001973185 001__ 1973185
001973185 003__ SzGeCERN
001973185 005__ 20220130000105.0
001973185 0248_ $$aoai:cds.cern.ch:1973185$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
001973185 035__ $$9arXiv$$aoai:arXiv.org:1412.0593
001973185 035__ $$9Inspire$$a1331791
001973185 037__ $$9arXiv$$aarXiv:1412.0593$$chep-ph
001973185 041__ $$aeng
001973185 100__ $$aAgarwalla, S.K.$$uBhubaneswar, Inst. Phys.
001973185 245__ $$aOptimised sensitivity to leptonic CP violation from spectral information: the LBNO case at 2300 km baseline
001973185 269__ $$c01 Dec 2014
001973185 260__ $$c2014
001973185 300__ $$a25 p
001973185 500__ $$aComments: 25 pages, 20 figures
001973185 500__ $$9arXiv$$a25 pages, 20 figures
001973185 520__ $$aOne of the main goals of the Long Baseline Neutrino Observatory (LBNO) is to study the $L/E$ behaviour (spectral information) of the electron neutrino and antineutrino appearance probabilities, in order to determine the unknown CP-violation phase $\delta_{CP}$ and discover CP-violation in the leptonic sector. The result is based on the measurement of the appearance probabilities in a broad range of energies, covering t he 1st and 2nd oscillation maxima, at a very long baseline of 2300 km. The sensitivity of the experiment can be maximised by optimising the energy spectra of the neutrino and anti-neutrino fluxes. Such an optimisation requires exploring an extended range of parameters describing in details the geometries and properties of the primary protons, hadron target and focusing elements in the neutrino beam line. In this paper we present a numerical solution that leads to an optimised energy spectra and study its impact on the sensitivity of LBNO to discover leptonic CP violation. In the optimised flux both 1st and 2nd oscillation maxima play an important role in the CP sensitivity. The studies also show that this configuration is less sensitive to systematic errors (e.g. on the total event rates) than an experiment which mainly relies on the neutrino-antineutrino asymmetry at the 1st maximum to determine the existence of CP-violation.
001973185 520__ $$9arXiv$$aOne of the main goals of the Long Baseline Neutrino Observatory (LBNO) is to study the $L/E$ behaviour (spectral information) of the electron neutrino and antineutrino appearance probabilities, in order to determine the unknown CP-violation phase $\delta_{CP}$ and discover CP-violation in the leptonic sector. The result is based on the measurement of the appearance probabilities in a broad range of energies, covering t he 1st and 2nd oscillation maxima, at a very long baseline of 2300 km. The sensitivity of the experiment can be maximised by optimising the energy spectra of the neutrino and anti-neutrino fluxes. Such an optimisation requires exploring an extended range of parameters describing in details the geometries and properties of the primary protons, hadron target and focusing elements in the neutrino beam line. In this paper we present a numerical solution that leads to an optimised energy spectra and study its impact on the sensitivity of LBNO to discover leptonic CP violation. In the optimised flux both 1st and 2nd oscillation maxima play an important role in the CP sensitivity. The studies also show that this configuration is less sensitive to systematic errors (e.g. on the total event rates) than an experiment which mainly relies on the neutrino-antineutrino asymmetry at the 1st maximum to determine the existence of CP-violation.
001973185 540__ $$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
001973185 595__ $$aLANL EDS
001973185 65017 $$2arXiv$$aParticle Physics - Phenomenology
001973185 65027 $$2arXiv$$aParticle Physics - Experiment
001973185 690C_ $$aPREPRINT
001973185 690C_ $$aCERN
001973185 695__ $$9LANL EDS$$ahep-ph
001973185 695__ $$9LANL EDS$$ahep-ex
001973185 693__ $$eLAGUNA-LBNO
001973185 700__ $$aAgostino, L.$$uAPC, Paris
001973185 700__ $$aAittola, M.$$uOulu U.
