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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] has opened

a new era in particle physics in which we have, for the first time, direct access to the

electroweak symmetry breaking sector. The naturalness problem associated to this scalar

sector is still one of the main reasons to expect new physics beyond the Standard Model

(SM) at the TeV scale, and thus accessible to the LHC. However, the lack of significant

deviations from the SM predictions after Run 1 suggests that, even if really present, the

new particles may be too heavy to be produced on-shell, so that only their indirect effects

can be observed at the LHC —although it is certainly possible that they are just above the

current reach and can still be directly produced at the higher energies of Run 2. In such

a case, the natural language to parameterize the expected effects of new physics is that of

effective theories.

Effective Lagrangians provide a model-independent description of the effects of new

particles at energies much smaller than their masses. Hence, they are the perfect tool to

study any new physics that lies beyond the reach of our current experiments. A single

higher-dimensional gauge-invariant operator contributes in general to several different cou-

plings between SM particles after electroweak symmetry breaking, leading to non-trivial

correlations between different observables [3]. These correlations can be tested experimen-

tally or, alternatively, be used to predict the size of the expected deviations with respect

to the SM predictions [4]. In addition, higher-dimensional operators are often generated
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by a smaller number of couplings in specific ultraviolet completions and therefore the co-

efficients of different operators are correlated as well. It could be argued that these latter

correlations are model-dependent, defeating the very purpose of the effective Lagrangian.

However, model independence can be recovered if a complete dictionary between ultra-

violet completions and effective operators is built. Such a dictionary would provide a

comprehensive classification of new physics with potentially observable effects at the LHC.

This classification can hence guide experimental searches to ensure that no viable option

is missed at the LHC, and help to identify the origin of possible deviations from the SM

predictions.

Encouraged by the recent experimental observation of a Higgs sector, in this article we

focus on new scalar particles. We first classify all the possible new scalars that can cou-

ple linearly, with renormalizable interactions, to SM fields, and write their most general

phenomenologically-relevant interactions. These particles can be singly produced at col-

liders with sizable couplings and have therefore the most promising discovery potential at

the LHC. The corresponding general interactions of new quarks, leptons and vector bosons

have already been given in refs. [5, 6] and [7], respectively. Our results here thus complete

the description of arbitrary new particles with linear gauge-invariant renormalizable cou-

plings to the SM fields. This provides an extremely useful scheme for a model-independent

interpretation of LHC searches. Particular models correspond to specific choices of the

general couplings and masses in this set-up. Therefore, once the experimental results are

written in terms of the general parameters it is straightforward to derive consequences for

any model of choice.

It turns out that the same classification also covers all possible new scalar particles

that contribute, once integrated out at the tree level, to the SM effective Lagrangian of

dimension five and six. We perform this integration explicitly. In predictive models loop

contributions are suppressed, so it is expected that the leading observable consequences of

new heavy scalars are those generated at tree level. Except for this assumption, our results

are completely general and can be used for an arbitrary extension of the SM with heavy

scalars, independently of their amount and quantum numbers. Furthermore, extra heavy

particles with different spins do not mix with the heavy scalars in their contribution to

the dimension-six effective Lagrangian at tree level. Therefore, together with the effective

Lagrangians generated by the most general extension of the SM with new quarks [5],

leptons [6] and vector bosons [7], our results complete the tree-level dictionary between

any model of new physics and the dimension-six SM effective Lagrangian. This dictionary

can be used to trivially obtain the observable implications of an arbitrary model of new

physics at energies much smaller than the masses of the new particles involved. It is also

a powerful tool to investigate correlations or cancellations predicted among observables

in specific extensions of the SM. Finally, it provides a rationale for the calculation of the

constraints on the coefficients of the SM effective Lagrangian, as one can put constraints

on the sources of the effective operators in a correlated way rather than on arbitrary

combinations of them.

The article is organized as follows. We classify in section 2 all possible new scalars

that can have linear interactions with SM fields. We describe in section 3 how to compute
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the effective Lagrangian that results from the tree-level integration of an arbitrary number

and type of new heavy scalars, and show that the previous classification exhausts the list

of new spin-0 particles that can contribute to the dimension-six effective Lagrangian at

tree level. In section 4 we discuss what effects induced by the heavy scalars are observable

at this order. Some applications of the effective Lagrangian are presented in section 5.

Finally, we comment on the interplay between new scalars and particles with different

spin in section 6, and conclude in section 7. The basis of dimension-six operators and

all the relevant scalar interactions with the resulting effective Lagrangians, are given in

appendix A and B, respectively.

2 Standard model extensions with extra scalar fields

We consider a general renormalizable theory for extra scalars and SM fields, invariant under

Lorentz transformations and under the complete SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge group.

The new scalar fields will come in complete representations of this group, which can be

decomposed into their irreducible components σ. Non-renormalizable interactions are also

possible in principle, but in a predictive theory they will be suppressed by a scale larger

than the mass of the extra scalars. Here we concentrate on the leading effects, which are

generically described by operators of dimension four at most.

The most general Lagrangian for such an extension of the SM can be written as

L = LSM + Lσ + Lint, (2.1)

where LSM is the SM Lagrangian, Lσ contains the kinetic (with covariant derivatives) and

mass terms for the new scalars and Lint describes the non-gauge interactions of the extra

scalars.

The SM Lagrangian reads, in standard notation1

LSM = −1

4
GAµνG

A µν − 1

4
W a
µνW

a µν − 1

4
BµνB

µν

+ liL i��D liL + qiL i��D qiL + eiR i��D eiR + uiR i��DuiR + diR i��DdiR

+ (Dµφ)†Dµφ− U (φ)−
(
yeii l

i
Lφe

i
R + ydii q

i
Lφd

i
R + V †ijy

u
jj q

i
Lφ̃u

j
R + h.c.

)
.

(2.2)

In order to fix the meaning of flavor indices, we have chosen a basis in which the Yukawa

interactions for the charged-leptons and down-type quarks are diagonal. As usual, φ̃ =

iσ2φ
∗ denotes the iso-doublet of hypercharge −1/2, constructed with the Higgs doublet φ.

The Higgs scalar potential is

U (φ) = −µ2
φ |φ|

2 + λφ |φ|4 . (2.3)

The Lagrangian Lσ contains the gauge-invariant kinetic and mass terms for the new scalars:

Lσ =
∑
σ

ησ

[
(Dµσ)†Dµσ −M2

σσ
†σ
]
, (2.4)

1We use capital indices A,B,C as color indices, whereas lower case indices a, b = 1, 2, 3 tag fields in the

adjoint of SU(2)L. Latin indices i, j, k are used to label different generations.
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where ησ = 1, 1
2 , for complex and real scalars, respectively. Note that we are working in a

basis with canonical kinetic terms and diagonal mass matrices for all scalar fields, including

the Higgs doublet. To match models written in a different basis, the diagonalization must

be performed prior to using our formulas.2

Finally, Lint contains the renormalizable interactions of the extra scalars (among them-

selves and with the SM fields), except for the gauge interactions, which are already included

in Lσ. We can distinguish between interactions with fermions and purely scalar interac-

tions:

Lint = −V ({σ}, φ)−
∑
σ

ησ

(
σ†Jσ + h.c.

)
. (2.5)

The chirality-flipping fermionic currents Jσ ∼ ψL⊗ξR or Jσ ∼ ξR⊗ψL couple to one scalar

field with a dimensionless coupling. The potential V contains scalar interactions between

the new particles and, possibly, the SM Higgs fields. Together with the mass terms and U ,

it forms the total scalar potential. As explained above, V does not include mass mixing

terms, since we work in a basis with diagonal quadratic terms. Thus, each term in V

contains either three or four scalars, with couplings of dimension one or zero, respectively.

Furthermore, all the terms in V have at least one σ field.

The new scalars with linear interactions in Lint can be singly produced at tree level

in colliders.3 By “linear interactions” we mean that Lint contains some non-vanishing

term that is the product of SM fields and a single power of the given extra scalar field,

with no other extra scalars. Gauge invariance and the particle content of the SM strongly

constraints the quantum numbers of new scalars that can have such linear interactions.

As we show in the next section, only the scalars in representations that allow for these

linear couplings can contribute at tree level, to order 1/M2
σ in the heavy mass limit, to

observable processes with SM particles in the initial and final states. We list in table 1 all

the irreducible representations of scalars with linear interactions of this kind. The scalar

representations S, Ξ0, Θ1 and Θ3 do not couple to the SM fermions. In appendix B we

write the interactions in Lint explicitly, including only those that have an impact in the SM

effective Lagrangian at dimension six. These include the mentioned linear interactions of

the scalar fields in the irreducible representations of table 1, as well as terms involving two

or three scalar fields in the same set of representations. Note that, in particular, new scalars

can always couple with the SM through a Higgs-portal type of coupling
(
σ†σ

) (
φ†φ

)
[8].

However, only the ones in our list with the right quantum numbers to allow for linear

couplings to the SM will induce dimension-six operators when integrated at tree level.

Moreover, as we explain in the next section, interactions involving two or more new scalars

are relevant for the calculation of the effective Lagrangian to dimension six only in those

2Furthermore, we assume that there are no tadpole operators in the electroweak symmetric phase. This

entails no loss of generality since these tadpoles, which are only possible for new singlet scalars, can always

be eliminated by a shift of the singlet field(s). The only effect of this shift is a redefinition of the parameters

that we write explicitly.
3Other scalar fields can also be singly produced if they mix with these after electroweak symmetry

breaking, but if they are heavy the production rate will be suppressed by the square of small mixings.
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Colorless S S1 S2 ϕ Ξ0 Ξ1 Θ1 Θ3

Scalars

Irrep (1, 1)0 (1, 1)1 (1, 1)2 (1, 2) 1
2

(1, 3)0 (1, 3)1 (1, 4) 1
2

(1, 4) 3
2

Colored ω1 ω2 ω4 Π1 Π7 ζ

Scalars

Irrep (3, 1)− 1
3

(3, 1) 2
3

(3, 1)− 4
3

(3, 2) 1
6

(3, 2) 7
6

(3, 3)− 1
3

Colored Ω1 Ω2 Ω4 Υ Φ

Scalars

Irrep (6, 1) 1
3

(6, 1)− 2
3

(6, 1) 4
3

(6, 3) 1
3

(8, 2) 1
2

Table 1. Scalar bosons with linear renormalizable interactions with the SM fields. The quantum

numbers (Rc, RL)Y denote the irreducible representation (Irrep) Rc under SU(3)c, RL under SU(2)L
and the hypercharge Y , respectively. The hypercharge is normalized such that the electric charge

is Q = Y + T3. Looking only at the quantum numbers, some readers might miss in this list a

scalar particle transforming as a (1, 2) 3
2

and coupling linearly to three Higgs doublets. However,

the corresponding operator actually vanishes, since it involves an antisymmetric combination of the

Higgs fields.

cases where the scalar potential contains trilinear couplings of new scalars to two Higgs

fields (see tables 9, 13, 14 and 28 in appendix B).

