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Abstract

Combining anti-BRS invariance with previously found symmetries [1] [2] of the
gauge-fixed Chern-Simons action in three dimensions, we obtain a set of transforma-
tions that satisfies an unusual kind of supersymmetry algebra. A superspace formula-
tion of the field equations is given and the Slavnov-Taylor identity associated to these
symmetries is presented.
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1 Introduction

The interest in topological field theories has been constantly growing since Witten’s pi-
oneering work on this subject [3]. Among these theories, the Chern-Simons action in
three dimensions seems to play a quite interesting role [4]-[6]. The aim of this letter is to
study the very rich symmetry structure of the Chern-Simons theory in a covariant gauge,
namely the Landau gauge. Part of these symmetries have been obtained previously by
D.Birmingham, M.Rakowski and G.Thompson, who found an abelian superalgebra with
Lorentz vector and scalar generators [1] [2]. In the following, we will show that this algebra
can be promoted to a non-abelian, supersymmetry-like algebra.

To construct the additional generators of this algebra, use is made of the fact tha.t ina
linear gauge, the action satisfies both BRS and anti-BRS invariance. The basic symmetries
are presented and studied in the next section. Then, the transformation laws as well as the
equations of motion are cast into a more compact and geometric form by the introduction
of an appropriate superspace. Thereafter, the Slavnov-Taylor identity associated to these
symmetries is derived. We conclude with some comments on possible further developments
and on the relation of the present investigations to recently obtained results.

2 The supersymmetry algebra

Using the notation of reference {2], the Chern-Simons action in three dimensions reads:

1

Sino[4] = —}2- / & Te [ (4,84, + 5 Aulds, 4) )] . (1)

Including the gauge-fixing and ghost terms, the full action in the Landau gauge takes the
form

B[A,d,b,c] = Sim|A] + f £z Te[d A" + b Duc] (2)

where the covariant derivative is defined by D,ec = 8,¢ + [4,, ¢]. The known symmetries
of this action are the BRS invariance [7],

sd, = —Dy,c 8¢ = cc

sb =" d sd =0 (3)
and a set of anticommuting global symmetries carrying a Lorentz vector index [1] {2]:

A, = €up 0c bpc = 0
80 = A, bpd = Dye . (4)

Both s and §, increase the ghost number by one unit and, altogether, these symmetries
form an abelian superalgebra:

{s,6} =0 , {6,6&} =0



As well-known [8], integration by parts allows to rewrite the action (2) as
T = Siw + fd"‘zTr[(d — {b,c})8,4% — Db (5)
which expression may be viewed as resulting from (3) by the substitutions

A, — A, c— b

b— —c d—d — {b,c} . (6)

Considering the same replacements in eqts. (3) and (4) leads to the anti-BRS transforma-
tions

34, = Dy §c = —~d + {b, ¢}
g = bb gd = [b,d (7)

and to a new set of anticommmuting global symmetries:

=]l

5, A, = €up OB o = —A,
§,b = 0 d = 05 . (8)

For their part, the transformations (7) and (8) describe an abelian superalgebra:
{,6,} =0 , {5,,8} =0

However, some of the anti-commutation relations with the former symmetries (3) (4) are
non-trivial. One finds? :

{s,8} =0 (9)

{5’5.0} ( byeyd) = _ap(bscad)

L))
{5,5,,} A, = _apA.u + € g (10)

£6,,8,} (bc) = cuw @ (b,c)

_ § §3
{f0,6) d = v @d + o 5 (11)

- 0y
{6p,8:} Ay = €or & Ay + €50 5d

{s’gp} (brcrd) = aﬂ(bac’d)

{'9) Ep} AP = aPA# + €o T (12)

1We define the functional derivative by -2~ [d*2 Tr 4,B° = B* for A,, B® elements of the Lie algebra.
74, P p