001973185 700__ $$aAlekou, A.$$uCERN
001973185 700__ $$aAndrieu, B.$$uParis U., VI-VII
001973185 700__ $$aAntoniou, F.$$uCERN
001973185 700__ $$aAsfandiyarov, R.$$uGeneva U.
001973185 700__ $$aAutiero, D.$$uLyon, IPN
001973185 700__ $$aBesida, O.$$uDAPNIA, Saclay
001973185 700__ $$aBalik, A.$$uAnnecy, LAPP
001973185 700__ $$aBallett, P.$$uDurham U.
001973185 700__ $$aBandac, I.$$uDAPNIA, Saclay
001973185 700__ $$aBanerjee, D.$$uZurich, ETH
001973185 700__ $$aBartmann, W.$$uCERN
001973185 700__ $$aBay, F.$$uZurich, ETH
001973185 700__ $$aBiskup, B.$$uCERN
001973185 700__ $$aBlebea-Apostu, A.M.$$uBucharest, IFIN-HH
001973185 700__ $$aBlondel, A.$$uGeneva U.
001973185 700__ $$aBogomilov, M.$$uSofiya U.
001973185 700__ $$aBolognesi, S.$$uDAPNIA, Saclay
001973185 700__ $$aBorriello, E.$$uHamburg, Tech. U.
001973185 700__ $$aBrancus, I.$$uBucharest, IFIN-HH
001973185 700__ $$aBravar, A.$$uGeneva U.
001973185 700__ $$aBuizza-Avanzini, M.$$uAPC, Paris
001973185 700__ $$aCaiulo, D.$$uLyon, IPN
001973185 700__ $$aCalin, M.$$uBucharest U.
001973185 700__ $$aCalviani, M.$$uCERN
001973185 700__ $$aCampanelli, M.$$uUniversity Coll. London
001973185 700__ $$aCantini, C.$$uZurich, ETH
001973185 700__ $$aCata-Danil, G.$$uBucharest, IFIN-HH
001973185 700__ $$aChakraborty, S.$$uHamburg, Tech. U.
001973185 700__ $$aCharitonidis, N.$$uCERN
001973185 700__ $$aChaussard, L.$$uLyon, IPN
001973185 700__ $$aChesneanu, D.$$uBucharest, IFIN-HH
001973185 700__ $$aChipesiu, F.$$uBucharest, IFIN-HH
001973185 700__ $$aCrivelli, P.$$uZurich, ETH
001973185 700__ $$aDawson, J.$$uAPC, Paris
001973185 700__ $$aDe Bonis, I.$$uAnnecy, LAPP
001973185 700__ $$aDeclais, Y.$$uLyon, IPN
001973185 700__ $$adel Amo Sanchez, P.$$uAnnecy, LAPP
001973185 700__ $$aDelbart, A.$$uDAPNIA, Saclay
001973185 700__ $$aDi Luise, S.$$uZurich, ETH
001973185 700__ $$aDuchesneau, D.$$uAnnecy, LAPP
001973185 700__ $$aDumarchez, J.$$uParis U., VI-VII
001973185 700__ $$aEfthymiopoulos, I.$$uCERN
001973185 700__ $$aEliseev, A.$$uSt. Petersburg, INP
001973185 700__ $$aEmery, S.$$uDAPNIA, Saclay
001973185 700__ $$aEnqvist, T.$$uOulu U.
001973185 700__ $$aEnqvist, K.$$uHelsinki U.
001973185 700__ $$aEpprecht, L.$$uZurich, ETH
001973185 700__ $$aErykalov, A.N.$$uSt. Petersburg, INP
001973185 700__ $$aEsanu, T.$$uBucharest U.
001973185 700__ $$aFranco, D.$$uLyon, IPN
001973185 700__ $$aFriend, M.$$uKEK, Tsukuba
001973185 700__ $$aGalymov, V.$$uLyon, IPN
001973185 700__ $$aGavrilov, G.$$uSt. Petersburg, INP
001973185 700__ $$aGendotti, A.$$uZurich, ETH
001973185 700__ $$aGiganti, C.$$uParis U., VI-VII
001973185 700__ $$aGilardoni, S.$$uCERN
001973185 700__ $$aGoddard, B.$$uCERN
001973185 700__ $$aGomoiu, C.M.$$uBucharest, IFIN-HH$$uBucharest U.