Extensions of the SM with new scalar fields have been extensively considered in the

past and partial classifications have been presented, with special emphasis on their effect

on baryon and lepton number violation [9–11], collider physics [12, 13], top physics [14] or

flavor physics [15]. However the complete classification of the scalar fields that can couple

linearly to the SM and the calculation of the tree-level dimension-six effective Lagrangian

for the most general extension of the SM with an arbitrary number of new scalar fields has,

to the best of our knowledge, never been presented before.

3 The effective Lagrangian for heavy new scalar particles

In this paper we are mainly interested in the effects of heavy new scalars, with masses

Mσ that are large in comparison to the Higgs vacuum expectation value (vev) and to the

energies probed by the available experimental data. An efficient way to describe these

effects at leading order is to integrate the heavy scalars out and expand in 1/Mσ to obtain

an effective Lagrangian with gauge-invariant local operators of dimension up to six. This

allows for a direct comparison with model-independent analyses and also for a simple

combination with other extensions of the SM. In our theory with general extra scalars, the

coefficients of these operators will be simple functions of the couplings and masses of the

heavy scalars. Once again, we work at the tree level for simplicity and to avoid further

suppressions (see [13, 16–18] for examples of one-loop integration of scalar multiplets).

In this section we describe the integration of the heavy scalar fields. In particular,

we show that among the infinite scalar representations that can appear in Lint, only the
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ones in table 1 contribute to the effective Lagrangian to dimension six. For clarity, our

discussion will be slightly schematic. The complete explicit results, i.e. the dimension-six

operators and the values of their coefficients, are collected in the appendices.

In the following we assume that, before electroweak symmetry breaking, the scalar mass

matrix has only one negative eigenvalue, −µ2
φ. The eigenvector is a (1, 2)1/2 scalar field φ,

which we identify with the SM scalar doublet. The other eigenvalues, M2
σ , are assumed

to be large in comparison with the Higgs vev and with the relevant energies. Finally, we

assume that the dimensionful couplings κσ that multiply the dimension-three operators in

V are at most of the size of the smaller heavy-scalar mass, |κσ| .M , with M = Min {|Mσ|}.
These assumptions are well motivated by the agreement, within the available precision, of

experimental results and SM predictions for Higgs observables. They lead to a decoupling

scenario and allow us to perform the integration in the electroweak symmetric phase, which

is extremely convenient. The occurrence of electroweak symmetry breakdown and all its

effects are captured to order 1/M2 by the effective Lagrangian. This includes the case in

which the extra scalars acquire (suppressed) vevs in the Higgs phase [16, 17].

The integration at the tree level can be performed solving the classical equations of

motion for the heavy fields and inserting the solutions into the original Lagrangian. This

procedure manifestly preserves the gauge invariance of the original theory. Let σi be each

of the scalar fields. Different values of the index i label different scalars, in the same or

in different representations. We will use upper and lower indices for the fields and their

complex conjugates, respectively. The covariant propagator is

∆i = −
(
D2
i +M2

i

)−1
= − 1

M2
i

(
1− D2

i

M2
i

)
+O(1/M6), (3.1)

with Di the covariant derivative acting on σi. The part of the Lagrangian that contains

the extra scalars reads

η(i)σ
†
i∆
−1
(i)σ

i + Lint. (3.2)

We are using the convention of repeated indices, contracting upper and lower indices. A

parenthesis indicates an index that can run but does not count as repeated to induce

the running (indices in parenthesis actually refer to the diagonal elements of a diagonal

matrix, the propagator). The interaction Lagrangian is a polynomial in σ of degree 4 with

no constant term. Hence, it will be of the form

Lint = −
4∑

m+n=1

σ†j1 · · ·σ
†
jn
W j1...jn
i1...im

σi1 · · ·σim , (3.3)

where m and n vary independently subject to the indicated constraint. The operators

W j1...jn
i1...im

are formed with SM fields only and obey the obvious hermiticity conditions inher-

ited from Lint. In general, they carry reducible representations of the gauge group, but the

operators with one index i belong to the irreducible representation of the associated σi or

σ†i . The equations of motion for the new scalars read

σi = −∆(i)
∂Lint

∂σ†i
. (3.4)
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W i
∆(i)

Wi W j

∆(i) ∆(j)

Wi

Wi W ijk

Wj

Wk

∆(i) ∆(j)

∆(k)

W i
k Wi

W jW k
j

∆(j)

∆(i)

∆(k)

W i
j

Figure 1. Feynman diagrams contributing to the effective Lagrangian to order 1/M2. Non-

equivalent permutations of the arrow directions shown here should be considered as well.

Note that the right-hand sides depend on the fields σ, so these are not explicit solutions.

But the equations can be solved iteratively. The crucial point is that ∆i is O(1/M2),

whereas the couplings in Lint are either dimensionless or O(M), at most. Therefore, the

iterative solution of (3.4) starts at O(1/M), and each correction (step of the iteration) is

suppressed by at least another 1/M factor. Using (3.3) in the right-hand side of (3.4), we

can perform the iteration explicitly. Then we plug the iterative solution in (3.2) and (3.3),

neglecting O(1/M3) terms, to obtain

Leff = LSM −∆(i)WiW
i −∆(i)∆(j)

(
WijW

iW j +W ijWiWj +W i
jWiW

j
)

−∆(i)∆(j)∆(k)

(
W ijkWiWjWk +WijkW

iW jW k +W ij
k WiWjW

k +W i
jkWiW

jW k

+2W ikW j
kWiWj + 2WikW

k
j W

iW j + 4W ikWkjWiW
j +W i

kW
k
j WiW

j
)

+O(1/M3). (3.5)

In each term, ∆(i) acts on the operator with an upper index i. The covariant propagators

∆i are to be expanded in 1/M2
i , as in (3.1). This result matches precisely the one obtained

from the possible Feynman diagrams with heavy-scalar propagators that contribute to or-

der 1/M2, shown in figure 1. The blobs in this figure represent the SM operators W i1...im
j1...jn

with m incoming and n outgoing lines, and the arrowed lines represent the covariant prop-

agators ∆i.

Observe that in all the terms in (3.5) except the ones in the last line, there is one

Wi or W i operator for each propagator index i. Wi and W i arise from terms in Lint with

only one heavy scalar (σi or σ†i ), which are what we have called linear interactions. In the
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last line (corresponding to the last Feynman diagram), on the other hand, all terms have

a propagator with index k that is not attached to any Wk or W k, but only to operators

with two indices. However, these terms are actually the contraction of the two one-index

operators W̃k = [Wkj ∆(j)W
j ] and W̃ k = [W kj ∆(j)W

j ] (or variations in the position of

the indices). The operators W̃k and W̃ k are in the same gauge representation as Wk and

W k, respectively. Moreover, to allow for an O(1/M2) contribution, the operators W̃k and

W̃ k must have a dimensionless coefficient and, hence, scaling dimension four. Therefore,

the scalars σk (σ†k) associated to W̃k (W̃ k) must also belong to a representation that

allows for renormalizable linear interactions. We conclude that only the scalar fields in the

irreducible representations of table 1 contribute at the tree level to the effective Lagrangian

to dimension six.

Note also that the last two topologies in figure 1 only contribute to this order when the

four blobs contain O(M) dimensionful couplings, which requires that all of them arise from

trilinear terms in the scalar potential. In particular, the SM fermions only appear through

the diagrams with the first and second topologies. Gauge bosons only arise at dimension

six from the covariant propagator of the first topology, when both blobs represent trilinear

interactions in the potential.

A complete basis of gauge-invariant operators to dimension six, including the ones

generated by heavy scalars, is given in appendix A. The relevant interactions of arbitrary

scalars and the detailed results of the integration are collected in appendix B.4

4 Observable effects of new scalars

The leading indirect effects of new heavy scalar particles on physical observables are de-

scribed by the dimension five and six effective operators, with coefficients given in tables 9–

28 in appendix B. In this section we give an overview of these effects. We discuss colored

and colorless scalars in turn.

The scalar fields with SU(3)c quantum numbers manifest themselves, at dimension six,

only through four-fermion interactions. Therefore they can be tested in two-to-two fermion

processes or in particle decays. The flavor structure of the scalar interactions makes them

particularly sensitive to constraints from flavor-violating processes, although it is always

possible to go into an alignment limit in which each new scalar couples exclusively to certain

fermion generations, up to factors of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In

such a case, the bounds from flavor-preserving processes can become dominant. We will

only consider this scenario in the following.

The scalar fields ω1, ω4, Π1, Π7 and ζ carry quantum numbers that allow for lepton-

quark Yukawa interactions. These scalar leptoquarks can be tested in the dilepton processes

e+e− → had at LEP2 and pp→ `+`− at the LHC, where the new particles are exchanged

in the t channel, and also in low-energy experiments (e.g. parity violation in atoms). The

multiplets ω1, ω4 and ζ admit purely hadronic interactions too. The simultaneous presence

of all these interactions introduces a violation of lepton (L) and baryon (B) number, as is

4In some cases, we employ algebraic identities and/or field redefinitions to transform the induced oper-

ators into the ones in our basis.
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manifest by the generation of the operators labeled as “�B & �L” in tables 19, 17, and 22.

These contributions are proportional to the product of one lepton-quark and one quark-

quark Yukawa coupling, so the strong constraints set by the non-observation of proton

decay forces one of these two couplings to be very small (see for instance [19]).

The remaining colored representations, ω2, Ω1, Ω2, Ω4, Υ and Φ, only admit quark

Yukawa interactions and therefore generate only four-quark contact interactions. Aside

from flavor observables, these can be tested in dijet production at hadron colliders. If

coupled to the first and third family, top pair production (with opposite or same sign) is

also possible.

The phenomenology of colorless scalars is significantly richer. Again, the exchange of

some colorless heavy scalars generates four-fermion operators, which in this case include

operators with four leptons. In particular, all the four-fermion interactions induced by the

multiplets S1,2 and Ξ1 are purely leptonic. The effects of these operators could show up in

the e+e− → `+`− data taken at LEP2 or in low-energy experiments such as measurements

of parity violation in Møller scattering.5 In general, these four-lepton operators also con-

tribute to very sensitive lepton flavor violating processes, such as µ− → e+e−e− (note that

this cannot be mediated by S1) or τ− → µ−e+e−. But similarly to the quark case, these

dangerous effects are absent when the scalar couplings are properly aligned with the SM

lepton flavors.

Colorless scalars can also have visible effects in other types of observables. To start

with, the hypercharge-one iso-triplet Ξ1 is the only scalar multiplet that can produce lepton-

number violation. Indeed, it contributes to the dimension five Weinberg operator [21]

O5 = lcLφ̃
∗φ̃†lL, which generates Majorana masses for the SM neutrinos. This is nothing

but the well-known seesaw mechanism of type II. Unless the scalar iso-triplet is very heavy

(and thus does not contribute to other observables), the smallness of neutrino masses

requires that either the lepton Yukawa couplings of the scalar or its linear interactions

with the Higgs be tiny [22–24].

