arise from the resonance-model fit.
The estimated total systematic uncertainty is +15

−13 MeV/c2 for the a1(1420) mass and +8
−23 MeV/c2 for the

width. Instead of a simple BW, a mass-dependent-width BW amplitude with f0(980)π as the only decay
channel yields central values for mass and width of 1433 MeV/c2 and 146 MeV/c2, respectively. Detailed
simulations have shown no indication for model leakage artificially populating the 1++ 0+ f0(980)π P
wave. This is supported by the absence of any other known isovector state at this mass.

In summary, we have performed a resonance-model fit based on a spin-density submatrix that was obtained
by the so far most extensive 88-wave 3π PWA using the large COMPASS data set. Restricting this
resonance-model fit to the three waves 2++ 1+ ρ(770)π D, 4++ 1+ ρ(770)π G, and 1++ 0+ f0(980)π P,
we have observed a new a1 meson at m = (1414+15

−13)MeV/c2 and with a width of Γ = (153+8
−23)MeV/c2.

This finding in a mass region studied by many previous experiments was made possible by the large event
sample and the apparatus acceptance being essentially flat [12, 11].

The interpretation of this new state is yet unclear and, to our knowledge, it has never been predicted.
Reference [21] discusses the a1(1420) as a possible two-quark-tetraquark mixed state. Scenarios were
presented that allow for dynamic generation of resonances by a strong coupling of ρ π and KK∗ to
a1(1260) [22]. On the other hand, the narrow width of only 153 MeV/c2, its mass value of 1414 MeV/c2,
and its strong coupling to f0(980) that is interpretable as a KK molecule, suggest this new state to be
the isospin partner of the f1(1420). The latter has a much smaller width of only (54.9±2.6)MeV/c2,
which can be explained by its strong coupling to KK∗ with the corresponding phase space being much
smaller than that for a1(1420) decaying into f0(980)π . The a1(1420) and the f1(1420) are likely to be
the first observed isospin partners for a πKK molecular-type excitation that obey isospin symmetry. This
interpretation suggests further experimental and theoretical studies of the πKK final state.

We gratefully acknowledge the support of the CERN management and staff as well as the skills and efforts
of the technicians of the collaborating institutions.
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