001973185 700__ $$aGornushkin, Y.A.$$uDubna, JINR
001973185 700__ $$aGorodetzky, P.$$uAPC, Paris
001973185 700__ $$aHaesler, A.$$uGeneva U.
001973185 700__ $$aHasegawa, T.$$uKEK, Tsukuba
001973185 700__ $$aHorikawa, S.$$uZurich, ETH
001973185 700__ $$aHuitu, K.$$uHelsinki U.
001973185 700__ $$aIzmaylov, A.$$uMoscow, INR
001973185 700__ $$aJipa, A.$$uBucharest U.
001973185 700__ $$aKainulainen, K.$$uJyvaskyla U.
001973185 700__ $$aKaradzhov, Y.$$uGeneva U.
001973185 700__ $$aKhabibullin, M.$$uMoscow, INR
001973185 700__ $$aKhotjantsev, A.$$uMoscow, INR
001973185 700__ $$aKopylov, A.N.$$uMoscow, INR
001973185 700__ $$aKorzenev, A.$$uGeneva U.
001973185 700__ $$aKosyanenko, S.$$uSt. Petersburg, INP
001973185 700__ $$aKryn, D.$$uAPC, Paris
001973185 700__ $$aKudenko, Y.$$uMoscow, INR
001973185 700__ $$aKuusiniemi, P.$$uOulu U.
001973185 700__ $$aLazanu, I.$$uBucharest U.
001973185 700__ $$aLazaridis, C.$$uCERN
001973185 700__ $$aLevy, J.M.$$uParis U., VI-VII
001973185 700__ $$aLoo, K.$$uJyvaskyla U.
001973185 700__ $$aMaalampi, J.$$uJyvaskyla U.
001973185 700__ $$aMargineanu, R.M.$$uBucharest, IFIN-HH
001973185 700__ $$aMarteau, J.$$uLyon, IPN
001973185 700__ $$aMartin-Mari, C.$$uGeneva U.
001973185 700__ $$aMatveev, V.$$uDubna, JINR$$uMoscow, INR
001973185 700__ $$aMazzucato, E.$$uDAPNIA, Saclay
001973185 700__ $$aMefodiev, A.$$uMoscow, INR
001973185 700__ $$aMineev, O.$$uMoscow, INR
001973185 700__ $$aMirizzi, A.$$uHamburg, Tech. U.
001973185 700__ $$aMitrica, B.$$uBucharest, IFIN-HH
001973185 700__ $$aMurphy, S.$$uZurich, ETH
001973185 700__ $$aNakadaira, T.$$uKEK, Tsukuba
001973185 700__ $$aNarita, S.$$uIwate U.
001973185 700__ $$aNesterenko, D.A.$$uSt. Petersburg, INP
001973185 700__ $$aNguyen, K.$$uZurich, ETH
001973185 700__ $$aNikolics, K.$$uZurich, ETH
001973185 700__ $$aNoah, E.$$uGeneva U.
001973185 700__ $$aNovikov, Yu.$$uSt. Petersburg, INP
001973185 700__ $$aOprima, A.$$uBucharest, IFIN-HH
001973185 700__ $$aOsborne, J.$$uCERN
001973185 700__ $$aOvsyannikova, T.$$uMoscow, INR
001973185 700__ $$aPapaphilippou, Y.$$uCERN
001973185 700__ $$aPascoli, S.$$uDurham U.
001973185 700__ $$aPatzak, T.$$uIUF, Paris$$uAPC, Paris
001973185 700__ $$aPectu, M.$$uBucharest, IFIN-HH
001973185 700__ $$aPennacchio, E.$$uLyon, IPN
001973185 700__ $$aPeriale, L.$$uZurich, ETH
001973185 700__ $$aPessard, H.$$uAnnecy, LAPP
001973185 700__ $$aPopov, B.$$uParis U., VI-VII
001973185 700__ $$aRavonel, M.$$uGeneva U.