Colorless scalars contribute to the following three purely bosonic dimension-six opera-

tors: Oφ� =
(
φ†φ

)
�
(
φ†φ

)
, OφD =

(
φ†Dµφ

) (
Dµφ†φ

)
and Oφ =

(
φ†φ

)3
/3. The first one,

OφD, is in one to one correspondence with the Peskin-Takeuchi oblique T parameter [25],

T = −
αφD
2αem

v2

Λ2
, (4.1)

which is very strongly constrained by electroweak precision data (EWPD), especially now

that the value of the Higgs mass is known. Only the colorless iso-triplets Ξ0 and Ξ1

contribute to OφD at the tree level. Hence, these are the only scalars whose effects break

custodial symmetry at tree level, to dimension six in the effective Lagrangian expansion.

In this regard, note that, unlike the weak iso-singlets and iso-doublets, quadruplets do also

break custodial isospin at the tree level if they acquire a vev. However, because of the

absence of trilinear interactions with two Higgs fields, this vev is suppressed by a factor

5Four-lepton operators not involving electrons could in principle be accessible through four-lepton pro-

duction at the LHC or ILC. The sensitivity is however only marginal if there is no resonant production [20].

– 9 –



J
H
E
P
0
4
(
2
0
1
5
)
0
7
8

of O(1/M2). Therefore, quadruplet custodial isospin breaking effects appear starting at

dimension eight.

Both OφD and Oφ� renormalize the wavefunction of the physical Higgs field,

H →
(

1 + αφ�
v2

Λ2
− 1

4
αφD

v2

Λ2

)
H, (4.2)

and therefore enter in most Higgs observables. Nevertheless, the constraints on the coeffi-

cient of OφD from EWPD are significantly stronger than the ones from Higgs physics [26,

27], and completely dominate in the global fit. The operator Oφ introduces corrections to

the Higgs vev and mass parameters, which can always be absorbed in the physical values.

It also gives a direct contribution to the self-coupling of the physical Higgs,

∆LH3 =
5

6
αφ

v3

Λ2
H3, (4.3)

which is in principle observable in Higgs pair production. However, the LHC data at 8 TeV

are not sensitive enough to probe the Higgs self-coupling. Given the small cross sections

for Higgs pair production in the SM, a measurement of the Higgs self-coupling seems to be

challenging even with the results of Run 2, and may require of the high-luminosity upgrade

of the LHC [28]. On the other hand, a relatively large enhancement in diHiggs production

due to the effect of Oφ could unveil the presence of new physics effects before sensitivity

to the SM coupling is attained.

With the exception of S1 and S2, all the colorless multiplets contribute to Higgs ob-

servables (the singlet S and the two quadruplets Θ1 and Θ2 only contribute to Higgs

observables). The singlet S and the iso-triplets Ξ0 and Ξ1 contribute to Oφ� and their

trilinear couplings can therefore be constrained by Higgs measurements. The latter two,

however, contribute to OφD via the same trilinear coefficients, which are therefore con-

strained mainly by EWPD. The quadruplets Θ1 and Θ2 only contribute to Oφ, so, to

dimension six, their effects are not observable in current data.

Finally, the scalar-fermion operators Oeφ =
(
φ†φ

) (
lLφeR

)
, Odφ =

(
φ†φ

)
(qLφdR), and

Ouφ =
(
φ†φ

) (
qLφ̃uR

)
correct the SM Yukawa interactions:

∆LYukawa =
1√
2
H
(

(αeφ)ij e
i
Le

j
R + (V αuφ)ij u

i
Lu

j
R + (αdφ)ij d

i
Ld

j
R + h.c.

) v2

Λ2
. (4.4)

In this equation we have already reabsorbed the corrections to the masses in the definition

of the SM Yukawa matrices. These operators are generated by the colorless iso-triplets

and iso-doublet. For Ξ0 and Ξ1, the coefficients are proportional to the (squared) trilinear

couplings, which as pointed out above contribute to the T parameter and are strongly

constrained by EWPD. In the case of the doublet ϕ, the coefficients are proportional to

the product of the scalar coupling λϕ
(
ϕ†φ

) (
φ†φ

)
+ h.c. and the corresponding fermionic

coupling. The Higgs observables only constrain this product but not the individual cou-

plings. (The scalar coupling enters quadratically in the coefficient of Oφ but, as indicated

above, there is no significant bound on this coefficient at present.)

In the next section we give some numerical results for bounds that can be obtained on

the couplings and masses of the heavy scalar particles from the available measurements.

– 10 –
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5 Precision constraints on new scalars

As explained in the previous section, the effects of the scalar couplings in tables 9–27 can

potentially be observed in several different physical processes. The good agreement of

the SM predictions with most of the current observations implies bounds on the different

interactions. In this section, we use the effective Lagrangian results obtained in the previous

sections to derive flavor-conserving limits on some of the scalar representations.

For the sake of simplicity, in the fits presented here we consider only one scalar multiplet

at a time and always assume that only one of the possible couplings of each scalar is non-

vanishing.6 In most cases, this assumption gives rise to conservative limits. More general

scenarios are certainly interesting and can be studied with the tools provided in this paper.

At any rate, it is important to observe that there are strong phenomenological reasons for

not considering certain couplings simultaneously, as we explain next.

As stressed above, the new scalar fermionic interactions do not conserve flavor in

general. Thus, they are subject to the constraints imposed by observables measured in

flavor-violating processes, which are usually much stronger than the ones from flavor-

conserving observables. For pure hadronic interactions in the form of four-quark operators,

for instance, the observables with ∆F = 2 transitions (e.g. εK or ∆mK , measured in

K0 −K0 mixing) impose bounds on the new physics scale typically around 102–104 TeV,

assuming order-one couplings [30]. Lepton flavor violating processes also impose strong

bounds, especially from rare decays such as µ− → e+e−e− or µ → eγ. Flavor-preserving

results are meaningful in scenarios in which flavor constraints are subdominant or do not

apply. For instance, flavor constraints can be avoided in a natural manner by enforcing an

appropriate symmetry on these SM extensions, which requires extending each scalar gauge

multiplet to a full multiplet under the corresponding flavor group [15]. From the point of

view of our model-independent description of new scalars, each of these flavor multiplets

corresponds to several copies of one of our gauge-covariant multiplets, with correlated

couplings.7 The presence of tree-level flavor changing neutral currents can also be softened

if the new Yukawa interactions are adequately aligned with the SM flavors. In particular,

any flavor violation can be removed — up to terms suppressed by the corresponding CKM

matrix elements — if, for each scalar multiplet, only one entry of the new Yukawa matrices

is non-zero. We will restrict ourselves to this case in the present section. This tuned choice

provides conservative bounds. It also helps to establish in which places certain new physics

effects might be hidden and to determine their maximum size allowed by current data.

We also noted in the discussion of the previous section that in several cases the new

scalars can contribute to other extremely sensitive physical observables, such as proton

decay or neutrino masses. Since one can always assign definite B and L numbers to the

new scalars, such contributions can only appear as the product of two interactions selecting

6Besides the obvious simplifications of reducing the number of free parameters and allowing for a simple

one-dimensional presentation of the results, this assumption allows us to use the pp → jj results of [29].

Indeed, the four-quark operators O(1)
qud and O(8)

qud, not considered in that reference, are generated for some

scalar representations, but their coefficients always involve the product of two different Yukawa couplings.
7Since ref. [15] concentrates on quark processes, its classification does not include the scalar representa-

tions that do not have purely quark interactions.
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different assignments of these quantum numbers. Therefore, they are always avoided when

only one of these couplings is non-vanishing.

Finally, certain contributions to four fermion operators that would give rise to charged-

current interactions mediating rare decays are also absent when we only consider one non-

zero coupling. For instance, the observable Rπ = Γ(π+ → νe+)/Γ(π+ → νµ+) set bounds

on the operators Oqde, Oledq and Oluqe, which are significantly stronger than the ones from

the LHC and EWPD considered here [31, 32]. The same holds for same-sign top pair

production [33].

In the scenario we are considering, with no contribution to any of these sensitive

observables, the most relevant constraints on the couplings and masses of the new scalars

come from flavor-, B- and L-blind observables. Our fits combine the bounds on dimension

six interactions from EWPD [34] (see also [35]),8 LHC dilepton [32] and dijet searches [29],

and measurements of Higgs observables [26].9 In all the analyses we fix the SM inputs to

their best-fit values in the absence of extra scalars,

mH = 125.1± 0.2 GeV, mt = 173.8± 0.8 GeV, MZ = 91.1880± 0.0020 GeV,

αs(M
2
Z) = 0.1186± 0.0006, ∆α

(5)
had(M2

Z) = 0.02754± 0.00010, (5.1)

and vary only the new-physics parameters. This is a good approximation, since large effects

are not allowed. The limits we obtain in this way are presented in table 2 for the colorless

multiplets, and in table 3 for the ones charged under SU(3)c. In all cases the limits apply

to ratios of couplings and masses, which are the quantities that appear in the coefficients

of the effective operators. (In some cases tailored searches can give better bounds when

the new scalars can be directly produced [46].)

Let us comment on the few absences in those tables. In the colorless case, we cannot

put meaningful bounds on the quadruplet couplings. As explained in the previous section,

they only modify the Higgs self-coupling, which is not significantly constrained by the

LHC data at 8 TeV. In the colored sector, we have not presented any bounds for ω2, nor

for the hadronic couplings of ω4 and ζ. These could be in principle constrained by the LHC

dijet data. However, the hadronic couplings of these three multiplets are antisymmetric

and necessarily involve more than one family. Hence, they go beyond the first-family

approximation used in [29]. Putting bounds on them would require an extended analysis.