Thus, it is clear that these generators define, up to field equations, a supersymmetry
algebra. Using the notation
& = s & =6,
s = 3 § = §, (13)
the on-shell algebra can be summarized as follows:
{6,,6} = €96€0ed (e?=1)
(6,8} = €78, . (14)
To establish the Hermiticity properties of the transformations in equation (14), we use

the assignments of Kubo and Ojima [9], taking into account that our group generators are
anti-Hermitian:

AL = —A4, d = —d
e = —¢ o= b
Then, one obtains the following Hermiticity transformations? :
i t
(82} = —é, (62) = &
@) - (@) -2

The algebra (14) admits an SL(2, R) automorphism group, (i§', §?) and (i}, §2) with
p = 0,1,2 being doublets of this group. This simply reflects the fact that the action (2}
admits an $L(2, R) invariance, where (ic,b) represents a doublet and A, , d — 1 {b,c} two
singlets of this group.

In the Euclidean case, the algebra {14) can be related to a twisted version of the d=3,
N=2 supersymmetry algebra. To describe this relation, let us start from generators Q7 , Qs
which are doublets of the internal symmetry group SU(2) (index ¢) and doublets of SU(2),
the universal covering of the rotation group $O(3) (index «). These quantities satisfy the
algebra

{Q7, Qf} = 1§’ (ap)aﬁ 3, (15)
where ¢ denote the Pauli matrices. Let us now redefine the rotation group and choose it
as the diagonal subgroup of SU(2) x SU(2). In eqt. (15), this amounts to an identification
of the spinorial and the internal group indices:

{Q5,Q7} = i&° (") 8, . (16)
Finally, we introduce generators belonging to the singlet and triplet representations of the
diagonal SU(2),
Q@ = 6aﬁQ§ Q = 60'6 QE
G, = ("".o)ut‘G QE Qp = (o'p)aﬁ QE (17)

2To derive these rules, it is quite convenient to write the transformation of a field as a commutator
(sAu =[5, 4,]) or anti-commutator (sc = {s,c}).




and derive the commutation relations

{Qwéa} = 2¢€pr 07

{Q,Q} = 249, (18)
{@,Q} = 245,
This algebra is related to the algebra (14) by the following identifications:
Qp:5;+6§ QP:_6;+6§
Q = i(& + 8) Q = (& — &)

A few remarks concerning the presented invariance algebras are in order. Notice that
in the algebra (9)-(12), and contrarily to ordinary supersymmetry, equations of motion
of bosonic fields appear. This is not the only place where the usual roles of commuting
and anticommuting fields are interchanged. In fact, this also applies to the order of the
equations of motion and to the counting of the degrees of freedom. The free equations of
motion for the ghost ¢ and the antighost b are just Klein-Gordon equations and thereby
each of these variables corresponds to one degree of freedom. On the other hand, the
bosonic fields, i.e. the vector 4, and the Lagrange multiplier d satisfy a set of first order
differential equations which is analogous to the Dirac equation for free, massless fermions.
For the same reason as in the case of Dirac’s equation, the number of on-shell degrees
of freedom is one-half the number of off-shell degrees of freedom and thus equal to 2. As
usual in supersymmetry, the number of commuting and anti-commuting degrees of freedom
match. However, from a physical point of view, ghost degrees of freedom are to be counted
negatively and therefore the theory has no on-shell degrees of freedom.

3 Superspace formulation

We introduce 8 Grassmannian coordinates 8;,87 (: =1,2) and consider the rigid superspace
parametrized by z and 8 = (6;,87). Then, the "supersymmetry transformations” (13) can
be represented on the space of superfields ®(z,8) by

50 = Q'9 , 5:;‘1' = Q;‘I' (19)
where Q*, Q:, denote the differential operators
. o 1 ..
2 - BT % .D
O = 5 " 2900 (20)
i 4 1 " 1 4
Qp = W - 56"6‘,“,9;‘6 + 56’9,'3,,
As in ordinary supersymmetry, we can define another set of derivatives,
. o 1 ..
i _ ol 0.
Dt = 26, + 5 € 8, 6, (21)
i o 13 v 1
.Dp = w + 56369309?3 - -2‘6"33'39



which quantities anticommute with the generators (20) and satisfy the algebra

(D5, DI} = di o (22)
{D', D)} = &a, . .