001973185 700__ $$aRayner, M.$$uGeneva U.
001973185 700__ $$aResnati, F.$$uZurich, ETH
001973185 700__ $$aRistea, O.$$uBucharest U.
001973185 700__ $$aRobert, A.$$uParis U., VI-VII
001973185 700__ $$aRubbia, A.$$uZurich, ETH
001973185 700__ $$aRummukainen, K.$$uHelsinki U.
001973185 700__ $$aSaftoiu, A.$$uBucharest, IFIN-HH
001973185 700__ $$aSakashita, K.$$uKEK, Tsukuba
001973185 700__ $$aSanchez-Galan, F.$$uCERN
001973185 700__ $$aSarkamo, J.$$uOulu U.
001973185 700__ $$aSaviano, N.$$uDurham U.$$uHamburg, Tech. U.
001973185 700__ $$aScantamburlo, E.$$uGeneva U.
001973185 700__ $$aSergiampietri, F.$$uINFN, Pisa$$uZurich, ETH
001973185 700__ $$aSgalaberna, D.$$uZurich, ETH
001973185 700__ $$aShaposhnikova, E.$$uCERN
001973185 700__ $$aSlupecki, M.$$uJyvaskyla U.
001973185 700__ $$aSmargianaki, D.$$uCERN
001973185 700__ $$aStanca, D.$$uBucharest, IFIN-HH
001973185 700__ $$aSteerenberg, R.$$uCERN
001973185 700__ $$aSterian, A.R.$$uBucharest, IFIN-HH
001973185 700__ $$aSterian, P.$$uBucharest, IFIN-HH
001973185 700__ $$aStoica, S.$$uBucharest, IFIN-HH
001973185 700__ $$aStrabel, C.$$uCERN
001973185 700__ $$aSuhonen, J.$$uJyvaskyla U.
001973185 700__ $$aSuvorov, V.$$uSt. Petersburg, INP
001973185 700__ $$aToma, G.$$uBucharest, IFIN-HH
001973185 700__ $$aTonazzo, A.$$uAPC, Paris
001973185 700__ $$aTrzaska, W.H.$$uJyvaskyla U.
001973185 700__ $$aTsenov, R.$$uSofiya U.
001973185 700__ $$aTuominen, K.$$uHelsinki U.
001973185 700__ $$aValram, M.$$uBucharest, IFIN-HH
001973185 700__ $$aVankova-Kirilova, G.$$uSofiya U.
001973185 700__ $$aVannucci, F.$$uAPC, Paris
001973185 700__ $$aVasseur, G.$$uDAPNIA, Saclay
001973185 700__ $$aVelotti, F.$$uCERN
001973185 700__ $$aVelten, P.$$uCERN
001973185 700__ $$aVenturi, V.$$uCERN
001973185 700__ $$aViant, T.$$uZurich, ETH
001973185 700__ $$aVihonen, S.$$uJyvaskyla U.
001973185 700__ $$aVincke, H.$$uCERN
001973185 700__ $$aVorobyev, A.$$uSt. Petersburg, INP
001973185 700__ $$aWeber, A.$$uLiverpool U.
001973185 700__ $$aWu, S.$$uZurich, ETH
001973185 700__ $$aYershov, N.$$uMoscow, INR
001973185 700__ $$aZambelli, L.$$uKEK, Tsukuba
001973185 700__ $$aZito, M.$$uDAPNIA, Saclay
001973185 710__ $$gLAGUNA-LBNO Collaboration
001973185 8564_ $$uhttp://arxiv.org/pdf/1412.0593.pdf$$yPreprint
001973185 8564_ $$82348804$$s4647440$$uhttp://cds.cern.ch/record/1973185/files/arXiv:1412.0593.pdf
001973185 8564_ $$82348776$$s28669$$uhttp://cds.cern.ch/record/1973185/files/compare_sps_SignalNuE.png$$y00015 Comparison of signal rates obtained with different neutrino beam optimisations for SPS (left) and HPPS (right) proton beams.