Finally, let us discuss the range of validity of the effective Lagrangian. In this approach,

the results are given on the ratios yσ/Mσ, where yσ < 4π to allow for a loop expansion, or

κσ/M
2
σ , where we assumed |κσ| .Mσ. To guarantee the validity of our bounds, we need to

assume that the scalar masses are sufficiently larger than the relevant energies and momenta

of the processes we consider. This condition depends on each observable and coupling and

is always satisfied by large enough values of the masses. But for large masses the upper

8This includes the usual Z-pole data [36], ∆α
(5)
had(M2

Z) [37], αs(M
2
Z) [38], the top [39] and Higgs [40, 41]

masses, the W mass and width [42, 43], the final LEP2 results of e+e− → f̄f [44], unitarity constraints on

the the CKM matrix [38], as well as several low-energy measurements [38].
9We do not include here limits from (opposite sign) top pair production on couplings mixing the first

and third generation of quarks. These can be obtained from LHC data and the results in [45] and [14] and

will be considered elsewhere.
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Scalar Parameter 95% C.L. Bound

[TeV−1]

S |κS |
M2
S

1.55

S1

∣∣∣ylS1

∣∣∣
MS1


− 0.08 −

0.08 − −
− − −


S2

∣∣∣yeS2

∣∣∣
MS2


0.36 0.19 0.28

0.19 − −
0.28 − −


ϕ

|yeϕ|
Mϕ


0.26 0.56 0.79

0.56 − −
0.79 − −


|(ydϕ)

11
|

Mϕ
0.61

|(yuϕ)
11
|

Mϕ
0.44

Ξ0
|κΞ0 |
M2

Ξ0

0.11

Ξ1
|κΞ1 |
M2

Ξ1

0.04

∣∣∣ylΞ1

∣∣∣
MΞ1


0.33 0.09 0.18

0.09 − −
0.18 − −


Table 2. Bounds on the colorless new scalars from flavor-preserving observables. The results for

the Yukawa matrices are obtained from a fit to each one of the entries of the coupling matrices

at a time. The limit on κS is determined exclusively by the Higgs data, while the ones on the

κΞi couplings are dominated by the EWPD limits on the T parameter. Leptonic couplings are

constrained by the LEP2 (e+e− → `+`−) and low energy measurements (e.g. Møller and ν-electron

scattering), while the hadronic ones are bounded by the LHC dijet angular distributions.

region of the allowed parameters may involve strong couplings that threaten perturbativity

and thus the validity of the tree-level approximation. This can happen when the limits on

coupling/mass ratios are weak. One example is the scalar singlet S, which is only observable

through its contributions to the Higgs boson wave function via the operator Oφ�, with mild

limits [26, 27]. For |κS | ∼MS , the bound in table 2 implies MS & 700 GeV, which is close

to the scale probed at the LHC, and the validity of this bound might be questioned. In

some cases, entries involving electrons coupling with the second and third family of quarks

are also relatively weak ∼ O(1–2) TeV−1. For weakly coupled scenarios (yσ < 1) this

implies the new scalar masses can be around 500-1000 GeV. However, these entries are

only constrained by the LEP 2 data, which involves lower energies
√
s ≤ 209 GeV. Those

entries that can modify dilepton production at the LHC can be as large as ∼ 0.5 TeV−1

for the case of Π1. This translates into a mass scale of ∼ 2 TeV, which is in principle
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Scalar Parameter 95% C.L. Bound

[TeV−1]

ω1

∣∣∣yqlω1

∣∣∣
Mω1


0.19 0.53 −
0.40 − −
− − −


|(yqqω1)

11
|

Mω1
0.24

|yeuω1
|

Mω1


0.27 0.49 −
0.48 − −
− − −


∣∣∣(yduω1

)
11

∣∣∣
Mω1

0.47

ω4
|yedω4
|

Mω4


0.28 0.98 0.98

0.42 − −
− − −


Π1

∣∣∣yldΠ1

∣∣∣
MΠ1


0.27 1.80 1.80

0.48 − −
− − −



Scalar Parameter 95% C.L. Bounds

[TeV−1]

Π7

∣∣∣yluΠ7

∣∣∣
MΠ7


0.27 1.04 −
0.33 − −
− − −


∣∣∣yeqΠ7

∣∣∣
MΠ7


0.29 0.93 1.06

0.32 − −
− − −


Ω1

∣∣∣(yudΩ1

)
11

∣∣∣
MΩ1

0.78

Ω2

∣∣∣(ydΩ2

)
11

∣∣∣
MΩ2

0.68

Ω4

∣∣∣(yuΩ4

)
11

∣∣∣
MΩ4

0.47

ζ

∣∣∣yqlζ ∣∣∣
Mζ


0.21 0.30 −
0.66 − −
0.47 − −


Φ

|(yquΦ )
11
|

MΦ
0.88∣∣∣(ydqΦ

)
11

∣∣∣
MΦ

1.12

Υ
|yqΥ|
MΥ

0.32

Table 3. Bounds on the colored new scalars from flavor-preserving observables. The results for the

Yukawa matrices are obtained from a fit to each one of the entries of the coupling matrices at a time.

All these interactions are constrained by two to two fermion processes. Leptoquark interactions

are bounded by LEP 2 e+e− → had data, low energy measurements (e.g. Atomic parity violation,

ν-nucleon scattering), CKM unitarity, and dilepton searches at the LHC. Purely hadronic bounds

are again obtained only from the LHC pp→ jj angular distributions. See text for more details.

accessible by the LHC at
√
s = 8 TeV. However, dilepton processes at the LHC can only

be mediated by leptoquarks in t-channel. Thus, even for such values of masses and weak

couplings, the effective theory remains valid in a large region of the phase space and can

give a good approximation to the integrated observables (see the quantitative discussion of

an analogous process in [14]). Finally, the results for the pure hadronic interactions should

be taken with care. Again, for order one couplings the corresponding mass scales can be

relatively small, while the dijet angular distributions used in [29] to set bounds correspond

to dijet masses Mjj > 3 TeV. Unlike the dilepton case, these scalars can be produced in

s-channel. For instance, for the case with the weakest bound, the color-octet iso-doublet Φ,

demanding MΦ > 3.9 TeV ( the highest Mjj value observed in the CMS analysis [47] used

in [29]), the hadronic couplings needed to saturate the bounds must be (ydqΦ )11 & 4, and

one may start worrying about the precision of the perturbative (asymptotic) series. Note,

nevertheless, that for s-channel processes the limits obtained with the effective Lagrangian

give a conservative estimate of the actual limit. In summary, with the current constraints
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the effective Lagrangian approach provides in general a good approximation for heavy

scalars and a large range of values of their couplings.

6 Scalar extensions with other new particles

In the previous section we have considered in detail SM extensions with only one scalar

multiplet. In this case, there are strong correlations between different observables. In this

section we discuss the interplay between the effects of different scalars, and also between

particles with different spin. The effective Lagrangian formalism used in this article allows

an easy comparison of the effects of different sources of new physics. In particular, it helps

to identify at the Lagrangian level those places where a (partial) cancellation between the

virtual effects of different new particles in physical observables can take place [48, 49]. This

is useful for model builders to construct scenarios with not too heavy (or not too weakly

coupled) particles that are consistent with the existing phenomenological constraints. Such

cancellations require a large correlation between the effects of different new particles. Al-

though they correspond to small regions in the parameter space of generic models, in some

cases they can be made natural by imposing extra symmetries.

Let us first point out that, at the tree level, the dimension-six effective Lagrangian in

extensions of the SM with arbitrary new particles of spin 0, 1/2 and 1 is simply the sum

of the effective Lagrangian obtained here and the ones in refs. [5–7].10 Indeed, a simple

extension of the argument in section 3 shows that mixed contributions from particles of

different spin only appear at higher dimension. Therefore, the effective Lagrangians in

those references and in this paper completely characterize the largest effects of arbitrary

extensions of the SM with new heavy particles. Note in this regard that particles of

spin higher than 1 only interact via non-renormalizable couplings, which are naturally

suppressed.

In what follows we study, for each type of interaction induced by the extra scalars

to dimension six, the different sources of new physics (new scalars, fermions or vectors)

that can cancel at the tree-level the effects from the virtual exchange of scalar bosons. We

discuss the cancellations at the operator level, which is a sufficient (and often necessary)

condition to guarantee the cancellation in physical observables.

• Dimension-five operators: the Weinberg operator only arises when we integrate

the hypercharge-one iso-triplet Ξ1. Having no definite sign, contributions from differ-

ent triplets could cancel each other, or the ones coming from the other two possible

seesaw messengers, i.e. new lepton singlets and triplets with hypercharge zero.

• Oblique operators: cancellation between custodial isospin breaking contributions

can occur between the two triplets, as both have definite, opposite sign. This is also

10A direct comparison of the effective Lagrangian results presented here with those in refs. [5–7] requires

to perform certain field redefinitions and Fierz reorderings, since the basis employed in those works has some

redundant interactions, and use different definitions for some operators. All the transformations needed

to relate both bases are provided in appendix A, where we also introduce the full basis of dimension six

operators we use, which can be compared to the one in table 7 in ref. [7].
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possible with new vector singlets with hypercharge zero (hypercharge one), which

yield negative (positive) definite contributions to αφD. New vector triplets with

hypercharge one also yield negative contributions to this operator [7].

• Scalar operators: these include Oφ and Oφ�. A look at the second row of table 28

in appendix B shows all the possible contributions to the operator Oφ, including

collective contributions that appear when two different species of new scalars are

present at the same time. Contributions to Oφ�, on the other hand, are much simpler,

and are negative (positive) definite for S (Ξ0,1). This allows for cancellations between

colorless iso-singlets and iso-triplets.

• Scalar-Fermion operators: in extensions with new scalars only, these operators

only appear in the case of colorless iso-doublets, ϕ or iso-triplets, Ξ0,1. However, for

the latter they always arise through a field redefinition, necessary to bring all the con-

tributions in the dimension-six Lagrangian into the chosen basis. As a consequence,

the flavor structure of the coefficients of the operators Oeφ and Odφ, and Ouφ coming

from triplets is always SM-like (proportional to the SM Yukawa couplings), while the

one from doublets ϕ can be completely generic. Moreover, while all the contributions

of arbitrary triplets have the same sign, the sign of the genuine contributions from ϕ

is indefinite. Therefore, cancellations between scalars are always possible.

Contributions from new vectors [7], also appear when the SM equations of mo-

tion are used. They only come from colorless hypercharge zero or one iso-singlets, or

iso-triplets (B, B1, W and W1 in the notation of [7]), and are also SM-like.

Finally, heavy fermions can generate these contributions either after applying

the SM equation of motion, if only one fermion species is present, or as a result of

the combined effect of extra fermionic iso-doublets and new fermion iso-singlets or

iso-triplets [5, 6]. Even in the case of only one fermion, the contributions to Ofφ al-

ways involve the flavor structure of the new fermionic interactions, and therefore are

general a priori. Hence, some interplay with the contributions from scalar doublets

is possible, although an eventual cancellation of all the scalar effects may require

several different new fermion multiplets.