The equations of motion associated to the action (2) can be written in our superspace
(z,8) in terms of anticommuting superfields (z,$), i=1,2 :

D& + Di% = 0 (23)
D'® + D'® = {¢, 9}

To recover the space-time results, one defines component fields by

®' = ¢ &% = b (24)
Di#? = 4, D'®*|=d -

the bar denoting the projection to the # = 0 component of the corresponding superfield.
All other on-shell components of the ®° represent functions of b,¢, A, and d which may
be explicitly determined by using the algebra of the D-derivatives and equations (23).
The procedure is straightforward and here we only illustrate it by an example. The field
equation of A, can be derived by evaluating in two different ways the component

D'DID2®'| = 8,4, + 8,4, — [4,, As] + €0 {8°D, ¢}
= —D'D’D;®*| = €m0, 8"d (25)

from which we get

For 4+ €0 0%d — €5, {b,c} =0 . (26)

All other equations of motion follow in a similar way. Also, the transformation laws of the
space-time fields (24) following from the superfield variations (19) by application of (22)
(23) coincide with our initial equations (3) (4) (7) and (8).

It is not clear to us how to deduce the superfield equations (23) from a superspace
action. Yet, such a derivation is not necessary for formulating the Slavnov-Taylor identity
associated to the basic symmetries (3) (4) (7) (8). This identity which may be used to
define the quantum action will be derived in the next section.

4 Slavnov-Taylor identity

We introduce global commuting ghosts a,a”,&,&" corresponding to the symmetries
3,6,,8,8, and global anticommuting ghosts d° associated to the translations. (The lat-
ter are required for the on-shell closure of the symmetry algebra.) To write down the
Slavnov-Taylor identity, we also have to introduce currents v#,,x, A that are linearly
coupled to the variations of the basic fields:

22:fd3xTr[7~SA,,+nsoz+xsc+ASb] . (27)



Here, the S-operation summarizes all invariances of the model:

SA, = €u,(a"?c + &0b) — aDyec — aD,b + d,0°4,

Sd = o?D,c + & 9,b + a[b,d] + d,0°d

Se = —a’A, + ace + a({b,c} — d) + d,8 (28)
Sb = a4, + abb + od + d,8%

Now, the functionals ¥ and X, are not yet sufficient, since our symmetry algebra only closes
on-shell. In the case of supersymmetric theories, this kind of problem can be overcome
[10] by including a term which is quadratic in the currents:

1
Ys = 3 fdsn: Tr [ €up 77" (—ad® + a0®) + 264,y 2a" @] . (29)

Then, the complete action
e = 2 + D + Iy (30)

may be shown to be satisfy the identity

§5, 65, 65, 6%, 6%, 6T, 6%, &%

a t ¢ t t ¢ ¢ t t
fd“:Tr[awaA,‘er 5d | Fx sc | A 66] (31)
0% > >

+laa"-é—&-f—ew,.a"a —é:i——aa"b-j] = 0

5 Conclusion

We have shown that, in the Landau gauge, the 3-dimensional Chern-Simons action is
characterized by invariances satisfying a supersymmetry-like algebra. In references [1] {6]
it was demonstrated that this model is finite up to two loops. It might very well be that
these {(and possible further) finiteness properties have there origin in the supersymmetric
invariances of the gauge-fixed action. To check this in a simple way, it should be quite
useful to have an off-shell formulation as well as a superspace action. Due to the relation
with the N=2 supersymmetry algebra (section 2), the methods developed by the authors
of reference [11] may prove useful for further study of these aspects.
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