001973185 8564_ $$82348777$$s14463$$uhttp://cds.cern.ch/record/1973185/files/horn_cpv400.png$$y00010 View of the horn and target (left) and reflector (right) corresponding to the selected SPS GLB (panels above) and HPPS LE (panels below) configurations. The magnetic field strengths correspond to circulating currents of 281~kA (289~kA) and 198~kA (187~kA) for the 1st horn and 2nd horn respectively and SPS (HPPS) beam option.
001973185 8564_ $$82348778$$s32648$$uhttp://cds.cern.ch/record/1973185/files/fluxcompare_hpps_numu_phf.png$$y00007 Energy spectra of neutrino fluxes for different optimisations for SPS (left) and HPPS (right) proton beam options. The nominal LBNO flux from \cite{Stahl:2012exa} is also shown.
001973185 8564_ $$82348779$$s45081$$uhttp://cds.cern.ch/record/1973185/files/cmproptim_medsense_cpv_hpps_20kton.png$$y00009 Comparison of expected CPV sensitivity for different beam optimisations for SPS (left) and HPPS (right) proton beam options and LBNO20 detector configuration. A total exposure of $15\times 10^{20}$ ($30\times 10^{21}$) POT is taken for SPS (HPPS) beam with 75\% of the running time devoted to the running in the neutrino mode. The value of $\sin^2{\theta_{23}} = 0.5$ is assumed.
001973185 8564_ $$82348780$$s29604$$uhttp://cds.cern.ch/record/1973185/files/medsense_cpv_nsig_hpps_opt_nh_massdep.png$$y00031 Median sensitivity to CPV for the optimised HPPS beam. The case of NH is shown on the left, while that of IH is shown on the right. The value of $\sin^2{\theta_{23}} = 0.45$ is assumed.
001973185 8564_ $$82348781$$s16770$$uhttp://cds.cern.ch/record/1973185/files/refl_le50_new.png$$y00013 View of the horn and target (left) and reflector (right) corresponding to the selected SPS GLB (panels above) and HPPS LE (panels below) configurations. The magnetic field strengths correspond to circulating currents of 281~kA (289~kA) and 198~kA (187~kA) for the 1st horn and 2nd horn respectively and SPS (HPPS) beam option.
001973185 8564_ $$82348782$$s32863$$uhttp://cds.cern.ch/record/1973185/files/cpv_sps_enurec_cut.png$$y00036 Left: Expected distribution of e-like events for SPS-based neutrino beam after a cut on reconstructed energy at 2.5 GeV. Right: Comparison of the sensitivity to CPV with and without the energy cut.
001973185 8564_ $$82348783$$s33764$$uhttp://cds.cern.ch/record/1973185/files/sps_24kton_nh_th23band.png$$y00027 Median sensitivity to CPV for the optimised SPS beam and LBNO20. The sensitivity is shown for a range of values of $\sin^2{\theta_{23}}$ between 0.45 and 0.55. The case of NH is shown on the left, while that of IH is shown on the right.
001973185 8564_ $$82348784$$s36834$$uhttp://cds.cern.ch/record/1973185/files/horn_layout1.png$$y00003 Design layout of the 1st horn and target (top) and 2nd horn (bottom).
001973185 8564_ $$82348785$$s37686$$uhttp://cds.cern.ch/record/1973185/files/elike_sps_glbopt_phf_cp_270.png$$y00018 Expected distribution of e-like events for an SPS-based neutrino beam, assuming $\delta_{CP}=0$ (left) and $\delta_{CP}=3\pi/2$ (right) and NH. The error bars represent statistical uncertainties only.