• Four-fermion operators: upon inspection of the new scalar contributions to four-

fermion operators, it can be seen that, for a fixed set of flavor indices with i = j, k = l,

the operator coefficients of all four-fermion interactions involving at most two different

types of SM fermion multiplets have a definite sign. Although the contributions

to four-fermion interactions with three or four different multiplets have no definite

sign, they are always correlated with operators involving only one or two kinds of

multiplets. Moreover, for a particular operator, contributions from scalars of different

types have either the same sign, or are proportional to the contribution to another

operator with the same field content where both scalars contribute additively. For

instance, ϕ and Φ contributions to α
(8)
qu have opposite sign and can balance each

other. However, each individual contribution is proportional to the corresponding

one to α
(1)
qu , where both have the same sign. Therefore, a complete cancellation
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of the effects from such couplings to two-to-two fermion processes is not possible

in extensions with extra scalars only. This is quite similar to the situation for extra

vectors [7]. However, as illustrated in ref. [49] for the case of pure leptonic interactions,

a cancellation between the four fermion effects coming from new scalars and the ones

from new vector particles is possible in many cases, although it comes at the price

of a significant fine tuning. New vectors of hypercharge Y 6= 0 contribute with a

definite sign to four-fermion operators involving at most two types of SM multiplets

if i = j, k = l, exactly as in the scalar case. For vectors of zero hypercharge,

only the operators where all fermions belong to the same SM representation can

have a definite sign. This is always the case for i = j = k = l and, in certain

cases, for i = l, j = k.11 Instead of going over each operator/scalar/vector and

listing all the possible cancellations, we show in table 4 those interactions that are

common for each scalar-vector pair, indicating the relative sign between the different

contributions for both cases, i = l, j = k (i 6= j), and i = j = k = l (where some

restrictions appear in the case of hypercharge-zero vector fields). In general, for a

given operator with four multiplets of the same kind, one can always choose a scalar

and a hypercharge-zero vector field such that, tuning the corresponding scalar/vector

couplings, contributions with opposite sign are obtained. Table 5 contains the same

information for the case of four-fermion operators built from at most two types of

multiplets, with i = j, k = l (i 6= k).

Note that a relative minus sign between the contributions from two particles to

a given operator does not always guarantee that a complete cancellation of the new

physics effects is possible. The reason is that the contributions to some operators with

the same field content are in many cases correlated, and a cancellation in all those

operator coefficients does not usually take place at the same time. However, for each

configuration of four fermionic fields, there are at most two independent operators in

the dimension six basis. And, as can be seen from the tables, for each scalar (vector)

field and pair of such operators, one can always find a pair of vectors (scalars) that

contribute to both operators with the adequate signs to cancel the total contribution.

Therefore, we conclude that for any given four-fermion process receiving contributions

from one new particle through an arbitrary set of four-fermion operators, it is always

possible to find a combination of new fields that, after the adequate tuning in their

couplings, cancels out all the new effects. Correlations with other types of operators

can be easily avoided.

Summarizing, we see that the existing experimental limits are compatible with many

combinations of new particles with sizable couplings and masses at the LHC reach. Essen-

tially, by including many new multiplets we are breaking the correlations in the coefficients

of the effective operators. However, in most cases the corresponding models are too con-

trived and fine tuned. In the simplest cases, symmetries may exist which make these models

more natural and appealing. The discussion in this section may be useful in the search of

such symmetries.

11Note that in this case, the corresponding scalar contributions always have a definite sign.
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S1 S2 Ξ1 ω1 ω2 ω4 ζ Ω1 Ω2 Ω4 Υ

Bµ +α
(1)
ll ±αee −α(1)

ll −α(1)
qq +α

(1)
dd +α

(1)
uu +α

(1)
qq +α

(1)
qq −α(1)

dd −α(1)
uu −α(1)

qq

(—) (−αee) (−α(1)
ll ) (−α(1)

qq ) (—) (—) (—) (—) (−α(1)
dd ) (−α(1)

uu ) (−α(1)
qq )

Wµ ±α(1)
ll ±α(1)

ll ±α(1)
qq ±α(1)

qq ±α(1)
qq ±α(1)

qq

±α(8)
qq ±α(8)

qq ±α(8)
qq ±α(8)

qq

(—) (−α(1)
ll ) (+α

(1)
qq ) (—) (—) (+α

(1)
qq )

(+α
(8)
qq ) (—) (—) (−α(8)

qq )

Gµ +α
(8)
qq ±α(1)

dd ±α(1)
uu −α(8)

qq +α
(8)
qq ±α(1)

dd ±α(1)
uu −α(8)

qq

(+α
(8)
qq ) (—) (—) (—) (—) (−α(1)

dd ) (−α(1)
uu ) (−α(8)

qq )

Hµ −α(1)
qq +α

(1)
qq +α

(1)
qq −α(1)

qq

±α(8)
qq ) ±α(8)

qq ±α(8)
qq ±α(8)

qq

(−α(1)
qq ) (—) (—) (−α(1)

qq )

(−α(8)
qq ) (—) (—) (+α

(8)
qq )

Table 4. Contributions to four-fermion interactions with i = l, j = k (i 6= j), common to

new scalar and (hypercharge-zero) vector fields. Only operators involving one type of multiplet,

and the particles that contribute to them, are shown. The symbols “+” (“−”) indicate that the

contributions from scalars and vectors have the same (opposite) sign, while “±” indicates the

absence of a definite sign in any of the sources. The same information for the case i = j = k = l is

provided in parenthesis. In this case, a dash (“—”) indicates the absence of contribution from the

corresponding scalar particle.

7 Conclusions

The discovery at the LHC of a new particle of spin 0 has come hand in hand with the direct

observation of new interactions mediated by scalar fields.12 Among these, the Yukawa

interactions are quite unique in that they are not ruled by gauge invariance under the SM

gauge group, although of course they are compatible with it. The exploration of this scalar

sector is an important part of the LHC physics program. The results at the LHC Run 1 have

already constrained significantly its structure. So far, all the measurements are consistent

with the minimal scalar sector of the SM: a Higgs iso-doublet with a non-vanishing vev for

its neutral component. But the present uncertainties still allow for significant deviations

in the couplings of this doublet and for the presence of additional scalar fields, related or

not to electroweak symmetry breaking. To comply with all the available data, such extra

scalars must either have small couplings or be significantly heavier than the Higgs boson.

The latter is the scenario we have considered in the second part of this paper.

We have followed a largely model-independent and unbiased approach, with the min-

imal theoretical input of gauge-invariance. First, we have classified into 19 irreducible

representations all the possible scalar fields that can interact linearly with the SM fields

with gauge-invariant renormalizable couplings. Their components with a definite electric

charge are the only scalar particles that can be produced at colliders with unsuppressed

12Indirect evidence of gauge-Higgs interactions was available before, in EWPD.
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couplings. We have written the most general renormalizable interactions of the scalar mul-

tiplets (except for parts of the scalar potential that cannot be tested in the near future).

Up to this point, all our results apply to either light or heavy extra scalars. In a second

step, we have assumed a hierarchy of scales and have derived the dimension-six effective

Lagrangian that describes all the tree-level effects of the heavy scalars in experiments where

the probed energies are smaller than their masses. We have shown that only the 19 scalar

multiplets with allowed linear interactions contribute to operators of dimension five and six.

Non-linear interactions of these fields also appear in the effective Lagrangian to this order.

The results are collected in appendix B. Finally, we have used this effective Lagrangian to

discuss the observable effects of the new scalars and to derive bounds on their couplings

and masses. The strongest bounds come from flavor observables. In order to avoid flavor

constraints, here we have simply assumed that, in the flavor basis defined by eq. (2.2),

there is only one non-vanishing entry in the Yukawa couplings with the new scalar. We

have then studied the limits from a range of flavor-conserving observables: EWPD, LHC

dilepton and dijet searches and Higgs-mediated cross sections.

Together with refs. [5–7], this paper provides a complete classification of all the particles

with up to dimension-four linear couplings (in the electroweak symmetric phase) to the

SM fields. Even if our emphasis in this paper has been on indirect effects, let us stress

that this classification and the general interactions that are explicitly written in these

references provide a useful basis for model-independent direct searches at large colliders

(see e.g. [12, 50–56] for applications of this gauge-invariant formalism to direct searches).

On top of this, our results here complete the tree-level dictionary between particles

with general couplings of dimension ≤ 4 and the effective operators that describe their low-

energy effects. The dictionary entries for quarks, leptons and vector bosons can be found

in refs. [5–7], respectively. We believe this correspondence can prove useful in combining

the information from LHC searches of new particles with the existing precision constraints

on their masses and couplings.
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A Basis of dimension-six operators

In this appendix, we introduce a complete set of gauge-invariant operators Oi, which enter

the general SM effective Lagrangian to dimension six:

L(6)
Eff = LSM +

1

Λ
L5 +

1

Λ2
L6, with Ld =

∑
i

αiOi.
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Operator Notation Operator Notation

D
im

4

(
φ†φ

)2 Oφ4 lL φ eR Oye
qL φ̃ uR Oyu
qL φdR Oyd

D
im

5 lcLφ̃
∗φ̃†lL O5

Table 6. Operators of dimension four and five.

We employ the basis in tables 6, 7 and 8. Table 6 defines our notation for the effec-

tive operators renormalizing the SM interactions, and presents the unique dimension-five

interaction: the Weinberg operator, which gives Majorana masses to the SM neutrinos.

Tables 7 and 8 gather the dimension-six operators. In these tables, TA = 1
2λA and fABC ,

A,B,C = 1, . . . , 8, are the SU(3)c generators and structure constants, with λA the Gell-

Mann matrices; εABC (εabc) , A,B,C = 1, 2, 3 (a, b, c = 1, 2, 3) is the totally antisym-

metric tensor in color (weak isospin) indices; σa, a = 1, 2, 3 are the Pauli matrices; and

Ãµν = 1
2εµνρσA

ρσ is the Hodge-dual of the field strength Aµν . Finally, the superscript

symbol “T” denotes transposition of the SU(2)L indices exclusively.

We use essentially the same basis as the one introduced in ref. [57]. (See [58–62] for a

related discussion of dimension-six physics in different operator bases.) The only differences

(apart from changes in the names) are the use of different normalization factors in several

operators, and the trade of their operators Q
(3)
qq = (qLγµσaqL) (qLγ

µσaqL) and Q
(3)
lequ =(

lLσµνeR
)
iσ2 (qLσ

µνuR)T by O(8)
qq and Oluqe, respectively, in our tables. Also, for consis-

tency with previous works we write here the operators O(1)
φψ =

(
φ†iDµφ

) (
ψγµψ

)
and O(3)

φψ =(
φ†iσaDµφ

) (
ψLγ

µσaψL
)
, instead of the hermitian interactions Q(1)

φψ =

(
φ†i
↔
Dµφ

)(
ψγµψ

)
and Q(1)

φψ=

(
φ†i
↔
D a
µ φ

)(
ψLγ

µσaψL
)

of ref. [57]. Note that these last interactions are not gen-

erated in the integration of the new scalars, and are introduced here only for completeness.

Finally, for the purpose of comparing the results of the integration of new scalars with

those obtained for new fermions and vector bosons in refs. [5–7], we provide below the

necessary relations to translate the results in those references, which use the original basis

of [58, 59] and therefore contains redundant interactions, into our basis. Again, we use

the notation Qi to refer to the operator basis in other references, while we keep Oi for the

operators presented in tables 7 and 8.

In the sector of four-fermion interactions the following identities follow from the cor-

responding Fierz reorderings:

(
Q(3)
ll

)
ijkl

=
1

2
(liLγµσal

j
L)(lkLγ

µσal
l
L) = 2

(
O(1)
ll

)
ilkj
−
(
O(1)
ll

)
ijkl

,(
Q(1,3)
qq

)
ijkl

=
1

2
(qiLγµσaq

j
L)(qkLγ

µσaq
l
L) = −

(
O(1)
qq

)
ijkl

+
2

3

(
O(1)
qq

)
ilkj

+ 4
(
O(8)
qq

)
ilkj

,
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Operator Notation Operator Notation
L

L
L

L

1
2

(
lLγµlL

) (
lLγ

µlL
)

O(1)
ll

1
2 (qLγµqL) (qLγ

µqL) O(1)
qq

1
2 (qLγµTAqL) (qLγ

µTAqL) O(8)
qq(

lLγµlL
)

(qLγ
µqL) O(1)

lq

(
lLγµσalL

)
(qLγ

µσaqL) O(3)
lq

R
R

R
R

1
2 (eRγµeR) (eRγ

µeR) Oee
1
2 (uRγµuR) (uRγ

µuR) O(1)
uu

1
2

(
dRγµdR

) (
dRγ

µdR
)

O(1)
dd

(uRγµuR)
(
dRγ

µdR
)

O(1)
ud (uRγµTAuR)

(
dRγ

µTAdR
)
O(8)
ud

(eRγµeR) (uRγ
µuR) Oeu (eRγµeR)

(
dRγ

µdR
)

Oed

L
L

R
R

&
L

R
R

L

(
lLγµlL

)
(eRγ

µeR) Ole (qLγµqL) (eRγ
µeR) Oqe(

lLγµlL
)

(uRγ
µuR) Olu

(
lLγµlL

) (
dRγ

µdR
)

Old
(qLγµqL) (uRγ

µuR) O(1)
qu (qLγµTAqL) (uRγ

µTAuR) O(8)
qu

(qLγµqL)
(
dRγ

µdR
)

O(1)
qd (qLγµTAqL)

(
dRγ

µTAdR
)
O(8)
qd(

lLeR
) (
dRqL

)
Oledq

L
R

L
R (qLuR) iσ2 (qLdR)T O(1)

qud (qLTAuR) iσ2 (qLTAdR)T O(8)
qud(

lLeR
)
iσ2 (qLuR)T Olequ

(
lLuR

)
iσ2 (qLeR)T Oluqe

�B
&

�L

εABC(lLiσ2q
c A
L )(dBRu

c C
R ) Olqdu εABC(qAL iσ2q

c B
L )(eRu

c C
R ) Oqqeu

εABC(lLiσ2q
c A
L )(qBL iσ2q

c C
L ) O(1)

lqqq εABC(uARd
c B
R )(eRu

c C
R ) Oudeu

εABC(lLσaiσ2q
c A
L )(qBL σaiσ2q

c C
L ) O(3)

lqqq

Table 7. Basis of dimension-six operators used in our analysis: four-fermion contact interactions.

Flavor indices are omitted.

(
Q(8,1)
qq

)
ijkl

=
1

2
(qiLγµλAq

j
L)(qkLγ

µλAq
l
L) = 4

(
O(8)
qq

)
ijkl

,(
Q(8,3)
qq

)
ijkl

=
1

2
(qiLγµλAσaq

j
L)(qkLγ

µλAσaq
l
L)=

32

9

(
O(1)
qq

)
ilkj
−4
(
O(8)
qq

)
ijkl
− 8

3

(
O(8)
qq

)
ilkj

,(
Q(8)
ff

)
ijkl

=
1

2
(f iRγµλAf

j
R)(fkRγ

µλAf
l
R) = 2

(
O(1)
ff

)
ilkj
− 2

3

(
O(1)
ff

)
ijkl

, (f = u, d)

(QFf )ijkl = (F iLf
j
R)(fkRF

l
L) = −1

2
(OFf )ilkj , (Ff = le, lu, ld, qe)

(
Q(1)
qf

)
ijkl

= (qiLf
j
R)(fkRq

l
L) = −1

6

(
O(1)
qf

)
ilkj
−
(
O(8)
qf

)
ilkj

,

(f = u, d)(
Q(8)
qf

)
ijkl

= (qiLλAf
j
R)(fkRλAq

l
L) = −8

9

(
O(1)
qf

)
ilkj

+
2

3

(
O(8)
qf

)
ilkj

.

Finally, the operator Qqde is labeled as Oledq in table 7.

There are also some differences in the case of the bosonic operators. Firstly, the

operators Qφ6 and Q(3)
φ correspond exactly to OφD and Oφ, respectively. Secondly, using
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Operator Notation Operator Notation

S
(
φ†φ

)
�
(
φ†φ

)
Oφ� 1

3

(
φ†φ

)3 Oφ
S

V
F

(
φ†iDµφ

) (
lLγ

µlL
)

O(1)
φl

(
φ†σaiDµφ

) (
lLγ

µσalL
)
O(3)
φl(

φ†iDµφ
)

(eRγ
µeR) O(1)

φe(
φ†iDµφ

)
(qLγ

µqL) O(1)
φq

(
φ†σaiDµφ

)
(qLγ

µσaqL) O(3)
φq(

φ†iDµφ
)

(uRγ
µuR) O(1)

φu

(
φ†iDµφ

) (
dRγ

µdR
)

O(1)
φd(

φT iσ2iDµφ
)

(uRγ
µdR) Oφud

S
T

F

(
lLσ

µνeR
)
φBµν OeB

(
lLσ

µνeR
)
σaφW a

µν OeW
(qLσ

µνuR) φ̃ Bµν OuB (qLσ
µνuR)σaφ̃W a

µν OuW
(qLσ

µνdR)φBµν OdB (qLσ
µνdR)σaφW a

µν OdW
(qLσ

µνTAuR) φ̃ GAµν OuG (qLσ
µνTAdR)φGAµν OdG

S
F

(
φ†φ

) (
lL φ eR

)
Oeφ(

φ†φ
) (
qL φ̃ uR

)
Ouφ

(
φ†φ

)
(qL φdR) Odφ

O
b

li
q
u

e

(
φ†Dµφ

)
((Dµφ)† φ) OφD

φ†φ BµνB
µν OφB φ†φ B̃µνB

µν O
φB̃

φ†φ W a
µνW

a µν OφW φ†φ W̃ a
µνW

a µν O
φW̃

φ†σaφ W
a
µνB

µν OWB φ†σaφ W̃
a
µνB

µν O
W̃B

φ†φ GAµνG
A µν OφG φ†φ G̃AµνG

A µν O
φG̃

G
a
u

ge εabcW
a ν
µ W b ρ

ν W c µ
ρ OW εabc W̃

a ν
µ W b ρ

ν W c µ
ρ O

W̃

fABC G
A ν
µ GB ρ

ν GC µ
ρ OG fABC G̃

A ν
µ GB ρ

ν GC µ
ρ O

G̃

Table 8. Basis of dimension-six operators used in our analysis: operators other than four-fermion

contact interactions. Flavor indices are omitted. Operators in grey color do not arise in the

integration of heavy scalars at the tree level.

a perturbative field redefinition:

Q(1)
φ = φ†φ (Dµφ)†Dµφ =

1

2
Oφ� − µ2

φOφ4 + 3λφOφ+

+
1

2

(
yeii (Oeφ)ii + ydii (Odφ)ii + V †ijy

u
jj (Ouφ)ij + h.c.

)
.

B Operator coefficients in the effective Lagrangian

In tables 9–27 we present, for each new type of scalar, the contributions to the coefficients

of the different dimension-six operators that result upon integration of one scalar multiplet

at the tree level. Those contributions that arise only in the case where the theory contains

several scalars at the same time (in the same or different representations) are given in
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table 28. All these results are given in the basis in appendix A. In some cases, this requires

performing algebraic manipulations and field redefinitions on the operators that result

directly from the integration.

Tables 9–28 also contain the interactions in the high-energy Lagrangian, using the

notation of eq. (2.5). We only write here those interactions that are relevant for the

computation of L(6)
Eff . When gauge indices are explicitly shown, we use the following labeling

for SU(2)L indices in the different representations: α, β = 1
2 ,−

1
2 for SU(2)L doublets;

a, b, c = 1, 2, 3 for the components of SU(2)L triplets in Cartesian coordinates; and I, J,K =
3
2 ,

1
2 ,−

1
2 ,−

3
2 for the components of the SU(2)L quadruplets. The matrices used to construct

the different invariants are the following:

• In constructing the triplets from two doublets we use the Pauli matrices

σ1 =

(
0 1

1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0

0 −1

)
.

• The isospin-1 product of two triplets is obtained through:

fabc =
i√
2
εabc.

• Quadruplets are obtained from the product of an isospin-1 field and a doublet by

means of

C
3/2
aβ =

1√
2

 1 0

−i 0

0 0

 ; C
1/2
aβ =

1√
6

 0 1

0 −i
−2 0

 ;

C
−1/2
aβ = − 1√

6

 1 0

i 0

0 2

 ; C
−3/2
aβ = − 1√

2

 0 1

0 i

0 0

 .

• The singlet product of two quadruplets is obtained through the SU(2) product

εIJ =
1

2


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .

Finally, for SU(3)c indices, we use the following notation for the symmetric product of

colored fields:

ψ
(A|
1 . . . ψ

|B)
2 ≡ 1

2

(
ψA1 . . . ψ

B
2 + ψB1 . . . ψA2

)
.
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H
E
P
0
4
(
2
0
1
5
)
0
7
8

S ∼ (1, 1)0

VS = κS Sφ†φ+ λS S2φ†φ+ κS3 S3

Dimension-Four Operators

αφ4 =
κ2
S

2M2
S

Scalar Operators

αφ
Λ2 = 3

κ2
S

M2
S

(
− λS
M2
S

+
κS3κS
M4
S

)
αφ�
Λ2 = − κ2

S
2M4
S

Table 9. Operator coefficients arising from the integration of a S scalar field. See table 28 for

collective contributions of several multiplets.

S1 ∼ (1, 1)1

JS1 = (ylS1
)ij liLiσ2l

c j
L

(
(ylS1

)ij = −(ylS1
)ji
)

Four-Fermion Operators: LLLL(
α

(1)
ll

)
ijkl

Λ2 = 2
(ylS1

)ik(yl †S1
)lj

M2
S1

Table 10. Operator coefficients arising from the integration of a S1 scalar field.