001973185 8564_ $$82348786$$s33621$$uhttp://cds.cern.ch/record/1973185/files/elike_hpps_leopt_phf_cp_0_cut2p5gev.png$$y00037 Left: Expected distribution of e-like events for HPPS-based neutrino beam after a cut on reconstructed energy at 2.5 GeV. Right: Comparison of the sensitivity to CPV with and without the energy cut.
001973185 8564_ $$82348787$$s29013$$uhttp://cds.cern.ch/record/1973185/files/cern_sps_cpfrac.png$$y00033 Fractional coverage of $\delta_{CP}$ parameter space at $3\sigma$ and $5\sigma$ level with SPS (left) and HPPS (right) based neutrino beams and two detector size options. The value of $\sin^2{\theta_{23}} = 0.45$ is assumed.
001973185 8564_ $$82348788$$s16735$$uhttp://cds.cern.ch/record/1973185/files/layout.png$$y00001 FLUKA simulation of the CN2PY neutrino beamline. The target and both focusing horns are shown on the left and the end of the decay volume with the beam dump is shown on the right.
001973185 8564_ $$82348789$$s29181$$uhttp://cds.cern.ch/record/1973185/files/medsense_cpv_nsig_sps_opt_ih_massdep.png$$y00030 Median sensitivity to CPV for the optimised SPS beam. The case of NH is shown on the left, while that of IH is shown on the right. The value of $\sin^2{\theta_{23}} = 0.45$ is assumed.
001973185 8564_ $$82348790$$s29065$$uhttp://cds.cern.ch/record/1973185/files/nuesignal_mh1_hpps_leopt_phf.png$$y00023 Left: Distribution of signal e-like events in $\nu$ mode for optimised HPPS beam and 24kton detector and 75\% of the total POT exposure of $30\times10^{21}$. Right: Difference of the reconstructed energy distribution of the e-like signal events from the case of $\delta_{CP} = 0$. The error bars represent the statistical uncertainty for each energy bin. NH is assumed.
001973185 8564_ $$82348791$$s34276$$uhttp://cds.cern.ch/record/1973185/files/cern_hpps_cpfrac.png$$y00034 Fractional coverage of $\delta_{CP}$ parameter space at $3\sigma$ and $5\sigma$ level with SPS (left) and HPPS (right) based neutrino beams and two detector size options. The value of $\sin^2{\theta_{23}} = 0.45$ is assumed.
001973185 8564_ $$82348792$$s34442$$uhttp://cds.cern.ch/record/1973185/files/fluxcompare_sps_numu_phf.png$$y00006 Energy spectra of neutrino fluxes for different optimisations for SPS (left) and HPPS (right) proton beam options. The nominal LBNO flux from \cite{Stahl:2012exa} is also shown.
001973185 8564_ $$82348793$$s41651$$uhttp://cds.cern.ch/record/1973185/files/nuesignaldiff_mh1_sps_glbopt_phf.png$$y00022 Left: Distribution of signal e-like events in $\nu$ mode for optimised SPS beam and 24kton detector and 75\% of the total exposure of $15\times10^{20}$ POT. Right: Difference of the reconstructed energy distribution of the e-like signal events from the case of $\delta_{CP} = 0$. The error bars represent the statistical uncertainty for each energy bin. NH is assumed.
001973185 8564_ $$82348794$$s38019$$uhttp://cds.cern.ch/record/1973185/files/nuesignaldiff_mh1_hpps_leopt_phf.png$$y00024 Left: Distribution of signal e-like events in $\nu$ mode for optimised HPPS beam and 24kton detector and 75\% of the total POT exposure of $30\times10^{21}$. Right: Difference of the reconstructed energy distribution of the e-like signal events from the case of $\delta_{CP} = 0$. The error bars represent the statistical uncertainty for each energy bin. NH is assumed.
001973185 8564_ $$82348795$$s14000$$uhttp://cds.cern.ch/record/1973185/files/beamdump.png$$y00002 FLUKA simulation of the CN2PY neutrino beamline. The target and both focusing horns are shown on the left and the end of the decay volume with the beam dump is shown on the right.