S2 ∼ (1, 1)2

JS2 = (yeS2
)ij eiRe

c j
R

(
(yeS2

)ij = (yeS2
)ji
)

Four-Fermion Operators: RRRR

(αee)ijkl
Λ2 =

(yeS2
)ki(y

e †
S2

)jl

M2
S2

Table 11. Operator coefficients arising from the integration of a S2 scalar field.
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J
H
E
P
0
4
(
2
0
1
5
)
0
7
8

ϕ ∼ (1, 2)1
2

Jϕ = (yeϕ)ij eiRl
j
L + (ydϕ)ij diRq

j
L + (yuϕ)ij iσ2qiL

T
ujR

Vϕ = λϕ (ϕ†φ)(φ†φ) + h.c.

Four-Fermion Operators:

• LLRR
(αle)ijkl

Λ2 = − (yeϕ)kj(y
e †
ϕ )il

2M2
ϕ(

α
(1)
qd

)
ijkl

Λ2 = − (ydϕ)kj(y
d †
ϕ )il

6M2
ϕ

(
α

(8)
qd

)
ijkl

Λ2 = 6

(
α

(1)
qd

)
ijkl

Λ2(
α

(1)
qu

)
ijkl

Λ2 = − (yuϕ)il(y
u †
ϕ )kj

6M2
ϕ

(
α

(8)
qu

)
ijkl

Λ2 = 6

(
α

(1)
qu

)
ijkl

Λ2

• LRRL • LRLR
(αledq)ijkl

Λ2 =
(ydϕ)kl(y

e †
ϕ )ij

M2
ϕ

(αlequ)ijkl
Λ2 =

(yuϕ)kl(y
e †
ϕ )ij

M2
ϕ(

α
(1)
qud

)
ijkl

Λ2 = − (yuϕ)ij(y
d †
ϕ )kl

M2
ϕ

Scalar-Fermion Operators
(αeφ)ij

Λ2 =
λϕ(ye †ϕ )ij

M2
ϕ

(αuφ)ij
Λ2 = −λ∗ϕ(yuϕ)ij

M2
ϕ

(αdφ)ij
Λ2 =

λϕ(yd †ϕ )ij
M2
ϕ

Scalar Operators
αφ
Λ2 = 3

|λϕ|2
M2
ϕ

Table 12. Operator coefficients arising from the integration of a ϕ scalar field. See table 28 for

collective contributions of several multiplets.

Ξ0 ∼ (1, 3)0
VΞ0 = κΞ0 φ

†Ξa0σaφ+ λΞ0 (Ξa0Ξa0)
(
φ†φ

)
Dimension-Four Operators

αφ4 =
κ2

Ξ0

2M2
Ξ0

(
1− 4

µ2
φ

M2
Ξ0

)
Scalar-Fermion Operators

(αeφ)ij
Λ2 =

κ2
Ξ0
yeii

M4
Ξ0

δij
(αuφ)ij

Λ2 =
κ2

Ξ0
V †ijy

u
jj

M4
Ξ0

(αdφ)ij
Λ2 =

κ2
Ξ0
ydii

M4
Ξ0

δij

Oblique Operators Scalar Operators

αφD
Λ2 = −2

κ2
Ξ0

M4
Ξ0

αφ�
Λ2 =

κ2
Ξ0

2M4
Ξ0

αφ
Λ2 = −3

κ2
Ξ0

M4
Ξ0

(λΞ0 − 2λφ)

Table 13. Operator coefficients arising from the integration of a Ξ0 scalar field. See table 28 for

collective contributions of several multiplets.
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J
H
E
P
0
4
(
2
0
1
5
)
0
7
8

Ξ1 ∼ (1, 3)1
JΞ1 = (ylΞ1

)ij liLσaiσ2l
c j
L

(
(ylΞ1

)ij = (ylΞ1
)ji
)

VΞ1 =
(
κΞ1 Ξa †1

(
φ̃†σaφ

)
+ h.c.

)
+ λΞ1

(
Ξa †1 Ξa1

) (
φ†φ

)
+ λ̃Ξ1 fabc

(
Ξa †1 Ξb1

) (
φ†σcφ

)
Dimension Four and Five Operators

αφ4 =
2|κΞ1 |

2

M2
Ξ1

(
1− 2

µ2
φ

M2
Ξ1

)
(α5)ij

Λ = −2
κΞ1

(
yl †Ξ1

)
ij

M2
Ξ1

Four-Fermion Operators: LLLL(
α

(1)
ll

)
ijkl

Λ2 = 2
(ylΞ1

)ki(y
l †
Ξ1

)jl

M2
Ξ1

Scalar-Fermion Operators
(αeφ)ij

Λ2 = 2
|κΞ1 |

2
yeii

M4
Ξ1

δij
(αuφ)ij

Λ2 = 2
|κΞ1 |

2
V †ijy

u
jj

M4
Ξ1

(αdφ)ij
Λ2 = 2

|κΞ1 |
2
ydii

M4
Ξ1

δij

Oblique Operators Scalar Operators

αφD
Λ2 = 4

|κΞ1 |
2

M4
Ξ1

αφ�
Λ2 = 2

|κΞ1 |
2

M4
Ξ1

αφ
Λ2 = −3

|κΞ1 |
2

M4
Ξ1

(
2λΞ1 −

√
2λ̃Ξ1 − 4λφ

)
Table 14. Operator coefficients arising from the integration of a Ξ1 scalar field. See table 28 for

collective contributions of several multiplets.

Θ1 ∼ (1, 4)1
2

VΘ1 = λΘ1

(
φ†σaφ

)
CIaβφ̃βεIJΘJ

1 + h.c.

Scalar Operators

αφ
Λ2 = 1

2
|λΘ1 |

2

M2
Θ1

Table 15. Operator coefficients arising from the integration of a Θ1 scalar field. See table 28 for

collective contributions of several multiplets.

Θ3 ∼ (1, 4)3
2

VΘ3 = λΘ3

(
φ†σaφ̃

)
CIaβφ̃βεIJΘJ

3 + h.c.

Scalar Operators

αφ
Λ2 = 3

2
|λΘ3 |

2

M2
Θ3

Table 16. Operator coefficients arising from the integration of a Θ3 scalar field. See table 28 for

collective contributions of several multiplets.
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J
H
E
P
0
4
(
2
0
1
5
)
0
7
8

ω1 ∼ (3, 1)−1
3

Jω1 = (yqlω1)ij qc iL iσ2l
j
L + (yqqω1)ij εABC qi BL iσ2q

c j C
L + (yeuω1

)ij ec iR u
j
R + (yduω1

)ij εABC di BR uc j CR

((yqqω1)ij = (yqqω1)ji)

Four-Fermion Operators:

• LLLL • RRRR(
α

(1)
lq

)
ijkl

Λ2 = 1
4

(yqlω1
)lj(y

ql †
ω1

)ik
M2
ω1

(
α

(1)
ud

)
ijkl

Λ2 = 1
3

(yduω1
)ki(y

du †
ω1

)jl
M2
ω1(

α
(3)
lq

)
ijkl

Λ2 = −

(
α

(1)
lq

)
ijkl

Λ2

(
α

(8)
ud

)
ijkl

Λ2 = −3

(
α

(1)
ud

)
ijkl

Λ2(
α

(1)
qq

)
ijkl

Λ2 = 4
3

(yqqω1
)ki(y

qq †
ω1

)jl
M2
ω1

(αeu)ijkl
Λ2 = 1

2

(yeuω1
)jl(y

eu †
ω1

)ki
M2
ω1(

α
(8)
qq

)
ijkl

Λ2 = −3

(
α

(1)
qq

)
ijkl

Λ2

• LRLR •��B & �L(
α

(1)
qud

)
ijkl

Λ2 = 4
3

(yqqω1
)ki(y

du †
ω1

)jl
M2
ω1

(αlqdu)ijkl
Λ2 = − (yduω1

)kl(y
ql †
ω1

)ij

M2
ω1(

α
(8)
qud

)
ijkl

Λ2 = −3

(
α

(1)
qud

)
ijkl

Λ2

(αqqeu)ijkl
Λ2 =

(yqqω1
)ji(y

eu †
ω1

)lk
M2
ω1

(αluqe)ijkl
Λ2 =

(yeuω1
)lj(y

ql †
ω1

)ik
M2
ω1

(
α

(1)
lqqq

)
ijkl

Λ2 = − (yql †ω1
)ij(y

qq
ω1

)kl
M2
ω1

(αlequ)ijkl
Λ2 =

(αluqe)ilkj
Λ2

(αudeu)ijkl
Λ2 = − (yeu †ω1

)lk(yduω1
)ji

M2
ω1

Table 17. Operator coefficients arising from the integration of a ω1 scalar field.

ω2 ∼ (3, 1)2
3

Jω2 = (ydω2
)ij εABC di BR dc j CR

(
(ydω2

)ij = −(ydω2
)ji
)

Four-Fermion Operators: RRRR(
α

(1)
dd

)
ijkl

Λ2 = 2
(ydω2

)ki(y
d †
ω2

)jl
M2
ω2

Table 18. Operator coefficients arising from the integration of a ω2 scalar field.

ω4 ∼ (3, 1)−4
3

Jω4 = (yedω4
)ij ec iR d

j
R + (yuuω4

)ij εABC ui BR uc j CR

(
(yuuω4

)ij = −(yuuω4
)ji
)

Four-Fermion Operators:

• RRRR

(αed)ijkl
Λ2 =

(yedω4
)jl(y

ed †
ω4

)ki
2M2

ω4

(
α

(1)
uu

)
ijkl

Λ2 = 2
(yuuω4

)ki(y
uu †
ω4

)jl
M2
ω4

•��B & �L
(αudeu)ijkl

Λ2 = 2
(yuuω4

)il(y
ed †
ω4

)jk
M2
ω4

Table 19. Operator coefficients arising from the integration of a ω4 scalar field.
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J
H
E
P
0
4
(
2
0
1
5
)
0
7
8

Π1 ∼ (3, 2)1
6

JΠ1 = (yldΠ1
)ij iσ2liL

T
djR

Four-Fermion Operators: LLRR

(αld)ijkl
Λ2 = −

(yldΠ1
)il(y

ld †
Π1

)kj

2M2
Π1

Table 20. Operator coefficients arising from the integration of a Π1 scalar field.

Π7 ∼ (3, 2)7
6

JΠ7 = (yluΠ7
)ij iσ2liL

T
ujR + (yeqΠ7

)ij eiRq
j
L

Four-Fermion Operators:

• LLRR • LRLR

(αlu)ijkl
Λ2 = −

(yluΠ7
)il(y

lu †
Π7

)kj

2M2
Π7

(αluqe)ijkl
Λ2 = −

(yluΠ7
)ij(y

eq †
Π7

)kl

M2
Π7

(αqe)ijkl
Λ2 = −

(yeqΠ7
)kj(y

eq †
Π7

)il

2M2
Π7

Table 21. Operator coefficients arising from the integration of a Π7 scalar field.