001973185 8564_ $$82348796$$s15859$$uhttp://cds.cern.ch/record/1973185/files/refl_cpv400.png$$y00011 View of the horn and target (left) and reflector (right) corresponding to the selected SPS GLB (panels above) and HPPS LE (panels below) configurations. The magnetic field strengths correspond to circulating currents of 281~kA (289~kA) and 198~kA (187~kA) for the 1st horn and 2nd horn respectively and SPS (HPPS) beam option.
001973185 8564_ $$82348797$$s41760$$uhttp://cds.cern.ch/record/1973185/files/cmproptim_medsense_cpv_sps_20kton.png$$y00008 Comparison of expected CPV sensitivity for different beam optimisations for SPS (left) and HPPS (right) proton beam options and LBNO20 detector configuration. A total exposure of $15\times 10^{20}$ ($30\times 10^{21}$) POT is taken for SPS (HPPS) beam with 75\% of the running time devoted to the running in the neutrino mode. The value of $\sin^2{\theta_{23}} = 0.5$ is assumed.
001973185 8564_ $$82348798$$s22406$$uhttp://cds.cern.ch/record/1973185/files/mh_T0_ih_spsoptim_4p0E20.png$$y00026 Mean value of the mass hierarchy test statistic for nominal and optimised SPS neutrino beams as a function of true $\delta_{CP}$ value for an exposure of $4\times 10^{20}$ POT (or about 4 years of running with SPS) and 24 kton detector.
001973185 8564_ $$82348799$$s65359$$uhttp://cds.cern.ch/record/1973185/files/pnue_2300km_slog_slog.png$$y00000 Neutrino flavour oscillation probability at a baseline of 2300~km for $\nu_\mu\rightarrow \nu_e$ (resp. $\bar\nu_\mu\rightarrow \bar\nu_e$) as a function of the neutrino energy $E_\nu$: a) $\Delta m^2_{31}>0$ and $\delta_{CP}=0$; b) $\Delta m^2_{31}<0$ and $\delta_{CP}=0$; c) $\Delta m^2_{31}>0$ and $\delta_{CP}=0, \pi/2, \pi,3\pi/2$; d) $\Delta m^2_{31}<0$ and $\delta_{CP}=0, \pi/2, \pi,3\pi/2$ (see Table~\ref{tab:oscparam_may2014} for the other oscillation parameters assumed.)
001973185 8564_ $$82348800$$s34589$$uhttp://cds.cern.ch/record/1973185/files/elike_sps_glbopt_phf_cp_0_cut2p5gev.png$$y00035 Left: Expected distribution of e-like events for SPS-based neutrino beam after a cut on reconstructed energy at 2.5 GeV. Right: Comparison of the sensitivity to CPV with and without the energy cut.
001973185 8564_ $$82348801$$s30084$$uhttp://cds.cern.ch/record/1973185/files/compare_hpps_SignalNuE.png$$y00016 Comparison of signal rates obtained with different neutrino beam optimisations for SPS (left) and HPPS (right) proton beams.
001973185 8564_ $$82348802$$s36642$$uhttp://cds.cern.ch/record/1973185/files/elike_hpps_leopt_phf_cp_270.png$$y00020 Expected distributions of e-like events for HPPS-based neutrino beam operating assuming $\delta_{CP}=0$ (left) and $\delta_{CP}=3\pi/2$ (right) and NH. The error bars represent statistical uncertainties only.
001973185 8564_ $$82348803$$s23863$$uhttp://cds.cern.ch/record/1973185/files/mh_T0_nh_spsoptim_4p0E20.png$$y00025 Mean value of the mass hierarchy test statistic for nominal and optimised SPS neutrino beams as a function of true $\delta_{CP}$ value for an exposure of $4\times 10^{20}$ POT (or about 4 years of running with SPS) and 24 kton detector.
001973185 8564_ $$82348805$$s35863$$uhttp://cds.cern.ch/record/1973185/files/DeltaChi2dist_H0.png$$y00014 Distribution of $\Delta\chi^2$ test statistic for $\delta_{CP} = 0$.
001973185 8564_ $$82348806$$s36521$$uhttp://cds.cern.ch/record/1973185/files/elike_hpps_leopt_phf_cp_0.png$$y00019 Expected distributions of e-like events for HPPS-based neutrino beam operating assuming $\delta_{CP}=0$ (left) and $\delta_{CP}=3\pi/2$ (right) and NH. The error bars represent statistical uncertainties only.
001973185 8564_ $$82348807$$s37585$$uhttp://cds.cern.ch/record/1973185/files/elike_sps_glbopt_phf_cp_0.png$$y00017 Expected distribution of e-like events for an SPS-based neutrino beam, assuming $\delta_{CP}=0$ (left) and $\delta_{CP}=3\pi/2$ (right) and NH. The error bars represent statistical uncertainties only.
001973185 8564_ $$82348808$$s30540$$uhttp://cds.cern.ch/record/1973185/files/nuesignal_mh1_sps_glbopt_phf.png$$y00021 Left: Distribution of signal e-like events in $\nu$ mode for optimised SPS beam and 24kton detector and 75\% of the total exposure of $15\times10^{20}$ POT. Right: Difference of the reconstructed energy distribution of the e-like signal events from the case of $\delta_{CP} = 0$. The error bars represent the statistical uncertainty for each energy bin. NH is assumed.
001973185 8564_ $$82348809$$s23280$$uhttp://cds.cern.ch/record/1973185/files/fitness_LE50.png$$y00005 Evolution of the fitness parameter during LE optimisation of the HPPS-based neutrino beam. The horizontal axis represents the chronological index of the beamline configurations generated by the algorithm.
001973185 8564_ $$82348810$$s31442$$uhttp://cds.cern.ch/record/1973185/files/sps_24kton_ih_th23band.png$$y00028 Median sensitivity to CPV for the optimised SPS beam and LBNO20. The sensitivity is shown for a range of values of $\sin^2{\theta_{23}}$ between 0.45 and 0.55. The case of NH is shown on the left, while that of IH is shown on the right.
001973185 8564_ $$82348811$$s28585$$uhttp://cds.cern.ch/record/1973185/files/medsense_cpv_nsig_hpps_opt_ih_massdep.png$$y00032 Median sensitivity to CPV for the optimised HPPS beam. The case of NH is shown on the left, while that of IH is shown on the right. The value of $\sin^2{\theta_{23}} = 0.45$ is assumed.
001973185 8564_ $$82348812$$s31955$$uhttp://cds.cern.ch/record/1973185/files/refl_layout1.png$$y00004 Design layout of the 1st horn and target (top) and 2nd horn (bottom).
001973185 8564_ $$82348813$$s30229$$uhttp://cds.cern.ch/record/1973185/files/medsense_cpv_nsig_sps_opt_nh_massdep.png$$y00029 Median sensitivity to CPV for the optimised SPS beam. The case of NH is shown on the left, while that of IH is shown on the right. The value of $\sin^2{\theta_{23}} = 0.45$ is assumed.
001973185 8564_ $$82348814$$s32387$$uhttp://cds.cern.ch/record/1973185/files/cpv_hpps_enurec_cut.png$$y00038 Left: Expected distribution of e-like events for HPPS-based neutrino beam after a cut on reconstructed energy at 2.5 GeV. Right: Comparison of the sensitivity to CPV with and without the energy cut.
001973185 8564_ $$82348815$$s15456$$uhttp://cds.cern.ch/record/1973185/files/horn_le50_new.png$$y00012 View of the horn and target (left) and reflector (right) corresponding to the selected SPS GLB (panels above) and HPPS LE (panels below) configurations. The magnetic field strengths correspond to circulating currents of 281~kA (289~kA) and 198~kA (187~kA) for the 1st horn and 2nd horn respectively and SPS (HPPS) beam option.
001973185 916__ $$sn$$w201448
001973185 960__ $$a11
001973185 980__ $$aPREPRINT