ζ ∼ (3, 3)−1
3

Jζ = (yqlζ )ij qc iL iσ2σal
j
L + (yqqζ )ij εABC qi BL σaiσ2q

c j C
L

(
(yqqζ )ij = −(yqqζ )ji

)
Four-Fermion Operators:

• LLLL(
α

(1)
lq

)
ijkl

Λ2 = 3
4

(yqlζ )lj(y
ql †
ζ )ik

M2
ζ

(
α

(3)
lq

)
ijkl

Λ2 = 1
3

(
α

(1)
lq

)
ijkl

Λ2(
α

(1)
qq

)
ijkl

Λ2 = 4
3

(yqqζ )ki(y
qq †
ζ )jl

M2
ζ

(
α

(8)
qq

)
ijkl

Λ2 = −3

(
α

(1)
qq

)
ijkl

Λ2

•��B & �L(
α

(3)
lqqq

)
ijkl

Λ2 = − (yqqζ )kl(y
ql †
ζ )ij

M2
ζ

Table 22. Operator coefficients arising from the integration of a ζ scalar field.
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J
H
E
P
0
4
(
2
0
1
5
)
0
7
8

Ω1 ∼ (6, 1)1
3

JΩ1 = (yudΩ1
)ij u

c i (A|
R d

j |B)
R + (yqqΩ1

)ij q
c i (A|
L iσ2q

j |B)
L

(
(yqqΩ1

)ij = −(yqqΩ1
)ji

)
Four-Fermion Operators:

• LLLL • RRRR(
α

(1)
qq

)
ijkl

Λ2 = 2
3

(yqqΩ1
)jl(y

qq †
Ω1

)ki

M2
Ω1

(
α

(1)
ud

)
ijkl

Λ2 = 1
3

(yudΩ1
)jl(y

ud †
Ω1

)ki

M2
Ω1(

α
(8)
qq

)
ijkl

Λ2 = 3
2

(
α

(1)
qq

)
ijkl

Λ2

(
α

(8)
ud

)
ijkl

Λ2 = 3
2

(
α

(1)
ud

)
ijkl

Λ2

• LRLR(
α

(1)
qud

)
ijkl

Λ2 = 4
3

(yudΩ1
)jl(y

qq †
Ω1

)ik

M2
Ω1

(
α

(8)
qud

)
ijkl

Λ2 = 3
2

(
α

(1)
qud

)
ijkl

Λ2

Table 23. Operator coefficients arising from the integration of a Ω1 scalar field.

Ω2 ∼ (6, 1)−2
3

JΩ2 = (ydΩ2
)ij d

c i (A|
R d

j |B)
R

(
(ydΩ2

)ij = (ydΩ2
)ji
)

Four-Fermion Operators: RRRR(
α

(1)
dd

)
ijkl

Λ2 =
(ydΩ2

)jl(y
d †
Ω2

)ki

M2
Ω2

Table 24. Operator coefficients arising from the integration of a Ω2 scalar field.

Ω4 ∼ (6, 1)4
3

JΩ4 = (yuΩ4
)ij u

c i (A|
R u

j |B)
R

(
(yuΩ4

)ij = (yuΩ4
)ji
)

Four-Fermion Operators: RRRR(
α

(1)
uu

)
ijkl

Λ2 =
(yuΩ4

)jl(y
u †
Ω4

)ki

M2
Ω4

Table 25. Operator coefficients arising from the integration of a Ω4 scalar field.
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J
H
E
P
0
4
(
2
0
1
5
)
0
7
8

Υ ∼ (6, 3)1
3

JΥ = (yqΥ)ij q
c i (A|
L iσ2σaq

j |B)
L

(
(yqΥ)ij = (yqΥ)ji

)
Four-Fermion Operators: LLLL(

α
(1)
qq

)
ijkl

Λ2 = 4
3

(yqΥ)lj(y
q †
Υ )ik

M2
Υ

(
α

(8)
qq

)
ijkl

Λ2 = 3
2

(
α

(1)
qq

)
ijkl

Λ2

Table 26. Operator coefficients arising from the integration of a Υ scalar field.

Φ ∼ (8, 2)1
2

JΦ = (yquΦ )ij iσ2qiL
T
TAu

j
R + (ydqΦ )ij diRTAq

j
L

Four-Fermion Operators:

• LLRR • LRLR(
α

(1)
qu

)
ijkl

Λ2 = −2
9

(yquΦ )il(y
qu †
Φ )kj

M2
Φ

(
α

(8)
qud

)
ijkl

Λ2 = − (yquΦ )ij(y
dq †
Φ )kl

M2
Φ(

α
(8)
qu

)
ijkl

Λ2 = −3
4

(
α

(1)
qu

)
ijkl

Λ2(
α

(1)
qd

)
ijkl

Λ2 = −2
9

(ydqΦ )kj(y
dq †
Φ )il

M2
Φ(

α
(8)
qd

)
ijkl

Λ2 = −3
4

(
α

(1)
qd

)
ijkl

Λ2

Table 27. Operator coefficients arising from the integration of a Φ scalar field.
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J
H
E
P
0
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(
2
0
1
5
)
0
7
8

Mixed contributions from {S, ϕ, Ξ0, Ξ1, Θ1, Θ3}

∆Lint = −
(
ϕ†iJϕi + Ξa †1i J

a
Ξ1i

+ h.c.
)
− κiSSiφ†φ− κ

ijk
S3 SiSjSk − κiΞ0

Ξa0iφ
†σaφ

−
(
κiΞ1

Ξa †1i φ̃
†σaφ+ κijSϕSiϕ

†
jφ+ h.c.

)
− κijkSΞ0

SiΞa0jΞa0k − κ
ijk
SΞ1
SiΞa †1j Ξa1k

−κijk
Ξ3

0
fabcΞ

a
0iΞ

b
0jΞ

c
0k − κ

ijk
Ξ0Ξ1

fabcΞ
a
0iΞ

b †
1j Ξc1k −

(
κijΞ0ϕ

Ξa0i

(
ϕ†jσaφ

)
+ κijΞ1ϕ

Ξa †1i

(
ϕ̃†jσaφ

)
+ h.c.

)
−
(
κijΞ0Θ1

Ξa0iC
I
aβφ̃βεIJΘJ

1j + κijΞ1Θ1
Ξa †1i C

I
aβφβεIJΘJ

1j + κijΞ1Θ3
Ξa †1i C

I
aβφ̃βεIJΘJ

3j + h.c.
)

−λijS SiSj
(
φ†φ

)
−
(
λiϕ

(
ϕ†iφ

) (
φ†φ

)
+ h.c.

)
− λijΞ0

Ξa0iΞ
a
0j

(
φ†φ

)
− λ̃ijΞ0

Ξa0iΞ
b
0jfabc

(
φ†σcφ

)
−λijΞ1

Ξa †1i Ξa1j
(
φ†φ

)
− λ̃ijΞ1

fabcΞ
a †
1i Ξb1j

(
φ†σcφ

)
− λijSΞ0

SiΞa0j
(
φ†σaφ

)
−
(
λijSΞ1

SiΞa †1j

(
φ̃†σaφ

)
+ λijΞ1Ξ0

fabcΞ
a †
1i Ξb0j

(
φ̃†σcφ

)
+ h.c.

)
−
(
λiΘ1

(
φ†σaφ

)
CIaβφ̃βεIJΘJ

1i + λiΘ3

(
φ†σaφ̃

)
CIaβφ̃βεIJΘJ

3i + h.c.
)

Scalar Operators

αφ
Λ2 = 3

M2
ϕj

∣∣∣∣λjϕ − κijSϕκ
i
S

M2
Si
−

κijΞ0ϕ
κiΞ0

M2
Ξ0i

− 2
(κijΞ1ϕ

)∗κiΞ1

M2
Ξ1i

∣∣∣∣2 + 1
2M2

Θ1i

∣∣∣∣λiΘ1
−

κjΞ0
κjiΞ0Θ1

M2
Ξ0j

−
(κjΞ1

)∗κjiΞ1Θ1

M2
Ξ1j

∣∣∣∣2
+ 3

2M2
Θ3i

∣∣∣∣λiΘ3
−

(κjΞ1
)∗κjiΞ1Θ3

M2
Ξ1j

∣∣∣∣2 − 3κiS
M2
Si

(
λijS κ

j
S

M2
Sj

+
λijSΞ0

κjΞ0

M2
Ξ0j

+ 4
Re
{
λijSΞ1

(κjΞ1
)∗
}

M2
Ξ1j

)
− 3

λijΞ0
κiΞ0

κjΞ0

M2
Ξ0i

M2
Ξ0j

−3
(κiΞ1

)∗κjΞ1

M2
Ξ1i

M2
Ξ1j

(
2λijΞ1

−
√

2λ̃ijΞ1

)
− 6
√

2
Re
{
λijΞ1Ξ0

(κiΞ1
)∗κjΞ0

}
M2

Ξ1i
M2

Ξ0j

− 3
√

2
κijkΞ0Ξ1

κiΞ0
(κjΞ1

)∗κkΞ1

M2
Ξ0i

M2
Ξ1j

M2
Ξ1k

+3
κiS
M2
Si

(
κijkS κjSκ

k
S

M2
Sj
M2
Sk

+
κijkSΞ0

κjΞ0
κkΞ0

M2
Ξ0j

M2
Ξ0k

+ 2
κijkSΞ1

(κjΞ1
)∗κkΞ1

M2
Ξ1j

M2
Ξ1k

)
Scalar-Fermion Operators

(αeφ)ij
Λ2 = 1

M2
ϕj

(
λjϕ −

κiSκ
ij
Sϕ

M2
Si
−

κiΞ0
κijΞ0ϕ

M2
Ξ0i

− 2
κiΞ1

(
κijΞ1ϕ

)∗
M2

Ξ1i

)(
ye †ϕ
)
ij

(αdφ)ij
Λ2 = 1

M2
ϕj

(
λjϕ −

κiSκ
ij
Sϕ

M2
Si
−

κiΞ0
κijΞ0ϕ

M2
Ξ0i

− 2
κiΞ1

(
κijΞ1ϕ

)∗
M2

Ξ1i

)(
yd †ϕ
)
ij

(αuφ)ij
Λ2 = − 1

M2
ϕj

(
(λjϕ)∗ − κiS(κ

ij
Sϕ)
∗

M2
Si

−
κiΞ0

(
κijΞ0ϕ

)∗
M2

Ξ0i

− 2

(
κiΞ1

)∗
κijΞ1ϕ

M2
Ξ1i

)(
yuϕ
)
ij

Table 28. Collective contributions from several scalars to the dimension six effective Lagrangian.

Only those operators that receive contributions from interactions involving more than one scalar at

a time are shown. The full contribution to the operator coefficient is presented in that case. For the

other operators the contributions can be read by adding the corresponding pieces from the tables

obtained integrating one scalar at a time. Note that, due to the antisymmetric properties of the

interaction, the couplings κijk
Ξ3

0
and λ̃ijΞ0

do not contribute to L6.
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